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Contemporary Mathematics

Long-range dependence and the rank of decompositions

Céline Lévy-Leduc and Murad S. Taqqu

Abstract. We review and compare different methodologies for studying the asymptotic behav-

ior of partial sums of nonlinear functionals of the following type
∑N

i=1 h(Xi) in the long-range

dependence setting. Here (Xi)i≥1 is either a stationary mean-zero Gaussian process or a linear
process. The methodologies, we consider, are based on different decompositions of the function

h. This includes the decomposition of [Sur82] and of [HH97] in the case of linear processes.

The so-called “rank” of these decompositions plays an essential role. We show that all ranks
coincide when the function h is a polynomial.

1. Introduction

We focus here on long-range dependence and on its impact on central, or more precisely,
non-central limit theorems. Long-range dependence, also called “long-memory” or “strong depen-
dence”, occurs in a stationary time series when the covariances of that series tend to zero like
a power function but so slowly that their sums diverge. Such a behavior is often observed in
economics, telecommunications and hydrology and was of great interest to Benôıt Mandelbrot.
Many of his articles on the subject have been collected in his book [Man02].

The notion of long-range dependence is closely related to self-similarity. Self-similarity refers to
invariance in distribution under a suitable change of scale. More precisely, the process (Z(t), t ≥ 0)
is self-similar with parameter H if (Z(at), t ≥ 0) has the same finite-dimensional distributions
as (aHZ(t), t ≥ 0), for all non negative a. For instance, Brownian motion is self-similar with
parameter H = 1/2. In such an example the increments Z(t + 1) − Z(t) are stationary and
independent over disjoint intervals. But now consider standard fractional Brownian motion. It
is self-similar with parameter 0 < H < 1, satisfies E[Z(t)] = 0, E[Z(t)2] = 1 and has stationary
increments. This last fact, together with self-similarity, implies that its covariance function equals

(1.1) E[Z(t1)Z(t2)] = {|t1|2H + |t2|2H − |t1 − t2|2H}/2, t1, t2 ≥ 0.

Observe that if H = 1/2, then (1.1) reduces to E[Z(t1)Z(t2)] = min(t1, t2), for t1, t2 ≥ 0, which
is the covariance of Brownian motion. If H 6= 1/2, however, the increments of standard fractional
Brownian motion, while stationary, are not independent anymore. In fact, when 1/2 < H < 1,
they have the long-range dependence property. Indeed,

E[{Z(t+ 1)− Z(t)}{Z(s+ t+ 1)− Z(s+ t)}] ∼ H(2H − 1)s2H−2 ,

as s tends to infinity. Since H > 1/2, the sum of these covariances diverges.
We will consider Gaussian processes converging to fractional Brownian motion as well as linear

processes which may be non-Gaussian. A linear process (Xi)i∈Z is defined as

(1.2) Xi =
∑
j≥1

ajεi−j , i ∈ Z ,
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Here the εi’s are “innovations”. These are zero-mean independent and identically (i.i.d.) random
variables with at least finite second moments. The coefficients aj in (1.2) are such that

∑
j≥1 a

2
j <

∞, which ensures that E(X2
i ) < ∞. By choosing the aj ’s judiciously, we can construct linear

processes (Xi) with long-range dependence such that their partial sums
∑[Nt]
i=1 Xi, 0 ≤ t ≤ 1,

suitably normalized, converge to fractional Brownian motion as N tends to infinity.
In this paper, we focus on processes (h(Xi))i≥1 which are non-linear functionals of Gaussian

or linear processes with long-range dependence and are interested in the asymptotic behavior of

their partial sums
∑N
i=1 h(Xi). We will study this behavior in various settings. Each setting

involves a decomposition and a notion of “rank”. Our goal is to highlight the connections between
the different methodologies.

Because h is in general a non-linear function, the limits are typically non-Gaussian. The limits

are called Hermite process {Z(m)
D (t) , t ≥ 0} which are defined in terms of multiple Wiener-Itô

integrals as follows:

(1.3) Z
(m)
D (t) = am,D

∫
x1<···<xm


∫ t

0

m∏
j=1

(s− xj)−(1+D)/2
+ ds

dB(x1) . . . dB(xm) ,

where 0 < D < 1/m, am,D is a constant, {B(x)}x∈R denotes the standard Brownian motion, and

(u)+ =

{
u, if u ≥ 0;

0, if u < 0,

is the ”positive part” function. Physically, Z
(m)
D (t) is an aggregation of products of independent

Gaussian noises with power weights. The multiple integrals are well-defined because∫
x1<···<xm

∣∣∣∣∣∣
∫ t

0

m∏
j=1

(s− xj)−(1+D)/2
+ ds

∣∣∣∣∣∣
2

dx1 . . . dxm <∞ .

The representation (1.3) is called a time-domain representation.

