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Abstract

Insects and robots searching for odour sources in turbulent plumes face the same problem: the random nature of mixing
causes fluctuations and intermittency in perception. Pheromone-tracking male moths appear to deal with discontinuous
flows of information by surging upwind, upon sensing a pheromone patch, and casting crosswind, upon losing the plume.
Using a combination of neurophysiological recordings, computational modelling and experiments with a cyborg, we
propose a neuronal mechanism that promotes a behavioural switch between surge and casting. We show how multiphasic
On/Off pheromone-sensitive neurons may guide action selection based on signalling presence or loss of the pheromone. A
Hodgkin-Huxley-type neuron model with a small-conductance calcium-activated potassium (SK) channel reproduces
physiological On/Off responses. Using this model as a command neuron and the antennae of tethered moths as pheromone
sensors, we demonstrate the efficiency of multiphasic patterning in driving a robotic searcher toward the source. Taken
together, our results suggest that multiphasic On/Off responses may mediate olfactory navigation and that SK channels may
account for these responses.
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Received December 12, 2012; Accepted March 6, 2013; Published April 17, 2013

Copyright: � 2013 Martinez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Agence Nationale de la Recherche, within the French-British ANR-BBSRC initiative (grant BSYS-006 ‘‘Pherosys’’), by the
state program Investissements d’avenir managed by ANR (grant ANR-10-BINF-05 ‘‘Pherotaxis’’), and the European Bio-ICT convergence project (grant FP7-216916
‘‘Neurochem’’). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dominique.martinez@loria.fr

¤ Current address: Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, United States of America

Introduction

The song ‘‘Should I stay or should I go?’’ [The Clash, 1982]

deals with behavioural choices on the basis of internal states and

sensory information, a fundamental property of all living creatures.

For example, animals searching for mates switch between

navigation strategies to cope with changing environments. In

turbulent plumes that consist of intertwined odourized and non-

odourized filaments [1], pheromone-seeking male moths alternate

sequences of ‘‘go’’ (surge upwind while the odour is perceived),

and ‘‘stay’’ (stop upwind progress if the odour is lost and zigzag

crosswind until the plume is reacquired). This search strategy [2–

6] is stimulus-driven in the sense that action selection is triggered

by the current perception. The high velocity of flying insects

imposes strong constraints on the reaction time [7,8]. A rapid and

reliable detection of presence and loss of the pheromone is crucial

for the moth to engage an appropriate sequence of motor

commands. Theoretical studies showed that decision-making is

facilitated by using two types of neurons [9], one signalling the

presence of the stimulus, the other one signalling its absence. Two

distinct neurons responding either to an increase or a decrease in

stimulus intensity have been found in cockroaches [10] with

respect to food odours but not concerning pheromones. Currently,

it is unclear how firing patterns in moths [11–12] encode presence

and loss of the pheromone, i.e. stimulus On and Off, in order to

guide action selection (‘‘go’’ or ‘‘stay’’).

In this work, we addressed this question by analyzing neural

activities recorded in Agrotis ipsilon moths. We found that stimulus

On and Off are not encoded in different neurons [9–10] but are,

instead, time-multiplexed in the multiphasic response of single

neurons. Typically, such multiphasic firing patterns are ascribed to

synaptic interactions with GABAergic local neurons [11–12], but

the experimental support for this hypothesis is rather ambiguous.

Using a single neuron model, we here present another hypothesis,

namely that such responses may arise primarily from an intrinsic

calcium-dependent potassium conductance. Using this neuron

model in robotic experiments, we then related these multiphasic

responses to action selection.

Results

The Majority of MGC Neurons Exhibit Precise and Reliable
On/Off Firing Patterns

We recorded neural activities extracellularly in the macro-

glomerular complex (MGC) of the moth Agrotis ipsilon, i.e. the

specialist system processing pheromone information in the insect

antennal lobe. The neurons responding to the pheromone (59 out

of 74) were separated in two types based on their discharge
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patterns: monophasic (n = 16, 27%) and multiphasic (n = 43, 73%).

Multiphasic neurons were called On/Off neurons because their

response to the pheromone was characterized by a prominent

burst after stimulus onset (the On response, here called On), an

inhibitory period (called I ) and a long tonic excitation after

stimulus offset (the Off response or Off ), see Fig. 1A. Both On and

Off responses depended on the stimulus dose (Fig. 1). The On

latency, relative to stimulus onset, decreased according to -

16 ms6log(dose/[ng]) +230 ms. The On duration increased

correspondingly since its end was independent of the dose. The

duration of the inhibitory phase did not change with the dose

whereas the Off response was more often detected at higher doses.

