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ABSTRACT: Stochastic simulation was used to 
compare the effi ciency of 3 pig breeding schemes based 
on either traditional genetic evaluation or genomic 
evaluation. The simulated population contained 1,050 
female and 50 male breeding animals. It was selected 
for 10 yr for a synthetic breeding goal that included 
2 traits with equal economic weights and heritabilities 
of 0.2 or 0.4. The reference breeding scheme, named 
BLUP-AM, was based on the phenotyping of all 
candidates (13,770 animals/yr) for Trait 1 and of 
relatives from 10% of the litters (270 animals/yr) 
for Trait 2 and on BLUP-Animal Model genetic 
evaluations. Under the fi rst alternative scenario, named 
GE-1TP, selection was based on genomic breeding 
values (GBV) estimated with one training population 
(TP) made up of candidate relatives phenotyped for 
both traits, with a size increasing from 1,000 to 3,430 
over time. Under the second alternative scenario, 
named GE-2TP, the GBV for Trait 2 were estimated 
using a TP identical to that of GE-1TP, but the GBV 
for Trait 1 were estimated using a large TP made up 
of candidates that increased in number from 13,770 
to 55,080 over time. Over the simulated period, both 
genomic breeding schemes generated 39 to 58% more 
accurate EBV for Trait 2 than the reference scheme, 

resulting in 78 to 128% (GE-1TP) and 63 to 84% (GE-
2TP) greater average annual genetic trends for this trait. 
For Trait 1, GE-1TP was 18 to 24% less accurate than 
BLUP-AM, reducing average annual genetic trends 
by 27 to 44%. By contrast, GE-2TP generated 35 to 
43% more accurate EBV and 8 to 22% greater average 
annual genetic trends for Trait 1 than the reference 
scheme. Consequently, GE-2TP was 27 to 33% more 
effi cient in improving the global breeding goal than 
BLUP-AM whereas GE-1TP was globally as effi cient 
as the reference scheme. Both genomic schemes 
reduced the inbreeding rate, the greatest decrease 
being observed for GE-2TP (–49 to –60% compared 
with BLUP-AM). In conclusion, genomic selection 
could substantially and durably improve the effi ciency 
of pig breeding schemes in terms of reliability, genetic 
trends, and inbreeding rate without any need to modify 
their current structure. Even though it only generates 
a small TP, limited annual phenotyping capacity for 
traits currently only recorded on relatives would not 
be prohibitive. A large TP is, however, required to 
outperform the current schemes for traits recorded on 
the candidates in the latter.
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INTRODUCTION

Genomic selection (GS) has successfully been 
implemented for dairy cattle (e.g., in Holstein, Jersey, 

and Brown-Swiss populations; Hayes et al., 2009). 
Compared with traditional schemes based on progeny 
testing, GS enables earlier accurate selection from 
a larger number of candidates. The ensuing shorter 
generation intervals and increased selection intensities 
have resulted in markedly greater annual genetic trends.

Such an improvement is tempting in other species. 
Implementation of GS can be envisaged in pigs since 
the availability of the SNP60 Illumina BeadChip 
(Illumina, Inc., San Diego, CA). However, current pig 
breeding schemes are characterized by high selection 
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intensities and very short generation intervals. Therefore, 
the impact of GS on these 2 characteristics is expected 
to be small. However, accuracy of EBV is generally 
poor in pigs, and GS could potentially improve scheme 
effi ciency through this parameter (Muir, 2007).

Therefore, the benefi ts of GS should be evaluated 
carefully before any implementation. Lillehammer et 
al. (2011) showed that GS could increase the genetic 
gain in dam lines for traits only recorded on females. 
Nevertheless, no other study based on a pig nucleus 
structure has been conducted.