There are other equivalent ones. There is the spectral representation of Z
(m)
D (t), namely

bm,D

∫
λ1<···<λm

ei(λ1+···+λm)t − 1

i(λ1 + · · ·+ λm)

m∏
j=1

|λj |−(1−D)/2dB̃(λ1) . . . dB̃(λm) , t ≥ 0 ,

where bm,D is a constant and {B̃(λ)}λ∈R denotes a complex Brownian motion. There is the positive
half-time representation

cm,D

∫
0<x1<···<xm<t


∫ t

0

m∏
j=1

x
−(1−D)/2
j (1− sxj)−(1+D)/2

dB(x1) . . . dB(xm) , t ≥ 0 ,

where cm,D is a constant and {B(x)}x∈R is a standard Brownian motion. There is finally the finite
interval representation

dm,D

∫
0<x1<···<xm<t


m∏
j=1

x
−(1−D)/2
j

∫ t

0

sm(1−D)/2
m∏
j=1

(s− xj)−(1+D)/2
+ ds

dB(x1) . . . dB(xm) ,

where dm,D is a constant and {B(x)}x∈R is a standard Brownian motion. For more details see
[PT10, Theorem 1.1].

The Hermite processes have interesting properties: they have mean zero, finite moments of all
order, have stationary increments and are self-similar in the sense that for all positive a,

{Z(m)
D (at)}t≥0

d
= {aHZ(m)

D (t)}t≥0 ,

where

H = 1− mD

2
,

and hence depends on D and m.
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The paper is organized as follows. In Section 2, we state conditions for
∑[Nt]
i=1 h(Xi), suitably

normalized, to converge to Z
(m)
D (t) when (Xi)i≥1 is a stationary mean-zero long-range dependent

Gaussian process. In Section 3, we consider the case where (Xi)i≥1 is not a Gaussian process
anymore but is a long-range dependent linear process and h is an entire function as done in
[Sur82]. In Section 4, (Xi)i≥1 is still assumed to be a long-range dependent linear process but
the regularity assumptions on h are somewhat alleviated as done in [HH97]. In Section 5, we
consider the particular case where h is a polynomial and show that all ranks coincide. Finally, in
Section 6, we illustrate the methods by providing sketches of proofs.

2. The Gaussian case

We suppose here that, the underlying process (Xi)i≥1 satisfies the following assumption:

(A1) (Xi)i≥1 is a stationary mean-zero Gaussian process with covariances ρ(k) = E(X1Xk+1)
satisfying:

ρ(0) = 1 and ρ(k) = k−DL(k), 0 < D < 1 ,

where L is slowly varying at infinity and is positive for large k.

Recall that a slowly varying function L(x), x > 0 is such that L(xt)/L(x)→ 1, as x→∞ for any
t > 0. Constants and logarithms are examples of slowly varying functions.

If h is such that E[h(X1)2] <∞, the idea is to use the expansion of h in the basis of Hermite
polynomials, that is:

h(x) =
∑
k≥0

(J(k)/k!)Hk(x) ,

where Hk is the kth Hermite polynomial with leading coefficient equal to 1, that is H0(x) = 1,
H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, . . . and

J(k) = E[h(X1)Hk(X1)].

Definition 2.1. We shall say that h is of Hermite rank m ≥ 1 if m is the smallest positive
integer such that

(2.1) J(m) = E[h(X)Hm(X)] 6= 0 ,

where X is a standard Gaussian random variable. The corresponding rank coefficient is J(m).

Suppose that not only (Xi)i≥1 but also h(Xi)i≥1 is long-range dependent which happens if

0 < D < 1/m. Then by the reduction theorem of [Taq75], the leading term of
∑N
i=1 h(Xi)

properly normalized is the first term of the decomposition of h in the Hermite polynomials basis,
namely

J(m)

m!

N∑
i=1

Hm(Xi) .

Moreover, this leading term, properly normalized, converges in distribution to Z
(m)
D (1), where

{Z(m)
D (t) , t ≥ 0} is the Hermite process of order m, evaluated at time t = 1. For this last step,

one needs to show that

(2.2)

N∑
i=1

Hm(Xi)

m!
/Var

( N∑
i=1

Hm(Xi)/m!
)1/2

converges in distribution to Z
(m)
D (1), as N → ∞. To gain some insight, note that not only the

limit Z
(m)
D (1) is represented by a multiple Wiener-Itô integral of order m (see (1.3)), but also the

summands Hm(Xi). This is because the Gaussian sequence Xi, i ≥ 1, can be expressed as

Xi =

∫
R
ψi(x)dB(x),

∫
R
ψi(x)ψj(x)dx = E(XiXj) , i, j ≥ 1 ,
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with E(X2
i ) = 1, i ≥ 1. Then one has (see Proposition 8.1.2 of [PT11] or Theorem 9.6.9 in

[Kuo06]),

(2.3)
Hm(Xi)

m!
=

∫
x1<x2<···<xm

ψi(x1) . . . ψi(xm)dB(x1) . . . dB(xm) ,

sometimes written

Hm(Xi) =

∫ ′
Rm

ψi(x1) . . . ψi(xm)dB(x1) . . . dB(xm) ,

where the prime indicates that one does not integrate over the diagonals.
Here is the precise result (see [Taq75], [DM79] and [Taq79].)

