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  ABSTRACT 

  Recently, the amount of available single nucleotide 
polymorphism (SNP) marker data has considerably 
increased in dairy cattle breeds, both for research pur-
poses and for application in commercial breeding and 
selection programs. Bayesian methods are currently 
used in the genomic evaluation of dairy cattle to handle 
very large sets of explanatory variables with a limited 
number of observations. In this study, we applied 2 
Bayesian methods, BayesCπ and Bayesian least abso-
lute shrinkage and selection operator (LASSO), to 2 
genotyped and phenotyped reference populations con-
sisting of 3,940 Holstein bulls and 1,172 Montbéliarde 
bulls with approximately 40,000 polymorphic SNP. We 
compared the accuracy of the Bayesian methods for 
the prediction of 3 traits (milk yield, fat content, and 
conception rate) with pedigree-based BLUP, genomic 
BLUP, partial least squares (PLS) regression, and sparse 
PLS regression, a variable selection PLS variant. The 
results showed that the correlations between observed 
and predicted phenotypes were similar in BayesCπ 
(including or not pedigree information) and Bayesian 
LASSO for most of the traits and whatever the breed. 
In the Holstein breed, Bayesian methods led to higher 
correlations than other approaches for fat content and 
were similar to genomic BLUP for milk yield and to 
genomic BLUP and PLS regression for the conception 
rate. In the Montbéliarde breed, no method dominated 
the others, except BayesCπ for fat content. The better 
performances of the Bayesian methods for fat content 
in Holstein and Montbéliarde breeds are probably due 
to the effect of the DGAT1 gene. The SNP identified 
by the BayesCπ, Bayesian LASSO, and sparse PLS re-
gression methods, based on their effect on the different 
traits of interest, were located at almost the same posi-

tion on the genome. As the Bayesian methods resulted 
in regressions of direct genomic values on daughter 
trait deviations closer to 1 than for the other methods 
tested in this study, Bayesian methods are suggested 
for genomic evaluations of French dairy cattle. 
  Key words:    genomic selection ,  Bayesian method , 
 variable selection ,  Holstein and Montbéliarde breeds 

  INTRODUCTION 

  In recent years, massive amounts of SNP marker data 
have been made available in dairy cattle for applica-
tion in selection schemes. In the future, the increase of 
the density of SNP data will be ensured by the rapid 
decrease in genotyping costs. However, the number 
of genotyped and phenotyped animals that consti-
tute reference populations remains limited. Reference 
populations provide the prediction equations that give 
genomic EBV (GEBV). Genomic EBV are obtained 
through the estimation of SNP effects in a context 
where the number of independent variables (SNP mark-
ers) is much larger than the number of individuals of 
the reference population. 

  In the literature, several methods have been pro-
posed to estimate SNP effects assuming or not a prior 
distribution of SNP effects (Bayesian vs. frequentist 
methods). The Bayesian methods differentiate in the 
assumed prior distributions of SNP effects. 

  For the estimation of SNP effects, Meuwissen et al. 
(2001) proposed 2 Bayesian methods, named BayesA 
and BayesB. The BayesA method assumes that the 
prior distribution of the SNP effects is a normal dis-
tribution with a 0 mean and a different variance for 
each SNP. The prior distribution of these variances in 
BayesA is proportional to a scaled inverted chi-squared 
distribution, noted χ−2(ν,S), where ν = degrees of free-
dom and S = a scale parameter. In the BayesB method, 
a stochastic search variable selection is used, which as-
sumes that only part of the SNP involved provide infor-
mation about the phenotype. A combination of normal 
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distribution with a 0 mean and a large variance (with 
probability π) and a distribution with point mass only 
at zero (with probability 1 − π) is assigned to each SNP 
effect. Both BayesA and BayesB assume a Student’s 
t-distribution at the level of SNP effects (Sorensen and 
Gianola, 2002). Since then, BayesA and BayesB meth-
ods have been widely used in animal breeding research. 
Several studies have also used a simple BLUP approach 
[also often referred to as genomic BLUP (GBLUP) or 
SNP-BLUP], as described in Meuwissen et al. (2001) 
as a reference method, to compare the gain in accuracy 
with Bayesian methods. BayesA and BayesB were shown 
to be similar or slightly more reliable than GBLUP in 
Australian Holstein-Friesian bulls (Hayes et al., 2009) 
and in the New Zealand reference population (Harris 
et al., 2009). Using a Fleckvieh reference population 
(Gredler et al., 2009), BayesB was found to be more 
accurate for 3 traits out of 4 than the BayesA method 
modified to include a polygenic effect (Hayes, 2009).

The BayesC model (Kizilkaya et al., 2010) differs from 
BayesB by using a common variance for SNP with a 
nonzero effect, instead of a locus-specific variance. This 
variance is estimated, in contrast to GBLUP, where it 
is supposed as known. Habier et al. (2011) extended the 
panel of Bayesian methods with BayesCπ, treating the 
probability π that a SNP marker has an effect as an 
unknown parameter, which can be estimated. BayesCπ 
was compared with BayesA and B using simulated and 
real data from North American Holstein bulls. The re-
sults showed that the accuracies of GEBV were similar 
for the different methods.

The Bayesian least absolute shrinkage and selection 
operator (LASSO) method was also used in a genomic 
evaluation context (de los Campos et al., 2009; Weigel 
et al., 2009), but these studies did not compare Bayes-
ian LASSO with other genomic selection methods. de 
los Campos et al. (2009) compared the predictive abil-
ity of different Bayesian LASSO models with respect 
to the choice of prior for the regularization parameters 
on simulated data, using pedigree information only, 
marker information only, or considering pedigree and 
marker information jointly, in wheat line data sets 
and populations of mice. The results showed that a 
double-exponential prior may be a better choice than a 
Student’s t-distribution prior (such as BayesA) if most 
markers do not have any effect. They outlined that a 
Student’s t-distribution may place more density at zero 
than the Gaussian prior of standard Bayesian methods 
(the density at zero is larger in the double-exponential 
prior). The Bayesian LASSO appears to be an inter-
esting alternative to the BayesA method for perform-
ing regressions on markers. They also have shown, on 
real data sets, that the model with both a polygenic 

and SNP effect was the most efficient. Legarra et al. 
(2011) and Ostersen et al. (2011) showed that Bayesian 
LASSO and GBLUP gave comparable results for most 
traits, on real data sets of Montbéliarde and Holstein 
bulls, and on Danish Duroc pigs, respectively.