Most pig male line breeding schemes are based 
on the on-farm phenotyping of candidates for a few 
fattening traits and on phenotyping in testing stations of 
a limited number of relatives or candidates for traits that 
are expensive or diffi cult to measure. The accuracy of 
EBV is particularly low for these latter traits, resulting in 
limited genetic trends, and GS might increase selection 
effi ciency. Nevertheless, the limited phenotyping 
capacity might not allow for the establishment of an 
adequate training population (TP) for these traits.

The objective of the present study was, therefore, 
to compare, in terms of genetic trends, accuracy, and 
inbreeding, the effi ciency of a current pig male line breeding 
scheme based on the combined phenotyping of candidates 
and relatives with alternative schemes based on GS.

MATERIALS AND METHODS

The comparison of the effi ciency of different 
breeding schemes was ensured by the stochastic 
simulation of a purebred paternal pig population made 
up of 1,050 breeding females and 50 breeding males, 
with a family structure similar to the French Piétrain 
breed. The simulated population was selected for a 
synthetic breeding goal that included 2 traits with equal 
economic weights per genetic SD. Trait 1 represents 
one of the fattening traits that are cheap and easy to 
record on farm on a large number of candidates (e.g., 
growth rate, ultrasonic backfat thickness, or loin depth) 
whereas Trait 2 represents a trait that is too diffi cult or 
too expensive to measure on a large scale (e.g., meat 
quality, feed effi ciency, and intramuscular fat).

Three breeding scenarios were considered in this 
study, differing in terms of phenotyping procedures and 
breeding value estimations. Under the fi rst scenario, 
named BLUP-AM and representing a current traditional 
male line breeding scheme, the breeding value estimation 
was based on a conventional BLUP-Animal Model 
(Quaas and Pollak, 1980), the phenotypes for Trait 1 being 
recorded on the candidates, and the phenotypes for Trait 2 
being recorded on a small number of relatives. Under the 
second scenario, named GE-1TP, the candidates were 
not phenotyped and selection decisions were based on 

genomic estimated breeding values (GEBV; Meuwissen 
et al., 2001), which were estimated using a single TP that 
was genotyped and phenotyped for both traits and only 
comprised relatives of the candidates. Under the third 
scenario, named GE-2TP, Trait 1 was recorded on the 
candidates and Trait 2 was recorded on their relatives 
as in the BLUP-AM scenario, but the former and latter 
animals constituted 2 distinct TP to estimate the GEBV 
for Trait 1 (with a large TP) and for Trait 2 (with a small 
TP), respectively.

Each replicate of the simulation consisted in 2 
successive main steps: i) creation of a base population 
before selection presenting a linkage disequilibrium 
(LD) of a desired level and ii) simulation of the genetic 
evolution of the population under various phenotyping 
and selection procedures.

Generation of the Base Population

At the beginning of each replicate, a base population 
of 400 males and 400 females was created. Each animal 
had 10 pairs of 100-cM chromosomes, each of them 
carrying 3,600 equally spaced biallelic loci that might 
become SNP or QTL thereafter. In Generation 0, the 
genotype of each animal for each locus was randomly 
sampled from a Bernoulli distribution with frequency 
of 0.5. Recombination was modeled by sampling in a 
binomial function the number of chromosomal intervals 
(constituted by the segment between 2 adjacent loci) where 
crossing over occurred during gametogenesis and then 
sampling the locations of these intervals under a uniform 
distribution. No mutation process was implemented.

The 400 females were randomly mated to one of the 
400 males for 350 generations, each female producing 
1 male offspring and 1 female offspring, and the new 
generation completely replacing the previous one. After 
350 generations, a bottleneck was created by reducing 
the population size to 45 males and 45 females. The 
population was randomly mated for the next 35 
generations with complete renewal at each generation 
and was then extended to 1,200 females and 400 males 
for the next 3 generations.

The number of random generations simulated, and 
the evolution of the size of the base population over 
generations of mating were determined in order to 
produce a population presenting a short- and long-range 
LD structure comparable to the LD structure actually 
observed in French pig populations (Figure 1; S. Boitard, 
INRA, Toulouse, France, personal communication).