We quantified On precision and reliability by the spike timing

jitter s (in ms) and the fraction of non-coincident spikes r
computed over repeated trials. Neurons were considered to be

precise for small s and reliable for small r. Significance levels were

determined by statistical comparisons with s* and r* obtained on

shuffled trials. In Fig. 2A, the On/Off neuron was both precise and

reliable whereas the monophasic neuron was precise but not

reliable. To compare precision and reliability between groups of

monophasic (n = 8) and multiphasic (n = 11) neurons, we compen-

sated for different firing rates, i.e. normalization according to s/s*

and r/r* for each neuron (Materials and Methods). Again, r/r*

differed between the two groups (Fig. 2A). Hence, On/Off neurons

were more reliable than monophasic neurons.

Pulsed Stimulations Preserve Precision and Reliability
On/Off neurons followed pheromone pulses up to several Hertz

(Fig. 2B, 5 pulses of 200 ms pheromone separated by air gaps of

300, 500 and 700 ms). Note that the Off was absent between high

frequency pulses (air gaps of 300 ms in Fig. 2B) and that the

duration of the Off (respectively On) was well correlated with the

duration of the air gaps (respectively pheromone pulses), (Fig. S1).

The On was phase-locked to the stimulus (millisecond precision)

and highly reliable, with s and r not different, neither between

successive pheromone pulses, nor between the different stimula-

tion conditions (not significant, Kruskal-Wallis, n = 11). We

computed the mean autocorrelation by averaging over monopha-

sic (n = 4) and On/Off (n = 11) neurons. For On/Off neurons, we

obtained periodic peaks separated by 500 ms corresponding to the

period of the pulsed stimulus (Fig. 2B). For monophasic neurons,

the autocorrelation was lower, thereby indicating a decline in

tracking odour pulses (see also monophasic neuron in Fig. 2B).

Bicuculline and Picrotoxin have Different Effects on
Physiological On/Off Responses

In pulsed stimulations, the inhibitory phase in On/Off neurons

prevented long-lasting responses. The question arose as to whether

it might be responsible for the ability to track intermittent stimuli.

In Manduca sexta, the inhibitory phase was abolished by bicuculline

(BIC), an antagonist of GABAA receptors, which also disrupted the

ability to encode pheromone pulses [13]. Here, we applied BIC

(100 mM) and picrotoxin (PTX), another GABAA antagonist, to A.

ipsilon moths. BIC (100 mM) abolished the inhibitory phase in all

tested neurons (n = 3, Fig. 3A). After wash-out, the multiphasic

responses were recovered, as well as the ability to encode

pheromone pulses. Unexpectedly, PTX (100–250 mM) led to the

suppression of spontaneous activity and the complete loss of the

response to the pheromone in 6 out of 7 neurons (Fig. 3A).

Differences in BIC and PTX sensitivity can be explained by the

fact that BIC, unlike PTX, has been shown in other species to

block a Ca2+-dependent K+ channel, the small conductance (SK)

channel [14].

A Ca2+-activated K+ Conductance Neuron Model
Reproduces On/Off firing Patterns

From the aforementioned pharmacological results, inhibition in

A. ipsilon is presumably mediated by an SK conductance [15]. This

hypothesis is difficult to test as the most common antagonist,

apamin, is ineffective in insects [16]. Instead of digging further into

pharmacological manipulation, we developed a biophysical

neuron model (Text S1, Fig. S3). The objective was to investigate

whether the experimentally observed On/Off responses can be

reproduced with a Hodgkin-Huxley-type neuron model having an

intrinsic SK conductance. With the SK conductance, inhibitory

and On durations were in line with experimental data, i.e.

inhibition <400 ms and On duration < stimulus duration

(Fig. 3B). Note that the correlation between On duration and

stimulus duration emerged as a consequence of the model and was

not explicitly taken into account during its development. In order

to quantify how BIC affects the multiphasic response, we

measured inhibitory and On durations in real neurons during

bicuculline application (Fig. 3C). The time dependent effect of

BIC was captured by linear fits (Fig. 3D, dashed lines) of the

experimental data. It was in good agreement with the simulated

model for partially blocked SK conductance (modelling results

were within the 50% confidence band): the durations of the two

phases were plotted versus the normalized decrease in SK

conductance (Fig. 3D, plain curves). Thus, inhibition in On/Off

neurons can well be mediated by an intrinsic Ca2+-dependent K+

conductance. Nevertheless, as cellular and network mechanisms

are not mutually exclusive, these data do not rule out the

implication of GABAergic local neurons.