Gredler et al. (2009) used partial least squares (PLS) 
regression on a Fleckvieh reference population and they 
compared it with BayesA, BayesB, and GBLUP. The 
PLS method reduces the dimension of the regression 
model by building orthogonal linear combinations of 
markers or components that have a maximal correla-
tion with the trait. The PLS regression and GBLUP 
gave similar results but with lower accuracies than 
those obtained with BayesB and higher accuracies than 
with BayesA. Genomic BLUP was also shown to be 
similar to PLS regression for 2 traits with dairy bull 
data (Moser et al., 2009) and for 3 traits with French 
Lacaune dairy sheep data (Robert-Granié et al., 2011) 
and very slightly better than PLS regression in the 
Fleckvieh breed (Gredler et al., 2009). Colombani et al. 
(2010) have shown that PLS regression and sparse PLS 
(sPLS) regression (method performing variable selec-
tion in addition to reducing dimensionality) provided 
the same correlations as GLUP for 4 traits with French 
Holstein bulls.

The main goal of this study was to compare BayesCπ 
and Bayesian LASSO with methods currently used in 
dairy cattle evaluation, such as pedigree-based BLUP 
and GBLUP, and methods recently used in genomic 
selection by Long et al. (2011) and Colombani et al. 
(2012) and known to perform well with large data sets 
(Lê Cao et al., 2008; Chun and Keles, 2009) such as 
PLS regression and sPLS regression. After studying the 
statistical modeling and the convergence properties of 
BayesCπ, we compared the different methods, based 
on their predictive abilities, using 2 real data sets from 
Montbéliarde and Holstein breeds. Then, the positions 
of SNP selected by BayesCπ, Bayesian LASSO, and 
sPLS regression were compared.

MATERIALS AND METHODS

Data

Data sets consisted of 1,172 Montbéliarde bulls and 
3,940 French Holstein bulls, progeny tested and geno-
typed with the Illumina Bovine SNP50K BeadChip 
(Illumina Inc., San Diego, CA). Training and valida-
tion data sets were defined for each breed, according 
to a cutoff birth date defined so that the validation 
set included the youngest 25% genotyped bulls. Conse-
quently, 2 training data sets consisting of 950 Montbé-
liarde bulls and 2,976 Holstein bulls were available to 
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provide prediction equations for both breeds and the 
3 traits (milk yield, fat content, and conception rate). 
Next, the phenotypes of the 222 Montbéliarde bulls and 
964 Holstein bulls from the validation data sets, born 
between June 2002 and 2004, were predicted. Pedigree 
files for the 2 breeds included 4,717 and 12,142 bulls 
in the Montbéliarde and Holstein breeds, respectively.

The DualPHASE software (Druet and Georges, 
2010) was used to check Mendelian segregation and 
infer missing genotypes from large-family information. 
Minimum minor allele frequencies of 3% were required 
and resulted in 38,462 SNP for the Montbéliarde breed 
and 39,738 SNP for the Holstein breed, used as inde-
pendent variables.

The response variables (phenotypes) were daughter 
yield deviations (DYD; VanRaden and Wiggans, 1991; 
Mrode and Swanson, 2004) from the October 2009 na-
tional evaluation. The precision of DYD was accounted 
for through the weighting of DYD by their error vari-
ance, which is a function of the sire’s effective daughter 
contribution (EDC). Three traits were considered with 
different heritabilities (h2): milk yield (h2 = 0.3), fat 
content (h2 = 0.5), and conception rate (h2 = 0.02; 
Boichard and Manfredi, 1994).

Genomic BLUP

Two methods were used as reference methods to as-
sess the predictive ability of PLS regression, sPLS re-
gression, Bayesian LASSO, and BayesCπ: pedigree-
based BLUP and GBLUP. The general statistical 
model was y = μ1 + Za + e, where y is a vector of 
phenotypes (DYD), μ is the overall mean, Z is a design 
matrix allocating observations to breeding values, a is 
a random vector of additive genetic values, and e is a 
vector of random normal errors. In pedigree-based 
BLUP, Var( ) ,a A= σa

2  where A is the pedigree-based 
relationship matrix and σa

2 is the additive genetic vari-
ance. In GBLUP, genomic information was included in 
the BLUP model assuming a prior normal distribution 
for SNP markers (VanRaden, 2008) and using mixed-
model equations with a genomic relationship matrix 
(Cole et al., 2009; VanRaden et al., 2009). Using ge-
nomic information implies that the relationship matrix 
A based on pedigree is substituted by the genomic re-
lationship matrix (G) as defined by VanRaden (2008). 
We assumed that Var( ) ,a G= σa

2  with

 G
XX

=

−( )
=
∑

'
,

2 1
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where p is the number of loci considered, qj is the fre-
quency of an allele of the marker j, and X is a centered 
incidence matrix of SNP effects, corrected for allele 
frequencies.

PLS and sPLS Regressions

PLS Regression. The PLS regression (Wold, 1966) 
is a dimension reduction method developed to deal 
with the “p n” problem (the number of predictors p 
is much larger than the number of observations n). It 
combines principal components analysis and multiple 
regressions to handle very large sets of independent 
variables, which can be highly correlated, such as our 
set of SNP predictors.

Partial least squares regression relies on successive 
regressions of the response variable y onto substitutes 
of the initial independent variables (X), named latent 
variables, which define a space of smaller dimension. 
The latent variables (ξ1, . . . , ξH) are linear combina-
tions of the independent variables (X) through loadings 
vectors (u1, . . . , uH), where H is the number of latent 
variables retained in the final PLS regression model. 
These parameters are estimated to solve the following 
optimization problem:

 max cov ,
u

X u y
h

h h h= − −( )
1 1 1,  

where ξ = Xh–1uh and Xh and yh are the residual ma-
trices of the regression of Xh–1 and yh–1 onto ξh for each 
PLS regression dimension h = 1, . . . , H, where X0 = 
X and y0 = y.