Theorem 2.2. Assume that h is such that E[h(X1)2] <∞ and that m is the smallest integer
greater than 1 such that J(m) = E[h(X1)Hm(X1)] 6= 0, where Hm denotes the mth Hermite
polynomial. Assume also that Assumption (A1) holds with D in (0, 1/m). Then

(2.4)
1

σN,m

N∑
i=1

{
h(Xi)− E[h(Xi)]

}
d−→ J(m)Z

(m)
D (1) , N →∞ ,

where

(2.5) σ2
N,m = Var

( N∑
i=1

Hm(Xi)/m!
)
∼ 2N2−mDLm(N)

m!(1−mD)(2−mD)
, N →∞ ,

and {Z(m)
D (t)}t∈R is the Hermite process of order m and parameter D defined by (1.3) where

am,D =

[
m!(1−mD/2)(1−mD)

{∫ ∞
0

(x+ x2)−(1+D)/2dx

}−m]1/2

,

ensures that E[Z
(m)
D (1)2] = 1.

A sketch of proof of Theorem 2.2 is given in Section 6.

3. The linear case: Surgailis approach

Suppose now that (Xi) is a linear process. Thus, replace Assumption (A1) by the following
assumption.

(A2) (Xi) is defined by

(3.1) Xi =
∑
j≥1

ajεi−j , i ∈ Z ,

where the innovations εi’s are zero-mean i.i.d. random variables having at least finite
second moments and the aj ’s are such that

∑
j≥1 a

2
j < ∞. The aj ’s are assumed to be

such that

(3.2) aj = j−βL(j) ,

where β ∈ (1/2, 1) and L is a slowly varying function at infinity.

Note that under Assumption (A2),

E(X1Xk+1) ∼ CL(k)2k1−2β , as k →∞ ,

where C is a positive constant.
In this situation, [Sur82] proposes a methodology for studying the limiting behavior of∑N

i=1 h(Xi) in the case where h is an entire function, that is, h(z) =
∑
k≥0 ckz

k, z ∈ C. The
idea is to prove that, this time, the leading term is

E[h(m)(X1)]

m!

N∑
i=1

Xm
i ,

where the rank m is the exponent rank of h.
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Definition 3.1. We shall say that h is of exponent rank m ≥ 1 if m is the smallest integer
such that

(3.3) E[h(m)(X1)] 6= 0 ,

where h(m) denotes the mth derivative of h. The corresponding rank coefficient is E[h(m)(X1)].

In view of the definition (3.1) of a linear process, the idea is to show that
∑N
i=1 h(Xi) has the

same asymptotic behavior as

E[h(m)(X1)]

m!

N∑
i=1

Xm
i =

E[h(m)(X1)]

m!

N∑
i=1

(
∑
j≥1

ajεi−j)
m ,

which in turns has the same asymptotic behavior as E[h(m)(X1)]YN,m, where

(3.4) YN,m =

N∑
n=1

∑
1≤j1<j2<···<jm

m∏
s=1

ajsεn−js .

One has then finally to prove that YN,m/[Var(YN,m)]1/2 converges to the Wiener-Itô multiple
integral defined in (1.3). In view of (2.3), this is not too different from focusing on (2.2). Observe,
however, that in (3.4) we are dealing with a discrete convolution and that the ε’s are not assumed
normal.

Here is the precise result of [Sur82].

Theorem 3.2. Let h be an entire function defined by h(z) =
∑
k≥0 ckz

k, z ∈ C, such that∑
k,j≥0

|ck||cj |(k!j!)222(k+j)µ̄k+j <∞ ,

where µ̄k = E(|ε1|k), k ≥ 0 and let m be the smallest integer larger than 1 such that

E[h(m)(X1)] 6= 0 .

Then, under Assumption (A2), with 0 < D = 2β − 1 < 1/m, β being defined in (3.2),

s−1
N,m

N∑
n=1

{h(Xn)− E[h(Xn)]}

has the same limit in distribution, as N tends to infinity, as

E[h(m)(X1)]
YN,m
sN,m

,

where YN,m is defined in (3.4) and s2
N,m = Var(YN,m). Moreover, that limit is

E[h(m)(X1)]Z
(m)
D (1) ,

where {Z(m)
D (t)}t∈R is the Hermite process of order m and parameter D defined in (1.3).

A sketch of proof of Theorem 3.2 is given in Section 6. A related approach, focusing on Appell
polynomials, can be found in [AT87].

4. The linear case: Ho and Hsing approach

We need to introduce first some notation. Let F be the distribution of the linear process
Xn =

∑
i≥1 aiεn−i and Fj the distribution of

Xn,j =
∑

1≤i≤j

aiεn−i,

for j ≥ 1, with the convention: Xn,0 = 0. Let

(4.1) hj(x) =

∫
R
h(x+ y)dFj(y) , h∞(x) =

∫
R
h(x+ y)dF (y) ,
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and

(4.2) h
(r)
j (x) =

dr

dxr

∫
R
h(x+ y)dFj(y) , h(r)

∞ (x) =
dr

dxr

∫
R
h(x+ y)dF (y) .

If the rth derivative h
(r)
j of hj exists, define

h
(r)
j,λ(x) = sup

|y|≤λ
|h(r)
j (x+ y)| , λ ≥ 0 .