A Cyborg Driven by the Neuron Model Successfully
Locates the Pheromone Source

Behavioural studies of male moths in pheromone plumes

revealed distinct actions: surge and casting [2–6]. We suggest that

On and Off responses could trigger surge and casting, respectively.

Testing this hypothesis would ideally require to record from On/

Off neurons in freely moving animals, a very challenging or even

impossible task. Instead, we switched to robotic experiments using

our On/Off neuron model as command neuron and the antennae

of tethered moths as pheromone sensors (Fig. 4A). Antennae

provided long lifetime and high sensitivity. With an initial distance

to the source of 2 m (as compared to 10 cm in [17]) and a

pheromone dose of 10 mg (as compared to 10 mg in [18]),

pheromone detections became sporadic, similar to the situation in

the field. The electroantennogram (EAG) system implemented on

the robot resolved individual pheromone pulses up to 10 Hz

(Fig. 4C). It was used as real-time input to our On/Off neuron

model (a new input every millisecond, Fig. 4B). The surge

command (straight movement in upwind direction) was triggered

every time the On phase was followed by inhibition. The difficulty

was to specify the casting. Initially, we considered a one-step

casting strategy in which Off and baseline activities produced the

same spiral behaviour (Fig. 5A). Without memory or clues about

the search direction, spiralling is a secure search strategy, known to

be used by other insects [19]. Search game theory [20] predicts

that, if the searcher detects at plume centerline and nowhere else,

then spiral casting combined with upwind surge results in a

maximum search distance of 22.5136d, where d is the shortest

initial distance to the source (Text S1, Fig. S4). A video illustrating

the experiments (163 in total) is appended as Movie S1. With a SK

channel in the neuron model, the success rate was 96% (Figs. 5B

and 5D) and the search distance was 462 m (Fig. 5E). The track

angle histogram (Fig. 5B, inset) had a peak at 0u (p,0.001,

Neural Correlates of a Search Strategy
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Rayleigh circular test of non-uniformity), indicating a predomi-

nance of the robot to move upwind. Track angle histograms with

mode at 0u are also representative of moths flying upwind in

turbulent plumes [13,21–22]. Without SK in the neuron model,

the robot located the source in 9% of the trials (Figs. 5C and 5E).

The search distance was 1565 m (Fig. 5E), indicating a

predominance of the robot to perform spiral casting (Fig. 5C).

The track angle was uniformly distributed (p = 0.6, Rayleigh test,

Fig. 5C, inset). These results are well in line with the observations

that BIC injection in moths severely diminished the track angle

mode at 0u and prevented pheromone navigation [13].

Combining Information Across Neurons Reduces the
False Detection Rate

We noted that, without pheromone, the robot occasionally

arrived at the source due to false detections (Fig. 5D). How

Figure 1. Dose effect on response frequencies and latencies. (A). Peristimulus time histogram (PSTH) built using 11 neurons and a sliding
window of 100 ms (50 ms overlap). The grey bar indicates the stimulus (pheromone blend of 200 ms at 5 different doses, from 0.001 to 10 ng). The
dotted line represents the baseline activity (mean frequency). Figure inset at the left shows the On and Off firing frequencies at different doses
(mean6s.e.m., n = 11 neurons). The Off frequency was estimated by averaging over a one-second signal after the inhibitory phase. The On frequency
(mean and max) was estimated using the complete On phase after stimulus onset. The value reported as baseline is the mean frequency of the
spontaneous activity. At the lowest dose, Off and baseline have similar mean frequencies. Figure inset at the right shows that the percentage of the
Off phase detected in the neural response increased with the dose (n = 43 neurons). The presence of the Off was identified with the same
segmentation method described for the On in Text S1. (B). Effect of the dose on the latency and duration of the On and I phases (mean6s.e.m., n = 11
neurons). The On latency decreased as the logarithm of the dose. The On duration increased as the logarithm of the dose. The I duration did not
change with the dose.
doi:10.1371/journal.pone.0061220.g001

Neural Correlates of a Search Strategy
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reliable is then pheromone detection based on the activity of a

single neuron? We addressed this question by performing a

receiver operating characteristic (ROC) analysis on spike trains

recorded in A. ipsilon moths (Text S1). At low pheromone doses,

the detection was not robust, e.g. 90% of correct detections at

0.01 ng generated 15% of false alarms. We therefore recorded

small populations of 2–3 neurons and repeated the ROC

analysis. We observed synchronization on a millisecond time

scale during the On phase which strengthened sensory decisions

and reduced the likelihood of false detections (Text S1, Fig. S2).