The parameter H can be tuned by cross-validation, as 
proposed by Chun and Kele  (2009) and Coster et al. 
(2010). Solberg et al. (2009) proposed an alternative to 
fix the parameter H to obtain the PLS regression pre-
diction equation which leads to the highest correlation 
between observed and predicted phenotypes from the 
validation data set. Colombani et al. (2012) tested and 
discussed these 2 approaches. Following their approach, 
39, 24, and 7 latent variables provided optimal models 
for milk yield, fat content, and conception rate, respec-
tively, in the Montbéliarde data set. In the Holstein 
data set, 42, 83, and 29 latent variables were included 
in the best PLS regression models for milk yield, fat 
content, and conception rate, respectively.

sPLS Regression. Sparse PLS regression, devel-
oped by Lê Cao et al. (2008) and later by Chun and 
Kele  (2009), differs from PLS regression by adding a 
step of variable selection to each latent variable through 
the loading vectors (u1, . . . , uH). The sparsity of the 
loading vectors is introduced iteratively by penalizing 
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uh with a soft-thresholding penalization, as in sparse 
principal components analysis (Shen and Huang, 2008). 
The optimization problem becomes

 max cov
u

X u y u
h

h h h hg
= − −( )+ ( )

1 1 1, ,λ  

where gλ(x) = sign(x)(|x| − λ)+ is the soft-thresholding 
penalty function of the x vector, and λ represents the 
intensity of penalization.

The number of dimensions (H) is fixed as in PLS 
regression: 24, 20, and 2 latent variables in the Mont-
béliarde breed and 44, 50, and 27 latent variables in the 
Holstein breed for milk yield, fat content, and concep-
tion rate, respectively.

The sparsity is set through the choice of the number 
of selected variables in each dimension. This choice can 
be made by examining the root mean squared error of 
prediction (RMSEP) with K-fold cross-validation (K 
= 10) within the training data set and for each given 
dimension h (Mevik and Cederkvist, 2004):

 RMSEP = −
=
∑1

1K k k
k

K
(ˆ ),y y  

where yk and k are the vectors of observed and pre-
dicted DYD, respectively. The adequate number of 
selected variables is the one that minimizes RMSEP. 
In the Montbéliarde breed and for milk yield, 10% of 
the initial number of SNP were kept in each of the 24 
dimensions, which amounts to 28,837 SNP in the final 
model. For the other traits, the corresponding figures 
were 3% for a total number of 14,447 SNP for fat con-
tent and 5% for 3,808 SNP for conception rate. In the 
Holstein breed, 4, 0.8, and 4% of the initial number of 
SNP (that is, 22,948 SNP, 9,832 SNP, and 20,150 SNP) 
were kept for milk yield, fat content, and conception 
rate, respectively (Colombani et al., 2012). Partial least 
squares and sPLS regressions were performed with the 
R package mixOmics (previously named integrOmics; 
R Foundation for Statistical Computing, Vienna, Aus-
tria; Lê Cao et al., 2009).

Evaluation of SNP Effects in PLS and sPLS 
Regressions. After fitting the PLS and sPLS regres-
sion models, we obtained a vector of regression coef-
ficients with respect to the original variables, which 
could be directly used for prediction. As a result of 
variable selection in the sPLS regression model, some of 
the estimated coefficients were exactly zero. To assess 
marker contributions, variable importance in projection 
(VIP) coefficients were used to measure the contribu-
tion of each SNP xj in the construction of y through 

latent variables ξh. A VIP coefficient was defined for 
each SNP xj and for a model with H dimensions by

 VIP p
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cor wHj

h

H hj
h
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The contribution of xj in the construction of ξh was 
measured by its weight whj, provided by PLS or sPLS 
regression. Because the mean of squared VIP scores 
equals 1, the greater-than-1 rule is generally used as a 
criterion for variable selection.

Bayesian LASSO

In a genomic selection context, Legarra et al. (2011) 
proposed a general model for Bayesian LASSO equiva-
lent to the original LASSO proposed by Tibshirani 
(1996) by splitting the sources of variation in a purely 
residual term σe

2( ) and variation due to SNP σg
2( ). It can 

be seen as a hierarchical model, in which individual 
variances for each SNP effect are modeled upon a com-
mon exponential distribution. In this study, we applied 
Bayesian LASSO as defined by Legarra et al. (2011), 
where it was called BL2Var because it was the most 
accurate method for prediction and accommodated well 
major genes in their study, on similar data. The model 
considered is

 

y 1 Xg e

g e 0 I

= + +

−( ) ( )∏

μ

λ
λ

λ σ σ

,

| ~ exp | ~ , , with  and
2

2 2g MVNj e e
j

 

where y is the vector of phenotypes of the n individuals 
of the training data set, μ is the overall mean, X is a (n 
× p) design matrix that consists of the genotypes of p 
SNP markers for each of the n individuals, g = {gj} is 
the random vector of SNP effect, e is a random vector 
of residual effects, and λ is the “sharpness” parameter. 
The parameterization of SNP genotypes (elements of 
X) is as in VanRaden (2008): −2qj, 1 − 2qj, and 2 − 2qj 
for the genotypes 00, 01, and 11, respectively, where qj 
is the allelic frequency of 1. The prior distribution for 
the residual variance was an inverted chi-squared distri-
bution with 4 degrees of freedom and expectations 
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equal to the value used in the regular genetic evalua-
tion for σe

2. The prior for λ was considered vague, being 
uniform between 0 and 1,000,000.

BayesCπ Model.  The last method tested in this 
study was BayesCπ. It derives from the BayesC method 
(Kizilkaya et al., 2010; Sun et al., 2011). The statistical 
model was again

y = μ1 + Xg + e,

as in the Bayesian LASSO method.
BayesC modifies the BayesB method by replacing the 

locus-specific variance components by a common effect 
variance. BayesCπ is equivalent to the BayesC model 
with an unknown fraction π [with uniform (0, 1) prior] 
of SNP with a nonzero effect. The probability π is de-
fined so that the prior distribution for the additive SNP 
effect is zero, with a probability π and normal with a 
probability (1 − π) so that gj gπ σ, ,2 0=  with probabil-

ity π and g Nj g gπ σ σ, ~ , ,2 20( )  with probability (1 − π).

The variance σg
2  was assumed to have a scaled inverse 

chi-squared prior with νg degrees of freedom and scale 
Sg

2. The marginal prior of g Sj g gν , 2  was a univariate 

Student’s t-distribution t Sg g0 2, , ,ν( )  with a probability 
(1 − π). As suggested by Habier et al. (2011), we took 
νg = 4.2; Sg

2 was equal to E g g g[ ]( ) / ,σ ν ν2 2−  where 
E g g[ ] ,σ σ2 2= �  and �σg

2 was the variance of the additive ef-
fect for a randomly sampled locus. As defined in the 
previous LASSO model, the prior distribution for the 
residual variance was an inverted chi-squared distribu-
tion.