We shall say that h satisfies the Condition C(r, j, λ) if

(1) h
(r)
j (x) exists for all x and h

(r)
j is continuous.

(2) For all x ∈ R,

sup
I⊂{1,2,... }

E[{h(r)
j,λ(x+

∑
i∈I

aiεi)}4] <∞ ,

where the supremum is taken over all subsets I of {1, 2, . . . }.
Let us comment on Condition C(r, j, λ). It is satisfied if the rth derivative of h is bounded

and continuous, in which case one can take any j. Moreover, if h is any polynomial, then C(r, j, λ)
holds provided that εi has finite moments of sufficiently high order.

The novelty here is that C(r, j, λ) can hold without h being smooth. An important example
is the indicator function. If h(x) = 1{x≤u}, for some fixed u, let us prove that h satisfies C(r, 1, λ)
for all positive λ as soon as the probability density function g of ε1 has a continuous and integrable
rth derivative.

Since Xn,1 = a1εn−1, we have

h1(x) =

∫
R
h(x+ y)dF1(y) =

∫
R
h(x+ a1y1)g(y1)dy1 = a−1

1

∫
R
h(z)g

(
z − x
a1

)
dz .

Note that,
∂r

∂xr

{
h(z)g

(
z − x
a1

)}
=

(−1)r

ar1
h(z)g(r)

(
z − x
a1

)
.

Since, by assumption,
∫
R |g

(r)(y)|dy <∞, we get

h
(r)
1 (x) =

(−1)r

ar+1
1

∫
R
h(z)g(r)

(
z − x
a1

)
dz =

(−1)r

ar1

∫
R
h(x+ a1y1)g(r)(y1)dy1 .

Moreover, h
(r)
1 is a continuous function since g(r) is assumed to be a continuous function. This

gives (1) of C(r, 1, λ). Let us now check (2) of C(r, 1, λ). For all subset I of {1, 2, . . . }, we have

E
[{

sup
|y|≤λ

∣∣∣h(r)
1

(
x+

∑
i∈I

aiεi + y
)∣∣∣}4]

=
1

a4r
1

E
[{

sup
|y|≤λ

∣∣∣ ∫
R
h
(
x+

∑
i∈I

aiεi + y + a1y1

)
g(r)(y1)dy1

∣∣∣}4]
,

which is bounded by a−4r
1 (

∫
R |g

(r)(y1)|dy1)4, which is finite since
∫
R |g

(r)(y)|dy < ∞ and thus
ensures that h(x) = 1{x≤u} satisfies Condition C(r, 1, λ).

Observe that the indicator function h(x) = 1{x≤u} is allowed in the Gaussian case but not
in the situation considered by [Sur82]. As we have just seen, it is allowed in the methodology
proposed by [HH97].

The idea here is to use a mixingale decomposition as explained in Section 6 and to prove that
the leading term is once again YN,m, defined in (3.4), where here m is the power rank of h defined
as follows.

Definition 4.1. We shall say that h is of power rank m ≥ 1 if it is the smallest integer such
that

(4.3) h(m)
∞ (0) 6= 0 .

The corresponding rank coefficient is h
(m)
∞ (0).
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The idea is once again to prove that Yn,m properly normalized converges to the Wiener-Itô
multiple integral defined in (1.3). Here is the precise result due to [HH97].

Theorem 4.2. Assume that Assumption (A2) holds and that h is of power rank m, that is,

m is the smallest positive integer such that h
(m)
∞ (0) 6= 0. Assume also that for some j and λ,

condition C(r, j, λ) holds for r = 0, . . . ,m+ 2 and E[h(X1)2] <∞. If

0 < D = (2β − 1) < 1/m,

β being defined in (3.2), and E(|ε1|2m∨8) <∞ then

s−1
N,m

N∑
i=1

{h(Xi)− E[h(Xi)]}

has the same limit in distribution, as N tends to infinity, as

h(m)
∞ (0)

YN,m
sN,m

,

where YN,m is defined in (3.4) and s2
N,m = Var(YN,m). Moreover, that limit is h

(m)
∞ (0)Z

(m)
D (1),

where (Z
(m)
D (t))t∈R is defined in (1.3).

A sketch of proof of Theorem 4.2 is given in Section 6.

Remark 4.3. The second parts of Theorems 3.2 and 4.2 are similar. This shows that the

key is to reduce the original
∑N
n=1 h(Xn) to YN,m. It is YN,m which converges to the limit after

suitable normalization.

5. Application to the polynomial case

In the case where h is a polynomial, we prove in the following proposition that the three
definitions of ranks introduced previously coincide.

Proposition 5.1. If h is a polynomial defined by h(x) =
∑K
k=0 ckx

k then the three rank
coefficients

J(m), E[h(m)(X1)] and h(m)
∞ (0)

defined in (2.1), (3.3) and (4.3) respectively, are identical and equal to

(5.1)

K∑
k=m

ck k(k − 1) . . . (k −m+ 1)E[Xk−m
1 ] ,

where m is the corresponding rank.

Proof of Proposition 5.1. Let

h(X) =

K∑
k=0

ckX
k

denote the polynomial.
Suppose first that X is a standard Gaussian random variable. The mth coefficient of the

expansion in Hermite polynomials of h is given by

J(m) =

K∑
k=0

ckE[XkHm(X)].