Similarly in robotic experiments without pheromone, the

number of false alarms per trial reduced significantly when

the robot was controlled with two-neuron rather than single-

neuron activity: 1.1461.23 (n = 44 trials) versus 3.2162.75

(n = 14 trials, p,0.05, Mann-Whitney test).

Two-step Casting is More Efficient
We further considered a two-step casting strategy (Fig. 6A), i.e.

distinct casting mobility patterns depending on whether the

pheromone plume had been just lost or was absent for a long

time. Baseline activity provided information about the absence of

the stimulus and triggered spiral casting. In contrast, persistent

Figure 2. Precision and reliability of physiological responses. (A). Responses to single puffs of pheromone. Asterisks indicate significant
differences between original and shuffled trials (*p,0.05, **p,0.01, ***p,0.001 and ns = no significant difference, Mann-Whitney test). Left: example
of an On/Off neuron (73% of the recordings) over ten repeated trials (ticks depict individual spikes). Figure inset represents a zoom on the On
response. The grey bar indicates the 200 ms stimulation period. The spike timing jitter s (in ms) and the fraction of non-coincident spikes r were
computed with the SES algorithm by considering all pairs of trials, i.e. 45 in total. Black bars represent s and r obtained on the original spike trains
and blue bars indicates s* and r* obtained on shuffled trials (preserving interspike interval distribution). The On/Off neuron was both precise (s,s*)
and reliable (r,r*). Middle: example of a monophasic neuron (27% of the recordings). The monophasic neuron was precise (p,0.01) but not reliable
(p = 0.5, Mann-Whitney). Right: multiphasic versus monophasic neurons (n = number of neurons). To compensate for differences in firing rates, values
were normalized as s/s* and r/r* for each neuron. (B) Responses to pulsed stimulations. Left: example of a multiphasic On/Off neuron exposed to 5
consecutive pheromone pulses of 200 ms separated by air gaps of 300, 500 or 700 ms. Each panel represents the spike trains from two repeated
trials, superimposed with the Gaussian-convolved firing rate evolution. The Off phase is present after each pheromone pulses in the 700 and 500 ms
air gap conditions and it is absent for higher frequency pulses (air gaps of 300 ms). Middle: precision and reliability across pulses in the different
conditions. On average, s= 3.6 ms and r= 0.1 (ns = no significant difference, Kruskal–Wallis test, n = 11 neurons). Right: mean autocorrelation
functions computed by averaging over monophasic and multiphasic On/Off neurons. Example of a monophasic neuron exposed to five consecutive
pheromone pulses of 200 ms separated by air gaps of 300 ms.
doi:10.1371/journal.pone.0061220.g002

Neural Correlates of a Search Strategy
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firing during the Off may represent a recent sensory memory,

indicating that the odour has been encountered just a short time

ago. A good strategy to relocate the plume centreline is then to

search in a line perpendicular to the wind. Using search game

theory, we formulated crosswind casting as a linear search

problem for which the optimal solution is to zigzag alternatively

to the left and to the right, doubling the path length in every step

[20]. Combined with upwind surge, this zigzagging strategy

guarantees a maximum search distance of 9.0556d (Text S1). The

cyborg trajectories are depicted in Fig. 6B. The track angle

histogram had two modes, approximately at 690u, characteristics

of crosswind zigzagging. Bimodal track angle histograms were also

observed with moths flying crosswind right after losing the plume

[21–22]. As expected from search game theory, two-step casting

outperformed one-step casting in cyborg experiments (Fig. 6C,

Movie S2): search distance = 361 m (n = 66 trials) versus 462 m

(n = 33).