BayesCπPED Model. The BayesCπPED model 
differs from the previous one (BayesCπ model) by the 
addition of a polygenic effect, as proposed by Habier et 
al. (2011). The statistical model became

y = μ1 + Zu + Xg + e,

with the same definitions as previously given and where 
u is a random vector of the polygenic effects of all the 
individuals in the pedigree and Z is an incidence matrix 
of the polygenic effects. The prior of u A,σu

2  was nor-

mal, with mean 0 and variance-covariance matrix Aσu
2, 

with A the numerator relationship matrix and σu
2 the 

additive genetic variance not explained by SNP. The 
prior distribution for σu

2 was an inverted chi-squared 
distribution, as defined by Habier et al. (2011).

Estimation of Variance Components  

Markov chain Monte Carlo (MCMC) was used to 
estimate the posterior distribution of variances and the 
model parameters μ, u, σu

2 (in the BayesCπPED model), 
gj, and σg

2,  σe
2, and π (if unknown). A burn-in period of 

20,000 cycles was run before saving results every 50 
cycles out of 180,000. The starting value for π was 0.5.

The genetic variance in the population σu
2, estimated 

using a pedigree-based BLUP model, is proportional to 
the variance of SNP effects σg

2 (Gianola et al., 2009). 
For the LASSO model, the relation is

 σ
σ

g
u

j j
j

p
q q

2
2

1

2 1

=

−
=
∑ ( )

, 

and for the 2 BayesCπ models,

 σ
σ

π
g

u

j j
j

p
q q

2
2

1

1 2 1

=

− −
=
∑( ) ( )

, 

where p is the number of loci considered and qj is the 
frequency of an allele of the marker j. Bayesian LASSO 
and the 2 BayesCπ methods were performed using the 
GS3 software developed by Legarra et al. (2011; http://
snp.toulouse.inra.fr/~alegarra).

Comparison of Methods

The predictive ability of the different methods was 
compared by considering the EDC-weighted correla-
tion between the observed DYD and predicted DYD 
from the validation data sets, and the EDC-weighted 
regression slopes of observed DYD onto predicted DYD 
from the validation data sets. Ideally, values near 1 
were expected (Meuwissen et al., 2001), indicating that 
the GEBV are unbiased. Marker contributions for each 
method were also measured via genetic standard devia-
tion units for Bayesian LASSO and BayesCπ and VIP 
coefficients for PLS and sPLS regressions.

The Hotelling-Williams procedure was used to test 
the difference between the correlations of the differ-
ent methods. It tests the null hypothesis of equality 
between 2 dependent correlations that share a vari-
able (Steiger, 1980; Van Sickle, 2003). Under the null 
hypothesis, the statistical test is distributed as t with 
n − 3 degrees of freedom. All the correlations discussed 
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in this study were compared with one another using the 
Hotelling-Williams test with a 5% threshold.

RESULTS

Considering a Polygenic Effect  

Table 1 shows the correlations between observed 
DYD and predicted DYD in the validation data set, for 
both breeds and for the 3 studied traits. It compares the 
accuracy of a BayesCπ model with only marker effects 
(BayesCπ model) and a BayesCπ model with marker 
and polygenic effects (BayesCπPED model). The cor-
relations were not significantly different between the 2 
models, considering the Hotelling-Williams test with a 
threshold of 5% for both breeds and for all of the traits.

Figure 1 presents the regression slopes (b) of observed 
DYD onto predicted DYD from the validation data set 
for the same BayesCπ models (BayesCπ model in black 
and BayesCπPED model in white), the 2 breeds (Mont-
béliarde on the left and Holstein on the right) and the 
3 traits studied (represented on the x-axis). A value of 
1 was expected and is depicted with a horizontal line. 
The confidence intervals were represented by a vertical 
line at each point and were calculated by adding or 
subtracting 2 times the standard error. The standard 
errors were similar for the 2 models and equal to 0.03, 
0.02, and 0.07 for milk yield, fat content, and concep-
tion rate, respectively, in the Holstein breed, and they 
were stronger in the Montbéliarde breed (0.10, 0.07, 
and 0.20 for milk yield, fat content, and conception 
rate, respectively). The confidence intervals should 
contain 1. This was the case only in the Montbéliarde 
breed, for fat content BayesCπPED model (b = 0.89), 
and conception rate BayesCπ model (b = 1.31).

The differences between the slopes of BayesCπ model 
and BayesCπPED model were small for milk yield and 

fat content: 0.01 and 0.05, respectively, in the Mont-
béliarde breed, and 0.02 and 0.01, respectively, in the 
Holstein breed. The largest increase in the slope for the 
BayesCπPED model was observed for conception rate: 
+0.32 in the Montbéliarde breed [i.e., a regression slope 
closer to 1 for BayesCπ model (b = 1.31)] and +0.10 in 
the Holstein breed, leading to a regression slope closer 
to 1 for the BayesCπPED model (b = 0.82). The best 
values of slopes were obtained for fat content, with 
values close to 0.9 for both breeds. No evidence existed 
of the superiority of the BayesCπPED model over the 
BayesCπ model either in terms of accuracy or for the 
regression slope: the simpler model (BayesCπ model) 
was retained hereafter.

Estimation of Variance Components  
with the MCMC Algorithm

Figures 2 and 3 display the posterior density of ge-
netic variance (at the top), residual variance (in the 
middle), and π (at the bottom) during their estimation 
with the MCMC algorithm in the Holstein (Figure 2) 
and Montbéliarde (Figure 3) breeds. The sampling is 
represented according to 200,000 MCMC iterations, 
with 1 record every 50 cycles and without the burn-in 
period of 20,000 iterations.