We first show that J(m) is equal to (5.1). Using the relation between powers and Hermite poly-
nomials [Kuo06, p. 159], we have, for all x ∈ R and k ∈ N,

(5.2) xk =

[k/2]∑
`=0

k!

(k − 2`)!`!2`
Hk−2`(x) ,
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where [y] denotes the integer part of y. Thus, by orthogonality of the Hk’s in L2 equipped with
the N (0, 1) Gaussian measure,

E[XkHm(X)] =

[k/2]∑
`=0

k!

(k − 2`)!`!2`
E[Hk−2`(X)Hm(X)]

=
k!

m!{(k −m)/2}!2(k−m)/2
m!

=
k!

(k −m)!

(k −m)!

{(k −m)/2}!2(k−m)/2

= k(k − 1) . . . (k −m+ 1)E[Xk−m] ,

when k ≥ m and k − m is even, otherwise, E[XkHm(X)] = 0. We used here the fact that
when X is a standard Gaussian random variable, E[X2p+1] = 0 and E[X2p] = (2p)!/(p!2p). Now
ckE[XkHm(X)] vanishes if either ck = 0 or if E[Xk−m] = 0. The Hermite rank m is thus equal
to the smallest k such that both ck 6= 0 and E[Xk−m] 6= 0. The corresponding coefficient J(m) is
thus given by (5.1).

We now suppose that (Xi)i≥1 is a linear process and consider E[h(m)(X1)] defined in (3.3).
Observe that

h(m)(x) =

K∑
k=m

ck k(k − 1) . . . (k −m+ 1)xk−m,

for all x in R. Thus,

(5.3) E[h(m)(X1)] =

K∑
k=m

ck k(k − 1) . . . (k −m+ 1)E[Xk−m
1 ] ,

which is the same as (5.1).

We finally consider h
(m)
∞ (0) defined in (4.3). Since

h∞(x) =

K∑
k=0

ckE[(x+X1)k] =

K∑
k=0

ck

k∑
j=0

(
k

j

)
xj E[Xk−j

1 ] ,

we get

(5.4) h(m)
∞ (0) =

K∑
k=0

ck

(
k

m

)
m!E[Xk−m

1 ] =

K∑
k=m

ck k(k − 1) . . . (k −m+ 1)E[Xk−m
1 ] ,

which is the same as (5.1) and (5.3). �

To understand the significance of the proposition, let h(X) =
∑K
k=1 ckX

k be a polynomial
and set for convenience

C(k, j) = k(k − 1) . . . (k − j + 1) , k ≥ j .

As noted, the rank of h(X) is m if

(5.5)

K∑
k=j

ck C(k, j)E[Xk−j ] = 0 , j = 1, . . . ,m− 1 ,

and

em =

K∑
k=m

ck C(k,m)E[Xk−m] 6= 0 .

In this case,
∑N
i=1 h(Xi) behaves asymptotically like emYN,m, where YN,m is defined in (3.4) and

where, here, em stands for any of the three rank coefficients J(m), E[h(m)(X1)] and h
(m)
∞ (0).
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Example 5.2. Suppose h(X) = ckX
k, ck 6= 0, k ≥ 1. If k is odd, then E[Xk−1] 6= 0 and the

rank is m = 1. The corresponding rank coefficient is ck C(k, 1)E[Xk−1]. If k ≥ 2 is even, then
E[Xk−1] = 0, E[Xk−1] 6= 0 and thus the corresponding rank is m = 2 and the rank coefficient is
ck C(k, 2)E[Xk−2].

Example 5.3. Suppose h(X) = ckX
k + ck+1X

k+1, ck 6= 0, ck+1 6= 0, k ≥ 1. Since

ck C(k, 1)E[Xk−1] + ck+1 C(k + 1, 1)E[Xk+1−1] 6= 0 ,

the rank ism = 1 and the rank coefficient is ck+1 C(k+1, 1)E[Xk] if k is even and ck C(k, 1)E[Xk−1]
if k is odd.

Example 5.4. Suppose h(X) = X3 − 3X. For j = 1, (5.5) equals

C(3, 1)E[X2]− 3C(1, 1) = C(3, 1)− 3C(1, 1) = 3− 3 = 0 ,

and for j = 2, it equals C(3, 2)E[X3−2] = 0. For j = 3, it equals

C(3, 3)E[X3−3] = C(3, 3) = 3× 2 = 6 .

Hence the rank is m = 3 and the rank coefficient is 6. One can arrive to this conclusion immediately
by supposing X ∼ N (0, 1) and noting that

J(j) = E[h(X)Hj(X)] = E[(X3 − 3X)Hj(X)] = E[H3(X)Hj(X)]

equals 0 if j 6= 3 and equals 3! = 6 if j = 3.

6. Sketches of proofs of Theorems 2.2, 3.2 and 4.2

The proof for each theorem involves a decomposition of the function h and has two parts. The
first involves showing that the only contribution to the limit is due to the term of the decomposition
with index m, where m is the rank. The second part consists in showing that the term with index

m converges in distribution to Z
(m)
D (1). In fact convergence also holds for the finite-dimensional

distributions as well as in function space. We will focus here on the first part of each proof.