In the last generation, 1,500 loci with a minor 
allele frequency above 0.05 were randomly sampled 
on each chromosome to be SNP markers that would 
be used for subsequent genomic evaluation procedures. 
Consequently, the SNP were unevenly spaced, the 
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minimum distance between 2 adjacent markers being 28 
kb. The average distance was 67 kb, corresponding to 
the average distance between adjacent markers on the 
porcineSNP60 Illumina BeadChip (Illumina, Inc.) after 
the usual elimination of noninformative markers and 
markers with technical problems. Among the remaining 
loci with a minor allele frequency above 0.05, 2 series 
of n loci were randomly sampled on each chromosome 
to be QTL, one series being QTL for Trait 1, the other 
series being QTL for Trait 2. Values of n were 10, 30, 
or 60, depending on the QTL density considered in the 
simulations. To summarize, each of the 10 pairs of 100-
cM chromosomes carried 1,500 unevenly spaced SNP, n 
QTL for Trait 1 and n QTL for Trait 2.

By convention, the allele 1 of each QTL had no 
effect. A gamma distribution with shape and scale 
parameters equal to 0.4 and 1/1.66 (Hayes and Goddard, 
2001) was used to sample the absolute value of effects of 
allele 2 of the QTL. The sign of the effect of allele 2 was 
positive or negative, with a probability of 0.5. For both 
traits, the effects of the QTL were rescaled to result in a 
genetic variance of 1. In the following, the true breeding 
value (TBV) TBV

it
 of animal i for trait � (� � 1 or 2) was 

calculated as
10

1 1

TBV
i jki jki

n

t t t
j k

g q
= =

⎛ ⎞⎟⎜= × ⎟⎜ ⎟⎜ ⎟⎝ ⎠∑ ∑ , 

in which n is the number of QTL carried by each of 
the 10 chromosomes for each trait, 

jkit
g  is the genotype 

(i.e., 0, 1, or 2 copies of allele 2) of animal i for the �th 
QTL for trait � on chromosome �, and 

jkit
q  is the effect of 

the �th QTL for trait � on chromosome �.

Breeding Scenarios

The second step in each replicate of the simulation 
started with the random sampling of 1,050 females and 
50 males from the 1,200 females and 400 males of the 
last generation of the base population before selection to 
constitute the founders of the selected population. The 1,050 

females were randomly assigned to 5 herds of equal size, 
and within each herd into 7 batches of 30 females. To boot 
the system, each of the 1,050 females was mated randomly 
to one of the 50 boars at the beginning of the replicate.

The demographic and breeding characteristics of the 
simulated population are summarized in Figure 2, and 
were modeled on the average statistics of the French 
Pi�train nucleus population, established from the 
database used for national genetic evaluations.

The time step (TS) in our simulations was 3 wk, 
which corresponds to the period elapsing between 
the farrowing of females from 2 consecutive batches. 
Consequently, 1 yr of simulation represented 18 TS, and 
a sow farrowed every 7 TS until culling. At each TS, 
several tasks were performed within each herd.

Farrowing of the Batch(0) Sows and Birth of the 
Piglets. The 30 sows of the current batch, Batch(0), 
farrowed. Three litters from each herd (i.e., 10� of 
the litters born) were randomly sampled and left out to 
simulate the various une�pected events that can cause 
some litters to be unsuitable for genetic purposes (e.g., 
abortion or misidenti� cation of the mated boar). All 
of the �0� remaining litters (i.e., 27 litters per herd) 
contained 3 female candidates. Among these 27 litters, 
the best �0� were selected according to the mean 
�BV of their parents (i.e., 24 litters per herd) and each 
contained 3 male candidates. �ach male and female 
candidate i received a simulated record 1i

y  for Trait 1 
available 8 TS after its birth (i.e., when the animal is 
5.5 mo old, corresponding to the end of the on-farm test 
period when selection decisions are made), simulated as 
1 1 1 1TBV
i i z i
y BL e= + + , in which 1z

BL  is the random 
environmental effect of the �th litter in which animal i is 
born, sampled from a normal distribution with variance 

Figure 1. Linkage disequilibrium (r�) observed in the 4 collective 
French pig breeds (S. Boitard, personal communication) and simulated in the 
present study for 0- to 100-kb intervals (a) and 0- to 1,000-kb intervals (b), 
assuming 1 Mb/cM.