Visual inspection of Figure 2 and the trace plot of 
the statistical distribution of parameters (genetic and 
residual variances and π) during their estimation with 
the MCMC algorithm (results not shown) indicated 
that the convergence of both genetic and residual vari-
ances was almost reached for the 3 studied traits. The 
posterior distributions covered narrow intervals that 
were shorter than those defined by the prior distribu-
tion. The mean (μ) and standard deviation (σ) for the 
genetic variance were μMY ≈ 396,000 and σMY ≈ 26,000 
for milk yield (MY), μFC ≈ 8 and σFC ≈ 0.65 for fat 
content (FC), and μCR ≈ 45 and σCR ≈ 3.2 for con-

Table 1. Correlations between observed daughter yield deviations (DYD) and predicted DYD in the validation 
data set without (BayesCπ model) or with (BayesCπPED model) adding a polygenic component to the 
BayesCπ model 

Item

Montbéliarde1 Holstein2

BayesCπ  
model3

BayesCπPED  
model4

BayesCπ  
model3

BayesCπPED  
model4

Milk yield 0.44 0.44 0.57 0.57
Fat % 0.63 0.62 0.80 0.78
Conception rate 0.42 0.44 0.34 0.34
1Montbéliarde: training set = 950 bulls; validation set = 222 bulls.
2Holstein: training set = 2,976 bulls; validation set = 964 bulls.
3BayesCπ model: y = μ1 + Xg + e, where y is the vector of phenotypes, μ is the overall mean, X is a design 
matrix, g is the random vector of SNP effect, and e is a random vector of residual effects.
4Bayes CπPED model: y = μ1 + Zu + Xg + e, where Z is an incidence matrix of the polygenic effects and u 
is a random vector of the polygenic effects of all the individuals in the pedigree.
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ception rate (CR). The residual variance gave μMY ≈ 
3,300,000, σMY ≈ 180,000, μFC ≈ 28, σFC ≈ 1.6, μCR ≈ 
2,600, and σCR ≈ 116. The π parameter was quite ac-
curately estimated and was very low for milk yield and 
fat content (mean of 0.04 and 0.02 and standard devia-
tion of 0.03 and 0.02, respectively). However, for the 
conception rate, the convergence of π was not reached, 
with a mean around 0.5 and a standard deviation of 
0.3. Nevertheless, the estimation of both the genetic 
and residual variances was not affected by the poor 
estimation of π.

Figure 3 relates to the Montbéliarde breed. The sta-
tistical distributions of parameters (results not shown) 
indicated that the Markov chain was stabilized and 
appeared constant only for the genetic and residuals 
variances for the 3 traits. They were very chaotic for 
the π parameter on milk yield and conception rate. For 
the genetic variance, μMY ≈ 385,000 and σMY ≈ 36,000 
for milk yield, μFC ≈ 5.5 and σFC ≈ 0.7 for fat content, 
and μCR ≈ 31 and σCR ≈ 4 for conception rate. The 
residual variance gave μMY ≈ 1,600,000, σMY ≈ 396,000, 
μFC ≈ 10, σFC ≈ 2.6, μCR ≈ 1,900, and σCR ≈ 165. The 

value of π stabilized only for fat content, with a value 
lower than 3%.

Markov chain Monte Carlo chains were also run for 
the Montbéliarde breed with 1,000,000 iterations and 
a burn-in of 50,000 iterations (results not shown). The 
evolution of the estimation of the different variances 
and π were similar to those observed with 200,000 
chains (Figure 3). The correlations between observed 
and predicted DYD from the validation data set were 
almost the same, with a maximum difference of ± 0.01 
with the model with 200,000 iterations (results not 
shown). The regression slopes acquired from 1,000,000 
iterations were also very close to those obtained with 
200,000 iterations. However, the estimation of π fluctu-
ated wildly between chains.

The parameter π was, therefore, arbitrarily set to 
10% for the 3 traits in the Montbéliarde breed. Fig-
ure 4 shows the posterior density of MCMC chains for 
genetic variance and residual variance in the Montbé-
liarde breed for milk yield, fat content, and conception 
rate, with π fixed at 10%. The trace plot of the statisti-
cal distribution of genetic and residual variances during 

Figure 1. Regression slopes of observed daughter yield deviations (DYD) on predicted DYD in the validation data set without (BayesCπ 
model) or with (BayesCπPED model) adding a polygenic component to the BayesCπ model.
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their estimation with the MCMC algorithm (results not 
shown) covered narrow intervals. The convergence of 
both genetic and residual variances was acceptable for 
the 3 traits. The correlations (ρ) between observed and 
predicted DYD were exactly the same (ρ = 0.44 for 
milk yield and ρ = 0.42 for conception rate). On the 
contrary, for fat content, the correlation decreased from 
0.63 to 0.58 but the estimation of genetic variance was 
more stable. Thereafter, only the BayesCπ model was 
used without restricting the estimation of π.

Predictive Ability of the Different Methods. 
Tables 2 and 3 present the correlations (ρ) between 
observed and predicted DYD from the validation data, 
for the different methods, in Holsteins and in Mont-
béliardes, respectively. All correlations were compared 
one to another using the Hotelling-Williams test with 
a threshold of 5%. All the methods that rely on ge-
nomic information performed significantly better 

Figure 2. Density of genetic variance, residual variance, and probability π during the Markov chain Monte Carlo (MCMC) algorithm for 
milk yield, fat content, and conception rate in the Holstein breed.
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than pedigree-based BLUP, except with regard to the 
conception rate (a trait with low heritability) in the 
Montbéliarde breed, for which no significant difference 
was observed between any of the correlations. It should 
be noted that such a high correlation for the pedigree-
based BLUP method is not consistent with the lower 
accuracy of classical BLUP evaluations for conception 
rate, compared with correlations obtained on the other 
traits (with higher heritability). This may reflect a high 
heterogeneity at the genetic level for conception rate 
among sire families. The correlation of sPLS regression 

was not significantly different from that of BLUP for 
the conception rate in Holsteins. In the Montbéliarde 
breed, the correlations given by all genomic selection 
methods were not significantly different, except with 
regard to the fat content, for which GBLUP was signifi-
cantly less accurate than BayesCπ. Bayesian methods 
gave the highest correlations, although the difference 
was nonsignificant, except for fat content in Holsteins. 
BayesCπ showed a nonsignificant advantage over Bayes-
ian LASSO (+0.01 for milk yield and fat content in 
Holsteins and +0.09 for fat content in Montbéliardes). 

Figure 3. Density of genetic variance, residual variance, and probability π during the Markov chain Monte Carlo (MCMC) algorithm for 
milk yield, fat content, and conception rate in the Montbéliarde breed.
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The better performances of the Bayesian methods for 
fat content in Holstein and Montbéliarde breeds is 
probably due to the effect of the DGAT1 gene.