Sketch of proof of Theorem 2.2. The first part of the proof consists in showing that

the remainder h?(x) = h(x)− J(m)
m! Hm(x) is negligible, namely that

N−2+mDL−m(N) Var

(
N∑
i=1

h?(Xi)

)
→ 0 , as N →∞ .

This implies that N−1+mD/2L−m/2(N)
∑N
i=1 h

?(Xi) = oP (1) and that the convergence in distri-
bution of

N−1+mD/2L−m/2(N)

N∑
i=1

h(Xi)

reduces to the convergence in distribution of

N−1+mD/2L−m/2(N)

N∑
i=1

(J(m)/m!)Hm(Xi).

Using the Mehler formula, namely

E[Hp(Xi)Hq(Xj)] = δp,q
J(p)2

p!
(ρ(i− j))p ,
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where δp,q is 1 if p = q and 0 if p 6= q, we get that

Var

(
N∑
i=1

h?(Xi)

)
≤

N∑
i=1

N∑
j=1

∑
p≥1

J(p)2

p!

 |ρ(i− j)|m+1

= E[h2(X1)]

N∑
i=1

N∑
j=1

|ρ(i− j)|m+1

≤ NE[h2(X1)]
∑
|k|<N

|ρ(k)|m+1 .

Taking into account the normalization, we have

(6.1) N−2+mDL−m(N) Var

(
N∑
i=1

h?(Xi)

)
≤ N−1+mDL−m(N)E[h2(X1)]

∑
|k|<N

|ρ(k)|m+1 .

There are two possibilities: either the series
∑
k∈Z |ρ(k)|m+1 is convergent and in this case the

expression (6.1) tends to zero since D < 1/m or the series
∑
k∈Z |ρ(k)|m+1 is divergent. In the

latter case,
∑
|k|<N |ρ(k)|m+1 is of order N−(m+1)D+1 and thus again, the expression of (6.1) tends

to zero since D > 0.
To conclude the proof, it remains to show that, as N →∞,

J(m)

σN,m

N∑
i=1

Hm(Xi)/m!
d−→ J(m)Z

(m)
D (1) ,

where σN,m is defined in (2.5). This is done in [DM79], [Taq79] and [Maj81].
�

Sketch of proof of Theorem 3.2. Let (Xj) be defined in (3.1). The idea of the proof
consists of decomposing

(6.2) (Xj)
k =

∑
p1,p2,...,pk≥1

ap1ap2 . . . apkεj−p1εj−p2 . . . εj−pk

in terms of the cardinality |{p1, . . . , pk}| of the set {p1, . . . , pk}. When |{p1, . . . , pk}| = k, the term
ap1ap2 . . . apkεj−p1εj−p2 . . . εj−pk is not modified. When |{p1, . . . , pk}| < k and for instance equal
to k − 1 with p1 = p2, it is split in two parts:

ap1ap2 . . . apk(εj−p1εj−p2 . . . εj−pk) = a2
p1ap3 . . . apk(ε2

p1−jεj−p3 . . . εj−pk)(6.3a)

= a2
p1ap3 . . . apk (µ2 εj−p3 . . . εj−pk) + a2

p1ap3 . . . apk (ηp1(2) εj−p3 . . . εj−pk) ,(6.3b)

where µ` = E(ε`1) and ηp(`) = ε`p − µ`. One then shows that the term with ηp1(2) is negligible.
Let us focus on the first term in 6.3b and consider the general case. The idea is to replace

(Xj)
k by

(6.4) (Zj)
∗k =

k∑
`=0

(
k

`

)∑
(p)`

ap1εj−p1 . . . ap`εj−p`
∑

(V )(k−`)

∑
(q)r

av1q1µv1 . . . a
vr
qrµvr ,

where the summation over (p)` corresponds to the summation over the sets {p1, . . . , p`} of car-
dinality |{p1, . . . , p`}| = `, that is, over p1, . . . , p` which take different values. In the perspective
of (6.3b), one should take the sets {q1, . . . , qr} and {p1, . . . , p`} disjoint, but we shall not impose
this restriction in (6.4). The sum

∑
(V )(k−`) is taken over all partitions of the set {1, . . . , k − `}

of cardinality v1, . . . , vr such that vi ≥ 2, for all i. By convention, this sum equals 1 for (V )(0).
In contrast to (Xj)

k, the notation (Zj)
∗k is a shorthand for the r.h.s of (6.4) and does not mean

Zj to the power k. The difference between (Xj)
k and (Zj)

∗k is that when there is an ε`p−j with



LONG-RANGE DEPENDENCE AND THE RANK OF DECOMPOSITIONS 11

` > 1 in (6.2), it is replaced by µ` = E(ε`1) in (6.4). Observe also that the summands of (Zj)
∗k

with ` > 0 have zero mean. This ensures that

E[(Xj)
k] = E[(Zj)

∗k] =
∑

(V )(k)

∑
(q)r

av1q1µv1 . . . a
vr
qrµvr ,

for k ≥ 0 and hence for 0 ≤ s ≤ k,

(6.5) E[(Xj)
k−s] = E[(Zj)

∗(k−s)] =
∑

(V )(k−s)

∑
(q)r

av1q1µv1 . . . a
vr
qrµvr .