Figure 3. Pharmacological manipulations and neuron model. (A) Effects of bicuculline (BIC) and picrotoxin (PTX). Data are shown as raw
traces. The stimulus (200 ms) is indicated by a grey bar. With BIC application (100 mM), the inhibitory phase was abolished so that the response to the
pheromone changes from multiphasic to monophasic (n = 3 neurons). After wash-out, the multiphasic responses were recovered, as well as the ability
to encode pheromone pulses. With PTX (100–250 mM), firing was suppressed during the spontaneous activity and the response to the pheromone (in
6 out of 7 neurons). The multiphasic responses were partially recovered after wash-out. (B) Simulation of the neuron model with SK versus control
experimental data (dashed lines). On/Off neurons (n = 6) were recorded for different stimulus durations (100 ms to 1 s, a single puff of the pheromone
blend at 1 ng). The On duration depended linearly on stimulus duration: On duration = 0.996(stimulus duration) +18 ms (Pearson correlation
r2 = 0.97). The inhibitory phase was constant (p = 1, Kruskal–Wallis test): I duration = 3996106 ms. The neuron model (Text S1) was simulated with
inputs mimicking a 1 ng pheromone blend stimulus (200, 500 or 1000 ms duration; 10 runs in each condition), resulting from fits of experimental
data recorded in olfactory receptor neurons in vivo [12]. (C) Time dependent effect of BIC. Pheromone responses are shown at different times after
BIC application (data as raw traces from the same neuron, stimulus (grey bar) = 200 ms). tmin indicates the start of BIC application (100 mM) and tmax
indicates the time right before the inhibitory phase vanishes completely. (D) Simulation of the neuron model with SK blocked versus BIC experimental
data. Data points represent On and I duration measured during BIC experiments (n = 3 neurons, stimulus duration = 200 ms), plotted versus the
normalized time of BIC application (Dt at bottom axis, with tmin and tmax defined as in panel C). Dashed curves are linear fits of the data where blue
and red envelopes show the 50% confidence bands. Plain curves represent On and I durations measured from simulations with partially blocked SK
conductance. The durations of the two phases were plotted versus the normalized decrease in SK-like conductance (DgSK at top axis, with g ranging
from gmin = 0.05 mS to gmax = 0.5 mS).
doi:10.1371/journal.pone.0061220.g003
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Discussion

Our results provide a possible mechanistic explanation for the

behavioural model originally proposed by Baker twenty years ago:

a phasic response ( = On in our study) generates an upwind surge

and a separate, tonic response ( = Off ) activates the casting [5–6].

The duration of the different phases was well consistent with

behavioural observations: the On increased with stimulus duration

(Fig. 3B), in line with the surge duration in several moth species

[4]; the inhibitory period <400 ms corresponded well with the

latency to switch from surge to casting [23]; the Off persisted for

several seconds after removing the stimulus, a duration compatible

with long-term casting; the Off was absent for pulses of high

frequencies (Fig. 2B), in agreement with previous studies showing

that high stimulation frequencies promote sustained upwind flights

with nearly no casting [6].

Surge and casting in moths differ in their orientation to the

wind. Surge is clearly upwind. Casting consists in zigzagging

crosswind right after losing the plume [2–6], followed by looping

or spiralling behaviours [24,25]. Prior to initial contact with the

odorant, casting has been shown to be preferably downwind [26]

or non-oriented [27]. To account for differences in casting, we

devised a two-step casting strategy based on the separation

between Off and baseline activities (Fig. 6A) and demonstrated its

efficiency using robotic experiments and search game theory [20].

However, the transition from Off to baseline in physiological

recordings was continuous rather than discrete (Fig. 1A). Thus, it

will be interesting to modulate the spiral search so as to shift

gradually from crosswind to non-oriented casting. We note that

the projection of a logarithmic spiral onto the crosswind direction

results in a zigzag locomotion resembling to the one observed in

the flight of moths. Yet, a proper characterization of casting in

moths and further comparisons between theoretical and observed

search patterns will require additional experiments.

Olberg [28] and Kanzaki et al. [29,30] claimed that surge and

casting are instructed in the moth protocerebrum, the target area

of AL projection neurons (PNs), by two types of descending

neurons (DNs) exhibiting short- and long-lasting excitatory

responses. Recently, Kanzaki [31] suggested that the prolonged

excitation in DNs arose from neuromodulatory action of

serotonin. We here propose another possible origin, namely their

PN inputs: our On/Off activity patterns closely resemble the

responses of the DNs and of anatomically identified PNs [12]. Yet,

it remains to be shown if time-multiplexed On and Off information

can be sorted out in separate downstream neurons. This sensory-

motor decoding may involve complex neural processing and other

sensory modalities.

By enhancing the contrast between On and Off, the inhibitory

phase may play an important role in transferring surge-casting

information to motor neurons. In M. sexta, BIC abolished the

inhibitory phase and disrupted pheromone navigation [13]. In A.

ipsilon, different GABAA antagonists had divergent effects on

neuronal activity: BIC changed the response from multiphasic to

monophasic while PTX completely suppressed firing. Firing

suppression could result from the inactivation of Na+ channels

following the sustained depolarization induced by the blockade of

GABAergic synapses with PTX (disinhibiting effect). The different

effect obtained with BIC could be explained by considering 1) that

a subunit of the GABAA receptor is PTX sensitive and BIC

insensitive [32], and 2) that BIC acts as an antagonist of small-

conductance Ca2+-dependent K+ (SK) channels [14].