Tables 4 and 5 display regression slopes for each of 
the 3 traits, in Holsteins and Montbéliardes, respec-
tively. A value close to 1 is expected. In Holsteins 

(Table 4), standard errors were similar for all methods 
and equal to 0.03, 0.02, and 0.07 for milk yield, fat 
content, and conception rate, respectively. Genomic 
selection methods provided lower regression slopes 
than pedigree-based BLUP. Among the genomic selec-
tion methods for predicting milk yield and fat content, 

Figure 4. Density of genetic variance and residual variance during the Markov chain Monte Carlo (MCMC) algorithm for milk yield, fat 
content, and conception rate in the Montbéliarde breed, with π = 10%.

Table 2. Correlations between observed daughter yield deviations (DYD) and predicted DYD in the validation 
data set provided by pedigree-based BLUP, genomic BLUP (GBLUP), partial least squares (PLS) regression, 
sparse PLS (sPLS) regression, Bayesian least absolute shrinkage and selection operator (LASSO), and BayesCπ 
models in the Holstein breed 

Item

Model

BLUP GBLUP PLS sPLS
Bayesian  
LASSO BayesCπ

Milk yield 0.38 0.56 0.53 0.48 0.56 0.57
Fat % 0.44 0.72 0.70 0.66 0.79 0.80
Conception rate 0.28 0.35 0.33 0.29 0.34 0.34
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the Bayesian methods were the most efficient, with a 
small advantage for Bayesian LASSO (+0.01 for milk 
yield and +0.03 for fat content). The PLS regression 
methods were the least efficient. With regard to the 
conception rate, GBLUP gave a slope value close to 
that obtained with BLUP: 0.78 with GBLUP and 0.80 
with BLUP. In Montbéliardes (Table 5), standard er-
rors were similar for all methods and equal to 0.10, 0.07, 
and 0.20 for milk yield, fat content, and conception 
rate, respectively. The PLS regression methods were 
also shown to be the least-efficient methods, except for 
the prediction of fat content, for which the regression 
slope for PLS regression equaled the regression slopes 
for BLUP and GBLUP (±0.02 away from 1). The slope 
obtained with GBLUP for the milk yield was 0.84; that 
is, +0.10 compared with the regression slopes with 
Bayesian methods and BLUP. Finally, very bad results 
were obtained for the conception rate in Montbéliardes 
(1.35 with BayesCπ compared with 2.27 with sPLS 
regression), but standard errors were very large.

Estimation of SNP Effects. Figures 5 and 6 show 
the estimation of SNP effects (in genetic standard 
deviation units) for Bayesian LASSO and BayesCπ, 
and VIP coefficients for PLS and sPLS regressions. 
Emphasis was placed on the position of the SNP with 
the largest effects so that VIP coefficients and genetic 
standard deviation units could be compared. All SNP 
were represented on the graphs, even SNP with zero 
effect. The PLS and sPLS regressions gave almost the 
same positions for important SNP, so only the results 

obtained with sPLS regression are shown. Moreover, 
the variable selection performed by sPLS regression 
allows a simpler interpretation of VIP coefficients (Co-
lombani et al., 2010).

When BayesCπ with Bayesian LASSO were com-
pared, the positions of the most important SNP were 
found to be similar for most cases. For milk yield in 
Holsteins, a genome region on chromosome 5 was par-
ticularly highlighted with BayesCπ, but represented a 
very small peak in Bayesian LASSO. However, chromo-
some 14 stood out strongly with both Bayesian LASSO 
and BayesCπ and almost the same SNP were selected. 
For fat content, Bayesian LASSO weighted 1 SNP par-
ticularly on chromosome 14 that resulted in a weaker 
effect for the other SNP. This 1 SNP on chromosome 
14 was also the most weighted with BayesCπ and 
sPLS regression, but with a lesser difference between 
the effect of the first and the second most important 
SNP. For conception rate, the graphs were similar with 
BayesCπ and Bayesian LASSO, with a large number of 
peaks. Sparse PLS regression provided similar results 
to BayesCπ: the most important peaks of BayesCπ be-
ing also strongly highlighted in sPLS regression. The 
SNP with the largest effects were almost the same with 
sPLS regression and BayesCπ, except for 1 SNP on 
chromosome 21 that showed up strongly for milk yield, 
but only with BayesCπ.

In Montbéliardes, almost identical graphs were ob-
served with BayesCπ and Bayesian LASSO with regard 
to the position of the peaks and the size of the effects 

Table 3. Correlations between observed daughter yield deviations (DYD) and predicted DYD in the validation 
data set provided by pedigree-based BLUP, genomic BLUP (GBLUP), partial least squares (PLS) regression, 
sparse PLS (sPLS) regression, Bayesian least absolute shrinkage and selection operator (LASSO), and BayesCπ 
models in the Montbéliarde breed 

Item

Model

BLUP GBLUP PLS sPLS
Bayesian  
LASSO BayesCπ

Milk yield 0.28 0.42 0.44 0.38 0.44 0.44
Fat % 0.40 0.52 0.58 0.56 0.53 0.62
Conception rate 0.43 0.47 0.43 0.43 0.43 0.43

Table 4. Regression slopes of observed daughter yield deviations (DYD) on predicted DYD in the validation 
data set provided by pedigree-based BLUP, genomic BLUP (GBLUP), partial least squares (PLS) regression, 
sparse PLS (sPLS) regression, Bayesian least absolute shrinkage and selection operator (LASSO), and BayesCπ 
models in the Holstein breed 

Item

Model

BLUP GBLUP PLS sPLS
Bayesian  
LASSO BayesCπ

Milk yield 0.79 0.68 0.65 0.53 0.74 0.73
Fat % 0.97 0.87 0.80 0.69 0.93 0.90
Conception rate 0.80 0.78 0.60 0.54 0.72 0.72
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for milk yield and conception rate. However, for fat 
content, Bayesian LASSO identified only chromosome 
14, but with a much smaller estimated effect than with 
BayesCπ, indicating that the shrinkage of SNP effect 
was greater with Bayesian LASSO than BayesCπ. All 
peaks detected with BayesCπ were found with sPLS 
regression at the same position but with a different 
ranking for all traits. Moreover, for milk yield, some 
regions (such as chromosome 7 and 15) were detected 
as having a strong effect with sPLS regression but not 
with BayesCπ. For fat content, the same peaks ap-
peared with both BayesCπ and sPLS regression, but 
sPLS regression included more SNP in its peaks than 
BayesCπ. For the conception rate, the effect peaks were 
found at the same positions with all methods, but were 
more accentuated in sPLS regression than in Bayesian 
methods.