Figure 2. Population structure of the simulated breeding scheme and 
chronological order of events occurring at each simulated time step.
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2
BL  = 0.2, 1i

e  is a random residual sampled from a normal 
distribution with variance 

1

2 2 2
1(1 / ) 1e BLh , 2

1h  
being the heritability of Trait 1, and assuming a genetic 
variance 

1

2
a  of 1.

Ten percent of the litters born (i.e., a total of 15 
litters per batch in all 5 herds) also contained 1 piglet 
destined to be phenotyped for Traits 1 and 2 (these 
animals are referred to as “relatives” below). These 
10% litters were chosen from the litters suitable 
for genetic purposes by selecting the best litters 
as a function of their parental EBV, giving priority 
to the litters of boars with the fewest offspring 
among “relatives” and balancing the number of 
litters chosen in each herd. As for the candidates, 
the simulated records 1i

y  and 2i
y  for Traits 1 and 

2 were available 8 TS after the birth of “relative” 
i, and 2i

y  was simulated as 2 2 2TBV
i i i

y e , in 
which 2i

e  is a random residual sampled from a 
normal distribution with variance 

2

2 2 2
2 21 /e h h , 

2
2h  being the heritability of Trait 2 and assuming a 

genetic variance 
2

2
a  of 1.

 Starting from the 
26th TS (TS26; 
phenotypes for Trait 2), breeding values for Trait 1 and 

1 2) were estimated 
for the complete population at each TS using a standard 
BLUP-Animal Model procedure and the BLUPF90 
software (http://nce.ads.uga.edu/~ignacy/newprograms.
html), considering all the phenotypes and pedigrees 
recorded since creation of the herds (the most recent 
available phenotypes being recorded on candidates and 
relatives born 8 TS earlier). The genetic parameters 
were the same as those used to simulate the data, and the 
2 traits were assumed to be genetically independent. For 
each animal i
then combined in a global EBV (GL_EBV) giving equal 
weight to both traits as

i 1i 2i .Selection Among Candidates. In each herd, the 10 

were selected from the candidates in the herd available 
to renew the selection nucleus, after randomly elimi-
nating 20% of the 81 candidates to simulate the uncon-
trolled culling events that can occur in real life and re-

Similarly, the 9 best male candidates from the 360 candi-
dates in the 5 herds were selected (a 20% random loss of 
candidates was also applied) to renew the pool of boars. 
These selected animals would be available for reproduc-
tion 4 TS later. No attention was paid to relationships 
during the selection procedure.

Culling of Active Boars and Sows. In each herd, the 
worst third of the 30 sows in batch Batch(–5), according 

10 young females that had been selected 4 TS earlier. 
Similarly, the 9 worst active boars were replaced by the 
9 young males that had been selected 4 TS earlier.

Mating. In each herd, the 30 females in batch 
Batch(–5) were randomly mated to 1 of the 50 available 
boars. Kinship relationships between males and females 
were not taken into account, which could thus lead to sib 
or half-sib matings.

Each TS ended with moving the active sows from 
their current batch to the next batch to prepare the next 
TS. Each task was repeated for 89 TS (i.e., 5 yr of BLUP-
AM selection after creation of the herds). 

At TS90, the 3 scenarios diverged and were run 
for 180 additional TS (i.e., 10 yr). Under the BLUP-
AM scenario, the above procedure was executed 180 
more times (i.e., 10 more yr). The 2 genomic scenarios 
considered in the study only differed from the BLUP-
AM scenario in terms of the procedure used to estimate 
breeding values. The number of candidates, phenotyping 
capacity for Trait 2, and selection rates among candidates 
and breeding males and females were the same under all 
3 scenarios.