Figure 4. Cyborg experiments. (A) The robotic platform was composed of a tethered moth A. ipsilon mounted on a Khepera III robot. The EAG
acquisition board consisted of (1) voltage regulation providing 65 V from a +12 V battery, (2) differential EAG input, (3) instrumentation pre-
amplification (INA121, 610), (4) noise filtering and amplification (0.1–500 Hz frequency band, 50 Hz notch filter, 625), (5) signal conditioning (0–5 V)
and (6) analog-to-digital conversion (8 bits, 1 kHz sampling frequency). (B) Graphical user interface in Qt-C++ to visualize both EAG input and neuron
output. The neuron simulation was performed in real-time. (C) The whole system was able to resolve pheromone pulses up to 10 Hz, as indicated by
the normalized EAG power spectrum for pheromone puffs pulsed at 1 and 10 Hz. Inset: two examples of EAG signals obtained at 4 and 10 Hz.
doi:10.1371/journal.pone.0061220.g004
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SK channels have been reported in many neurons as being

responsible for the prolonged after-hyperpolarization that follows

bursts of action potentials [33]. We devised a Hodgkin-Huxley-

type neuron model with an intrinsic SK conductance that

reproduced the requisite properties of the inhibitory phase

(Fig. 3B). Connecting our neuron model to a real moth antenna

on a robot produced successful trajectories (Figs. 5B and 6B),

similar to those observed for moths in wind tunnel experiments

[13,21,22]. Without SK channel, the multiphasic neuron became

monophasic and the pheromone source was generally not found

(Fig. 5C), just as reported in the case of moths treated with BIC

[13]. Other models may explain the data equally well, for example

by considering interactions with inhibitory local neurons [15] or

by using a cognitive navigation strategy [34]. However, these

models will necessarily be of a larger complexity than the one

presented here. In our work, we followed an Occam’s razor

approach and it is worth noting that a unique neuron with an

intrinsic SK channel may produce multiphasic responses mediat-

ing odour tracking behaviour.

Our work provides testable predictions and suggests new

experimental approaches. Recently, a unique SK gene (dSK)

has been identified in the Drosophila genome [35]. Given that

Figure 5. One-step casting. (A) In one-step casting, Off and baseline activities provide information about the absence of the stimulus and trigger
the same casting behaviour: Off, baseline R spiraling. (B) Trajectories of the cyborg controlled by the On/Off neuron model with SK channel intact.
The plume contour (red line) is defined as the parabolic region where 90% of all pheromone detections occurred. The target is the source of
pheromone (dose = 10 mg). Inset: track angle histogram (p,0.001, Rayleigh circular test of non-uniformity). Track angles were computed as
movement vectors with respect to the wind direction. A peak at 0u indicates a tendency to move upwind, as compared to movements perpendicular
to the wind direction (690u). (C) Trajectories with SK channel blocked. Inset: track angle histogram (p = 0.6, Rayleigh circular test of non-uniformity).
Same experimental conditions as in panel B. (D) Success rate measured as the percentage of successful trials in the different conditions (SK channel
intact and blocked, pheromone dose = 10 and 20 mg; the dose 0 mg stands for no pheromone). (E) Search distance measured from the initial location
to the target for all successful trajectories. Conditions having no letters in common are significantly different at p,0.05 (Mann-Whitney pairwise
comparisons).
doi:10.1371/journal.pone.0061220.g005
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dSK is expressed in fly’s olfactory PNs [35] and that olfactory

navigation in flies and moths presents certain similarities, but

also differences [36], it will be interesting to investigate the role

of SK in olfactory processing using a genetically tractable

animal model like Drosophila. In moths, Ca2+-dependent K+

currents have been found in the PNs, but their type was not

identified [37]. Our work suggests that they could be of the SK

type, a prediction that could be tested with a combination of

molecular biology and electrophysiology. Finally, we note that

the search algorithm was successfully implemented in hardware

using insect antennae as sensors and a computational model as

command neuron. Perhaps the most direct implication of this

neural-engineering technology is its potential use in security

applications, as insects are known to be sensitive to toxic gases,

explosives or drugs [38,39] and odour discrimination can be

performed from their EAG responses [40].