DISCUSSION

The objective of this study was to analyze the predic-
tive ability of Bayesian LASSO and BayesCπ methods, 
in particular, in comparison with other methods used 
in the genomic evaluation of dairy cattle. Our first step 
was to explore the BayesCπ method with different set-
tings of the model, considering the inclusion of pedigree 
information and the handling of the π value. The results 
of this step of the study using real data (Holstein and 
Montbéliarde breeds) demonstrated that the addition 
of a polygenic component to the BayesCπ model or set-
ting the value of π did not, in most cases, improve the 
correlation between observed phenotypes and GEBV. 
Therefore, we retained the simplest BayesCπ model. 
The predictive ability of BayesCπ was then compared 
with another Bayesian method (Bayesian LASSO), 
BLUP approaches (pedigree-based BLUP and GB-
LUP), and dimension reduction methods (PLS regres-
sion and its variable selection variant, sPLS regression). 
Pedigree-based BLUP was less accurate than genomic 
selection methods but provided better regression slopes. 
However, the different ways of comparing genomic se-

lection methods failed to demonstrate the systematic 
superiority of BayesCπ or any other approach.

Polygenic Effects and Genomic Selection

The results of the present study show that genomic 
selection methods are more accurate than pedigree-
based BLUP, but with a limited gain of accuracy. If 
linkage disequilibria exist between SNP and QTL and 
sufficient records exist in the reference set to estimate 
SNP effects accurately, GEBV accuracy is higher than 
pedigree-based EBV (Meuwissen et al., 2001; Habier et 
al., 2007). This is due to the fact that the accuracies 
of GEBV estimated using a genomic model without 
pedigree information are affected by the genetic rela-
tionship among individuals of the reference population. 
Habier et al. (2007) demonstrated that SNP markers 
are able to capture genetic relationships among geno-
typed animals. Habier et al. (2010) also tested the effect 
on the accuracy of GEBV of different values of maxi-
mum additive genetic relationship (amax) between bulls 
in training and validation populations. They showed 
that the accuracy of GEBV were the highest with amax 
= 0.6 (i.e., a strong relationship between training and 
validation bulls), but the gain of genomic selection over 
pedigree-based BLUP was less than with smaller val-
ues of amax. When the relationships between training 
and validation bulls were high, pedigree-based BLUP 
performed better and so the gain of genomic selection 
was smaller. The results of our study are in agreement 
with the conclusion of Habier et al. (2010). Our train-
ing data sets contained sires, full sibs, and half sibs of 
the bulls in the validation set and the relationships be-
tween the bulls of our reference population were high, 
so pedigree-based BLUP was quite efficient and the 
gain of genomic selection methods over pedigree-based 
BLUP was limited (the mean gain of correlations of 
GBLUP over BLUP was equal to 0.18 in Holsteins and 
0.10 in Montbéliardes).

The correlations between observed DYD and predict-
ed DYD in the validation data set were very close with 

Table 5. Regression slopes of observed daughter yield deviations (DYD) on predicted DYD in the validation 
data set provided by pedigree-based BLUP, genomic BLUP (GBLUP), partial least squares (PLS) regression, 
sparse PLS (sPLS) regression, Bayesian least absolute shrinkage and selection operator (LASSO), and BayesCπ 
models in the Montbéliarde breed 

Item

Model

BLUP GBLUP PLS sPLS
Bayesian  
LASSO BayesCπ

Milk yield 0.74 0.84 0.64 0.63 0.74 0.74
Fat % 1.01 1.01 0.98 0.81 0.91 0.85
Conception rate 1.78 1.76 1.79 2.27 1.36 1.35
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the BayesCπ model (including only SNP information) 
and BayesCπPED model (including both polygenic and 
SNP effects), whatever the trait or the breed (Table 1). 
The regression slopes were also very similar for both 
models (Figure 1). Mrode et al. (2011) presented a 
study that aimed at testing the inclusion of polygenic 

effects using 11,480 Holstein-Friesian bulls in the Unit-
ed Kingdom in a linear model equivalent to a GBLUP 
model. They showed that the correlations for produc-
tion traits decreased slightly but the regression coef-
ficient increased by approximately 0.1 for all traits. Liu 
et al. (2011) showed that including a polygenic effect 

Figure 5. Estimation of SNP effects by BayesCπ (BayesCπ model), Bayesian least absolute shrinkage and selection operator (LASSO), and 
variable importance in projection (VIP) coefficients for sparse partial least squares (sPLS) regression for milk yield, fat content, and conception 
rate in the Holstein breed according to the marker position along the genome.
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in a GBLUP model resulted in decreased correlations 
between direct genomic values and EBV. In our study, 
the inclusion of polygenic effects also led to slightly 
smaller correlations for fat content in both breeds but 
with no significant differences. These results show 
that SNP marker information could contain a part of 
pedigree information. In Lacaune dairy sheep, similar 
conclusions were obtained with a reference population 
of approximately 2,500 proven rams and 44,000 SNP 

(Robert-Granié et al., 2011). Inclusion of infinitesimal 
effects in the prediction model with BayesCπ had little 
effect on accuracies and led to slightly better slopes of 
regressions.