Simulation of Training Populations. The accuracy 
of GS can be expressed as (Daetwyler et al., 2008; 
Meuwissen, 2009)

1/22 2h / h 4 er n n N L , [1]

in which n is the number of individuals in the TP, h² 
is the heritability of the trait, L is the genome size (in 
Morgan), eN  is the effective size of the population, and 
4 eN L  is the effective number of QTL loci in the genome. 
Consequently, considering constant SNP and QTL 
densities in all chromosomes of the genome, the number 
of phenotypes in the TP required to achieve the same 
accuracy of predicting breeding values when simulating 
a K Morgan genome rather than a 30 Morgan true 
porcine genome must be 30/K times smaller (Meuwissen, 
2009). Because the genome simulated in this study was 
approximately one-third the actual pig genome (10 
Morgan instead of 30 Morgan), the same ratio (1:3) was 
applied when simulating the TP to produce GEBV with 
appropriate accuracies.

To illustrate the relevance of Eq. [1], independently 
from the main study we simulated 5 yr of the BLUP-AM 
scenario (TS1 to TS89) followed by 3 yr of the GE-2TP 
scenario (TS90 to TS143), using the same population 
parameters as described above. Three situations were 
considered: i) 5 pairs of 100-cM chromosomes applying 
a scaling factor of 1/6 (Sit1a), ii) 10 pairs of 100-cM 
chromosomes applying a scaling factor of 1/3 (Sit2), 
and iii) 5 pairs of 100-cM chromosomes applying an 
inadequate scaling factor of 1/3 (Sit1b). Because the only 

 at INRA Institut National de la Recherche Agronomique on March 1, 2013www.journalofanimalscience.orgDownloaded from 

http://www.journalofanimalscience.org/


Tribout et al.4168

concern regarding this illustration of Eq. [1] was the effect 
of the scaling factor on the accuracy of genomic evaluation, 
culling and replacements were random between TS1 and 
TS143, so that genetic variance was maintained as being 
equal to 1 on average for both traits in the 3 alternative 
situations. The results were averaged over 30 replicates.

 Scenario. Under the GE-1TP scenario, 
male and female candidates were no longer phenotyped 
for Trait 1 after TS90. After that time, all candidates and 
breeding animals were genotyped, and all selection and 
culling decisions were based on GEBV, estimated as 
follows. At TS90, the effect of each of the 15,000 SNP 
on Trait 1 and Trait 2 was estimated using the BLUP 
methodology described by Meuwissen et al. (2001) on a 
TP of 1,000 animals, genotyped for the 15,000 SNP and 
phenotyped for Traits 1 and 2. This TP was made up of 
relatives of the candidates born between TS16 and TS82; 
in practice, according to the scaling argument described 
above, one-third of the relatives were randomly sampled 
at each TS to constitute the TP. The estimated SNP 
effects were used during the next 18 TS (i.e., 1 yr) to 
calculate the genomic GEBVti of the breeding animals 
and candidates for Trait t as 

10 1500

1 1

GEBV
i jki jkit t t

j k
g m ,  

in which jkitg  is the genotype (i.e., number of copies 
of allele 2) of animal i for the kth SNP on chromo-
some j and 

jkitm  is the estimated effect of the kth SNP 
on chromosome j for Trait t. As under the BLUP-AM 
scenario, GEBV for Trait 1 and 2 were combined as 