Let us now define formally h∗(Zj) as
∑
s≥0 cs(Zj)

∗s, where (Zj)
∗s is given in (6.4) and prove that

(6.6) h∗(Zj) =
∑
s≥0

cs(Zj)
∗s =

∑
s≥0

(es/s!)
∑
(p)s

ap1εj−p1 . . . apsεj−ps ,

where here

es = E[h(s)(Xj)] .

Observe that by (5.3) and (6.5),

es
s!

=
E[h(s)(Xj)]

s!
=

1

s!

∑
k≥s

ck k(k − 1) . . . (k − s+ 1)E[(Xj)
k−s]

=
∑
k≥s

ck

(
k

s

)
E[(Xj)

k−s] =
∑
k≥s

ck

(
k

s

)
E[(Zj)

∗(k−s)] .

Using this and again (6.5), we note that the last term of (6.6) can be expressed as

∑
s≥0

es
s!

∑
(p)s

ap1εj−p1 . . . apsεj−ps =
∑
s≥0

∑
k≥s

ck

(
k

s

)
E[(Zj)

∗(k−s)]

∑
(p)s

ap1εj−p1 . . . apsεj−ps

=
∑
s≥0

∑
k≥s

ck

(
k

s

) ∑
(V )(k−s)

∑
(q)r

av1q1µv1 . . . a
vr
qrµvr

∑
(p)s

ap1εj−p1 . . . apsεj−ps

=
∑
k≥0

ck

 k∑
s=0

(
k

s

)∑
(p)s

ap1εj−p1 . . . apsεj−ps
∑

(V )(k−s)

∑
(q)r

av1q1µv1 . . . a
vr
qrµvr

 =
∑
k≥0

ck(Zj)
∗k ,

by (6.4), hence proving (6.6).

The proof of [Sur82] consists in showing that
∑N
j=1 h(Xj) can be replaced by

∑N
j=1 h

∗(Zj)

and that the leading term in
∑N
j=1 h

∗(Zj) is the term corresponding to s = m in
∑N
j=1 h(Zj), that

is by (6.6) and (3.4),

emYN,m = (em/m!)

N∑
j=1

∑
(p)m

ap1εj−p1 . . . apmεj−pm .

More precisely, it is proved in Lemma 2 and 3 of [Sur82] that

E
[{ N∑

j=1

(
h(Xj)− h∗(Zj)

)}2]
≤ CN ,

where C is a positive constant and that

E
[{ N∑

j=1

∑
`≥m+1

∑
(p)`

(e`/`!)ap1εj−p1 . . . ap`εj−p`

}2]
= E

[{ ∑
`≥m+1

e`YN,`

}2]
= o(L(N)2mN2−mD) ,

as N tends to infinity.



12 CÉLINE LÉVY-LEDUC AND MURAD S. TAQQU

To conclude, it remains to show that, as N →∞,

em
YN,m
sN,m

d−→ emZ
(m)
D (1) ,

where s2
N,m = Var(YN,m). This is done in Lemma 5 of [Sur82]. The basic idea is to express

YN,m as a discrete multiple stochastic integral and use the fact that N−1/2
∑N
k=1 εk converges to

a normal distribution. �

Sketch of proof of Theorem 4.2. The idea is to condition on the σ-fields

Fk = σ(εi; i < k),

using the telescoping expression

(6.7) h(Xn)− E[h(Xn)] =
∑
j≥1

{E[h(Xn)|Fn−j+1]− E[h(Xn)|Fn−j ]} ,

since the extreme summands are such that E[h(Xn)|Fn] = h(Xn) and E[h(Xn)|F−∞] = E[h(Xn)].
Now write

E[h(Xn)|Fn−j ] = E[h(Xn,j + X̃n,j)|Fn−j ] ,

with

Xn,j =

j∑
i=1

aiεn−i and X̃n,j =
∑
i>j

aiεn−i.

Since X̃n,j is Fn−j-measurable and Xn,j is independent of Fn−j ,

(6.8) E[h(Xn)|Fn−j ] =

∫
R
h(x+ X̃n,j)dFj(x) = hj(X̃n,j) ,

where Fj is the distribution of Xn,j and hj(y) = E[h(Xn,j +y)]. Using (6.7) and (6.8), we get that

N∑
n=1

{h(Xn)− E[h(Xn)]} =

N∑
n=1

∑
j1≥1

[hj1−1(X̃n,j1−1)− hj1(X̃n,j1)]

=

N∑
n=1

∑
j1≥1

(X̃n,j1−1 − X̃n,j1)h
(1)
j1

(X̃n,j1)

+
[
hj1−1(X̃n,j1−1)− hj1(X̃n,j1)− (X̃n,j1−1 − X̃n,j1)h

(1)
j1

(X̃n,j1)
]

=

N∑
n=1

∑
j1≥1

aj1εn−j1h
(1)
j1

(X̃n,j1)