Materials and Methods

Electrophysiology (Recording and Data Analysis)
Experiments were done on 5-day-old male moths A. ipsilon

Hufnagel (Lepidoptera: Noctuidae). MGC neurons were recorded

extracellularly by means of glass microelectrodes filled with

Tucson ringer as described earlier [41]. Moths were stimulated

with a pheromone blend of three main components: cis-7-

dodecenyl acetate (Z7–12:OAc), cis-9- tetradecenyl acetate (Z9–

14:OAc) and cis-11-hexadecenyl acetate (Z11–16:OAc), in the

ratio of 4:1:4. Stimulation of the antennae was controlled by a

stimulation device (CS35, Syntech). The signal was amplified

(IDAC 2000 amplifier, Syntech), band-pass filtered between 0.3

and 5 kHz and sampled at 16 kHz. The activity of nearby neurons

was recorded using the Autospike software (v3.7, Syntech). Spike

sorting was achieved with the R-package SpikeOMatic [42]. All

other data analyses and statistical tests were done in Matlab (The

MathWorks, Inc., Natick, MA, USA). Unless specified otherwise,

data are presented as mean6s.d. The On response was identified

Figure 6. Two-step casting. (A) In two-step casting, Off and baseline activities trigger distinct casting behaviours: Off Rcrosswind zigzagging,
baseline Rspiraling. In this view, baseline activity provides information about the absence of the stimulus whereas the Off represents a recent sensory
memory, indicating that the pheromone plume had been just lost. (B) Trajectories of the cyborg obtained with the two-step casting strategy. Inset:
track angle histogram (p,0.001, Rayleigh circular test of non-uniformity). Same experimental conditions as in 1-step casting (Fig. 5B). To allow real-
time processing, the Off detection was not performed explicitly: we simply considered that the On was followed by the Off. (C) Search distance of 2-
step versus 1-step strategy (p,0.01, Mann-Whitney test).
doi:10.1371/journal.pone.0061220.g006
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using the segmentation method described in Text S1. The spike

timing jitter s (in ms) and the fraction of non-coincident spikes r
were calculated with the stochastic event synchrony (SES)

algorithm [43]. Significance levels were determined by statistical

comparisons with s* and r* obtained on shuffled trials (shuffling

trials destroys within-trial temporal correlations while preserving

interspike interval distribution). To compare precision and

reliability between groups of neurons, we compensated for

different firing rates by computing s/s* and r/r*, checking for

significant differences in the deviations from the reference (shuffled

trials) rather than in the absolute values themselves. In pharma-

cological experiments, 100–250 mM picrotoxin and 100 mM

bicuculline methiodide (both from Sigma-Aldrich) were bath-

applied to the moth preparation.

Neuron Model
A model of the On/Off response was developed on the basis of

Hodgkin–Huxley equations. A detailed description of the model is

provided in Text S1. Briefly, the model incorporated five currents:

leak, K+, Na+, Ca2+ and SK. Time constant and steady state

functions for activation and inactivation variables were adapted from

published data. To ensure similar inputs in simulation and in

physiological recordings, the model was driven with an input current

mimicking the temporal response profile of olfactory receptor

neurons. In the cyborg experiments, the model was simulated in real-

time with the EAG signal as input. The ordinary differential

equations describing the model were numerically integrated with a

fourth-order Runge-Kutta method (time step = 0.01 ms).

Cyborg Experiments
Tethered moths Agrotis ipsilon were mounted on a Khepera III

robot (K-Team) and the EAG was recorded from a whole-insect

preparation (Fig. 4A). The insect was immobilized inside a

styrofoam block allowing the head to protrude. For electrical

contact, the last 2–3 segments of one antenna were cut-off. The

recording electrode, a glass pipette filled with (in mM) 6.4 KCl,

340 glucose, 10 Hepes, 12 MgCl2, 1 CaCl2, 12 NaCl, pH 6.5, was

maintained in contact using a micromanipulator (Narishige, UN-

3C). A silver wire inserted into the neck served as the reference

electrode. An EAG acquisition board was developed and

embedded on the robot with appropriate processing. The EAG

signal was transmitted via WIFI to a remote computer (dual Core

laptop 1.6 GHz running Linux) and used as input to the neuron

model. Neuron simulation, pheromone detection and robot

control were performed in separate threads. The neuron

simulation was performed in real-time with SIRENE, a C-based

neural simulator developed by our team and available at http://

sirene.gforge.inria.fr. A graphical user interface was written in Qt-

C++ to visualize both EAG input and neuron output. A surge

command was transmitted to the cyborg after each detection of the

On phase: 3 consecutive interspike intervals ,70 ms followed by

inhibition (interspike interval $350 ms). In the two step-casting

strategy, we simply assumed that the On was followed by the Off:

the surge (duration = 5 sec) was followed by zigzag crosswind

(duration = 19 sec). For the experiments with two neurons, the

surge was triggered whenever the two neurons detected simulta-

neously. To account for heterogeneity in the two-neuron

population, 20% Gaussian noise was added to some parameter

values (SK conductance and calcium time constant). The search

was performed in an arena of 4 m long by 2.5 m wide with the

cyborg’s speed maintained constant at 5.6 cm/s. The robot was

assumed to have reached its goal at 20 cm from the source. The

cyborg trajectories were recorded using path integration. In order

to obtain comparable results, all reported trials were performed

with the robot initially located at (x, y) = (0, 0) and the pheromone

source placed at (0, 2) expressed in meters. The source consisted of

10 ml and 20 ml of a 1 mg/ml solution of Z7–12:OAc (main

pheromone component for A. ipsilon) alternatively deposited on a

paper filter. To minimize variations in pheromone release

throughout the experimental sessions, the filter paper was replaced

every 2 trials. A laminar wind field was created by a fan placed at

(0, 7). The wind velocity was relatively constant (0.960.2 m/s

measured at source location with hot wire anemometer Testo 425).

The wind direction was the same in all experiments and was a

parameter given in advance to the robot.

Supporting Information

Figure S1 Effect of stimulus and air-gap durations. (A)
We stimulated On/Off neurons (n = 5) with different stimulus

durations (a unique puff, stimulus duration from 100 ms to 1 s). On

duration showed a linear dependence on stimulus duration (data

are presented as mean6s.d.): On duration = 0.996(stimulus

duration) +18 ms (pearson correlation r2 = 0.97). (B). We

stimulated On/Off neurons (n = 7) with randomized series of pulsed

stimuli (air gap durations from 100 ms to 5 s, stimulus dur-

ation = 200 ms). Off duration showed a linear dependence on air

gap duration (data are presented as mean6s.d.): Off duratio-

n = 0.886(air gap duration) –273 ms (pearson correlation

r2 = 0.97).

(TIF)

Figure S2 Pheromone detection with multiple neurons.
(A). ROC analysis using three On/Off neurons recorded

simultaneously (pheromone pulses of 200 ms, doses from 0.001

to 1 ng). Left: ROC curves calculated for single neurons as well as

pairs and triplets (pheromone dose = 0.01 ng). Performance

increases when the ROC curve is towards the left corner of the

ROC space which corresponds to the ideal detector. Right:

examples of spike trains used for the ROC curve calculations. The

area under the ROC curve increased with the pheromone dose

and the number of neurons. (B). Synchronized On activity. Five

pairs of neurons were exposed to 5 consecutive pheromone pulses

of 200 ms separated by air gaps of 300, 500 or 700 ms. Left:

precision (s= 3.4361.38 ms, mean6s.d) across neurons in the

different conditions (not significant, Kruskal–Wallis test). Right:

robustness (r= 0.0760.04, mean6s.d) across neurons in the

different conditions (not significant, Kruskal–Wallis test).

(TIF)

Figure S3 Simulation of the neuron model. (A). ORN

population model considered as a non-homogeneous Poisson

process with rate parameter l(t). The population firing rate l(t)

was derived from experimental data (12). The instantaneous firing

rate of 42 ORNs recorded for a stimulus dose of 1 ng and stimulus

durations of 200 ms, 500 ms and 1 s was fitted as a sum of

exponentials. Following stimulus onset at t = 0 s, l(t) has three

phases: rise, adaptation and decay. (B). The On/Off neuron model

was simulated with the ORN population model as input for

stimulus durations of 200 and 500 ms (stimulus onset indicated by

the star).

(TIF)

Figure S4 casting and search game theory. Casting-surge

is decomposed into a casting path P
p

s
(in red) and a surge path

DptD (straight line in black from p to t). A. If no direction

information is available, spiral-surge achieves a competitive ratio

r = 22.513. B. Given that the target is not downwind, zigzagging-

surge achieves a competitive ratio r = 9.0554.

(TIF)
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Text S1 Supporting text S1 includes: Segmentation of
the On phase in firing response patterns, Receiver
operating characteristic (ROC) analysis, On/Off neuron
model equations, Casting and search game theory,
References.

(PDF)

Movie S1 One-step casting: SK intact vs SK blocked.
This movie shows two examples of the cyborg experiments with

one-step casting: OnRupwind surge, Off and baselineRspiral

casting. The EAG input and On/Off neuron output are indicated

in red and green, respectively. The movie contains two parts:

channel SK intact and blocked.

(MOV)

Movie S2 Two-step casting: SK intact. This movie shows

an example of the cyborg experiment with two-step casting:

OnRupwind surge, OffRcasting 1 (crosswind zigzag), baselineR
casting 2 (non-oriented spiral).

(MOV)
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