However, a difference between the BayesCπ model and 
BayesCπPED model appeared regarding the number of 
SNP selected for all traits in Montbéliardes and for the 
conception rate in Holsteins. The difference between 
the number of SNP included in the BayesCπ model and 

Figure 6. Estimation of SNP effects by BayesCπ (BayesCπ model), Bayesian least absolute shrinkage and selection operator (LASSO), and 
variable importance in projection (VIP) coefficients in sparse partial least squares (sPLS) for milk yield, fat content, and conception rate in the 
Montbéliarde breed according to the marker position along the genome.
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BayesCπPED model was about −5,000 SNP for milk 
yield and +9,000 SNP for conception rate in Montbé-
liardes and +6,000 SNP for conception rate in Holsteins. 
However, the graphs of the posterior distribution of π 
during the MCMC algorithm (Figures 2 and 3) showed 
that it was difficult to obtain a good convergence of 
π in these cases. So, it was problematic to obtain an 
accurate estimation of the parameter π in these cases. 
The final value of π varied around the mean (i.e., 0.5) 
and the number of SNP selected fluctuated between 
15,000 and 25,000 in these cases. For milk yield and 
fat content in Holsteins, the number of SNP selected 
was stable between the 2 models: approximately 1,600 
SNP for milk yield and 800 SNP for fat content. In the 
Montbéliarde breed, the result was more surprising for 
fat content because π seemed to be well estimated dur-
ing the MCMC process (around 0.01 in the BayesCπ 
model but around 0.51 in the BayesCπPED model; 
i.e., a difference of +19,000 SNP between these 2 mod-
els). The inclusion of polygenic effects (BayesCπPED 
model) for fat content in Montbéliardes interfered with 
SNP selection in BayesCπ: the model could not identify 
the most important SNP for the prediction of this trait, 
although no change occurred in the correlation between 
observed DYD and predicted DYD in the validation 
set. Several situations were tested in which the weight 
allocated to the polygenic effects was modified, but the 
correlation between observed and predicted DYD was 
the same.

Comparison of Methods

The results obtained with MCMC chains in the 
BayesCπ model were compared with Bayesian LASSO, 
GBLUP, and PLS and sPLS regressions. Hayes et al. 
(2009) and VanRaden et al. (2009) presented 2 reviews 
of empirical results in dairy cattle that pointed out the 
similarity of GBLUP and BayesB, as far as predictive 
ability is concerned. Croiseau et al. (2011) compared 
the elastic net approach to GBLUP on the French data 
sets used in this study. They obtained the same cor-
relations as BayesCπ with better regression slopes. Our 
results are in good agreement with those studies, as 
the Bayesian methods reached the same accuracies as 
GBLUP for most traits. The regression slopes did not 
allow differentiating between GBLUP and Bayesian 
methods either. The PLS regression variants were the 
least efficient, both in regard to correlation and regres-
sion coefficients in most cases.

The regression slopes of observed DYD on estimated 
DYD were less than 1 in most cases. This is probably 
due to the fact that the reference populations were 
made up of strongly selected bulls. Vitezica et al. 

(2011) proposed that the strong selection of animals in 
dairy cattle schemes and, therefore, on the animals of 
the reference populations, may result in the observed 
biases of the regression coefficients. Biases might also 
be introduced by the use of DYD, as suggested by Pa-
try and Ducrocq (2011).

BayesCπ and Bayesian LASSO seem to follow the 
same pattern in the present study. The difference be-
tween GBLUP and BayesCπ was high for fat content 
both in Montbéliarde and Holstein breeds. To obtain a 
good idea of the genome regions involved in the predic-
tion equation of each method, we studied the graphs of 
SNP effects. The genome areas with the largest effects 
were almost identical with BayesCπ, Bayesian LASSO 
and sPLS regression, whatever the trait or breed. The 
graphs for conception rate were similar for the Bayes-
ian methods but showed some dissimilarity with sPLS 
regression: the peaks were found at the same positions 
but the ranking of these peaks was different. However, 
this could be explained by the fact that the conception 
rate seems to be a very polygenic trait and that its low 
heritability leads to limited prediction accuracy with all 
methods. One can note that the number of SNP with 
nonzero effects is relatively small for fat content and this 
in both breeds. A specific peak stood out particularly 
with all methods for the fat content at the beginning 
of chromosome 14. In Holsteins, this genome region 
corresponds to the DGAT1 gene (Grisart et al., 2004), 
which, when mutated, has a major effect on the fat con-
tent in milk. Hence, the superior accuracy of BayesCπ 
and Bayesian LASSO against GBLUP (ρBAYESCπ = 
0.80, ρBayesianLASSO = 0.79, but ρGBLUP = 0.72) for the 
fat content trait in Holsteins could be explained by the 
small number of QTL related to this trait. For the fat 
content trait in Montbéliardes, BayesCπ outperformed 
GBLUP (ρBAYESCπ = 0.62 and ρGBLUP = 0.52), but sur-
prisingly, Bayesian LASSO was closer to GBLUP than 
BayesCπ, with ρBayesianLASSO = 0.53. Concerning SNP 
effects, Bayesian LASSO highlighted only one region on 
chromosome 14, whereas BayesCπ and sPLS regression 
highlighted 4 or 5 regions. Therefore, the equation of 
prediction in Bayesian LASSO was based on a very 
small number of SNP, all positioned within the same 
genome region, and this seemed to affect the accuracy of 
prediction. For milk yield in Holsteins, a few SNP were 
retained by BayesCπ (about 1,500 SNP) but almost 
23,000 SNP were necessary with sPLS regression. This 
suggests that milk yield is affected by a large number of 
QTL. The results of GBLUP and Bayesian methods for 
milk yield in Holsteins were almost identical.

The conclusions established in this work should be 
transferable to other studies if the characteristics of 
the traits studied are considered correctly. Bayesian 
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methods seem to perform well, whatever the trait or 
population, but in some cases, GBLUP is as accurate 
as Bayesian methods. These results were confirmed on 
the study of 3 traits in Lacaune sheep breed (Duchemin 
et al., 2012), indicating the superiority of BayesCπ. 
Regarding computing time, Bayesian methods are the 
less efficient, with about 12 h per trait in our rather 
small data sets. Genomic BLUP requires the inversion 
of the genomic relationship matrix for all traits, which 
took about 1 h for our data set. Then, once the genomic 
relationship matrix was inverted, computation was a 
matter of seconds.

CONCLUSIONS

The first goal of this study was to explore the predic-
tive ability of BayesCπ in a genomic evaluation context. 
According to the accuracy and regression slope, the 
inclusion of pedigree information in the BayesCπ model 
did not change the results, nor did fixing the value of 
π. BayesCπ did not show a large advantage over other 
methods, except for traits with a small final number of 
selected SNP such as fat content. No genomic selection 
method tested in this study outperformed the others, 
but it is interesting to note that the position of the SNP 
selected by the different models (LASSO, BayesCπ, 
and sPLS) were close. The next step of our work will 
be to compare more precisely the SNP selected by all 
the methods and to study whether the genome regions 
highlighted by some genomic selection methods corre-
spond to the QTL detected by specific QTL detection 
methods (i.e., linkage analysis, linkage disequilibrium, 
or linkage disequilibrium-linkage analysis).
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