+
[
hj1−1(X̃n,j1−1)− hj1(X̃n,j1)− aj1εn−j1h

(1)
j1

(X̃n,j1)
]

(6.9)

≈
N∑
n=1

∑
j1≥1

aj1εn−j1h
(1)
j1

(X̃n,j1) ,(6.10)

after proving that the terms in brackets can be neglected. We have introduced the ε’s. We need

now to introduce h
(1)
∞ (0), . . . , h

(m)
∞ (0). To do so, we express the summands in the remaining term

(6.10) as

(6.11) aj1εn−j1h
(1)
j1

(X̃n,j1) = aj1εn−j1h
(1)
∞ (0) + aj1εn−j1 [h

(1)
j1

(X̃n,j1)− h(1)
∞ (0)]

= aj1εn−j1h
(1)
∞ (0) + aj1εn−j1

∑
j2≥j1+1

[h
(1)
j2−1(X̃n,j2−1)− h(1)

j2
(X̃n,j2)] .
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Focusing on the term in brackets, we write as before (see (6.9)),

(6.12) h
(1)
j2−1(X̃n,j2−1)− h(1)

j2
(X̃n,j2)

= aj2εn−j2h
(2)
j2

(X̃n,j2) +
[
h

(1)
j2−1(X̃n,j2−1)− h(1)

j2
(X̃n,j2)− aj2εn−j2h

(2)
j2

(X̃n,j2)
]

≈ aj2εn−j2h
(2)
j2

(X̃n,j2) = aj2εn−j2h
(2)
∞ (0) + aj2εn−j2 [h

(2)
j2

(X̃n,j2)− h(2)
∞ (0)] ,

where in that last equality, we proceeded as in (6.11). Relations (6.11) and (6.12) yield

aj1εn−j1h
(1)
j1

(X̃n,j1) = aj1εn−j1h
(1)
∞ (0)

+ aj1εn−j1
∑

j2≥j1+1

{
aj2εn−j2h

(2)
∞ (0) + aj2εn−j2 [h

(2)
j2

(X̃n,j2)− h(2)
∞ (0)]

}
.

Thus, we get

(6.13)

N∑
n=1

{h(Xn)− E[h(Xn)]} = YN,1h
(1)
∞ (0) + YN,2h

(2)
∞ (0)

+

N∑
n=1

∑
j2>j1≥1

aj1εn−j1aj2εn−j2 [h
(2)
j2

(X̃n,j2)− h(2)
∞ (0)] ,

where

YN,r =

N∑
n=1

∑
1≤j1<j2<···<jr

r∏
s=1

ajsεn−js .

Iterating, we get

(6.14)

N∑
n=1

{h(Xn) − E[h(Xn)]} = YN,1h
(1)
∞ (0) + YN,2h

(2)
∞ (0) + · · · + YN,mh

(m)
∞ (0) + RN ,

where RN can be shown to be a negligible remainder term. Hence, the first term of the expansion

(6.14) is given by YN,mh
(m)
∞ (0), where m is the power rank, namely the first k such that h

(k)
∞ (0) 6= 0.

This is the same YN,m as in (3.4). One concludes by applying the last part of Theorem 3.2. �

7. Conclusion

We considered a stationary sequence (Xi) which is either

• Gaussian with long-range dependence
• a linear process with long-range dependence,

and focused on the convergence of

N∑
i=1

(
h(Xi)− E[h(Xi)]

)
properly normalized to that of a Hermite process Z(t), at t = 1, when (h(Xi))i≥1 itself is long-range
dependent. We

• described the type of functions h considered in the literature,
• showed that their notions of rank coincide for h polynomial,
• and indicated heuristically why we expect the limit to be a Hermite process.
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[Maj81] Péter Major, Multiple Wiener-Itô integrals, Lecture Notes in Mathematics, vol. 849, Springer, Berlin,

1981, With applications to limit theorems. MR 611334 (82i:60099)
[Man02] Benoit B. Mandelbrot, Gaussian self-affinity and fractals, Selected Works of Benoit B. Mandelbrot,

Springer-Verlag, New York, 2002, Globality, the earth, 1/f noise, and R/S, Selecta (old or new) Vol-

ume H, Includes contributions by F. J. Damerau, M. Frame, K. McCamy, J. W. Van Ness, J. R. Wallis,
and others. MR 1878884 (2003a:01026)

[PT10] Vladas Pipiras and Murad S. Taqqu, Regularization and integral representations of Hermite processes,

Statistics & Probability Letters 80 (2010), no. 23-24, 2014–2023.
[PT11] Giovanni Peccati and Murad S. Taqqu, Wiener chaos: moments, cumulants and diagrams, Bocconi &

Springer Series, vol. 1, Springer, Milan, 2011, A survey with computer implementation, supplementary

material available online. MR 2791919
[Sur82] Donatas Surgailis, Zones of attraction of self-similar multiple integrals, Litovsk. Mat. Sb. 22 (1982), no. 3,

185–201.

[Taq75] Murad S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process,
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 31 (1975), 287–302.

[Taq79] , Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrsch. Verw. Gebiete 50
(1979), no. 1, 53–83.
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