1 2i ii , and all selec-
i. Every 

year (i.e., in TS108, TS126, TS144, TS162, TS180, 
TS198, TS216, TS234, and TS252), the effects of the 
SNP on the traits were estimated again on the previous 
TP augmented by the 270 new animals (i.e., 90 simulat-
ed animals) phenotyped during the past year, and these 
new estimates were then used to calculate the GEBV

it
 

of breeding animals and candidates for the next 18 TS.
 Under the GE-2TP scenario as 

with GE-1TP, all selection and culling decisions were 
based on GEBV, requiring all animals to be genotyped. 
The estimation procedure for GEBV for Trait 2 was the 
same as under the GE-1TP scenario, with a TP of 1,000 
at TS90, increasing by 270 animals annually. Unlike the 
GE-1TP scenario, the male and female candidates were 
still phenotyped for Trait 1 after TS90, and consequently 
could be used to constitute and increase a TP for Trait 1. 
As for Trait 2, an initial estimate of the SNP effects on 
Trait 1 was made using the BLUP methodology at TS90 
with a TP of 13,770, corresponding to the male and female 

(TS73 to TS90); at each TS, one-third of the candidates 

were randomly sampled to constitute the TP. The TP for 
Trait 1 increased by 13,770 animals every year (i.e., 4,590 
simulated animals) until TS144; after that, the oldest 
13,770 animals were removed each year and replaced by 
the 13,770 most recent ones, so as to maintain the TP at 
a constant size of 55,080 animals (i.e., 4 yr of candidate 
testing) and keep the computation time at a reasonable 
level.

For each scenario, 3 couples of medium and low 
heritabilities for Trait 1 and Trait 2 (0.4 and 0.4, 0.4 and 
0.2, and 0.2 and 0.2 referred to, respectively, as MMh², 
MLh², and LLh² below) and 3 QTL densities (10 QTL/
Morgan per trait, 30 QTL/Morgan per trait, or 60 QTL/
Morgran per trait, which are referred to, respectively, as 
LowQd, MedQd, and HighQd) were considered at TS0. 
Nine parameter cases were thus simulated under each 
scenario.

For each TS, the mean and variance of the 
1TBV

i
, 2TBV

i
 and 1 2i ii  values 

of candidates born in the TS considered as well as the 

information were calculated to measure the genetic gain 
and the evolution of genetic variance and inbreeding over 
time. The correlation between the TBV  and the BLUP or 
genomic EBV of candidates available for selection was 
also calculated at each TS to estimate the accuracy of the 
selection. All results were averaged over 200 replicates per 
simulated case.

RESULTS
Relevance of the Scaling Relation Between the Length of the 
Simulated Genome and the Size of the Training Population

Figure 3 presents the accuracy of the GEBV (i.e., 
correlation between TBV and GEBV) for the 765 
candidates available for selection in each TS from TS90 
to TS143, under the Sit1a, Sit2, and Sit1b situations. 
Overall, the time course of the accuracy of the GEBV 
for both traits under the 3 situations displayed similar 

TS (TS108 and TS128), and decreased slowly for the 
next 17 TS. The increases in accuracy corresponded to 
the yearly reestimation of the SNP effects considering 
a larger TP whereas the subsequent regular decreases 

relationship between the population under evaluation 
and the TP. However, the consequences of the decreasing 
relationships between the candidates and the TP on the 
accuracy of the GEBV were small, and diminished 
from year to year. For example, the accuracy for Trait 1 

and third years of selection, respectively. The presence 
of close relatives of the candidates in the TP became less 
and less important as TP size increased.
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The accuracies of selection in Sit1a and Sit2, 
applying to the TP size a scaling factor proportional to 
the fraction of the length of the simulated genome, were 
close as expected from Eq. [1]. Conversely, the results 
for Sit1b showed that use of an inappropriate scaling 
factor (in Sit1b, the scaling factor was 1/3 rather than 
1/6) resulted in signifi cantly different correlations (P < 
0.001) between the GEBV and true breeding values of 
the candidates. As a consequence, ignoring this scaling 
relation when simulating a genome shorter than the 
actual genome of the considered species would yield an 
overestimate of the accuracy of genomic evaluation and 
of the effi ciency of GS because this expected response 
would actually require a larger TP.

Comparison of the Effi ciency of the Three Scenarios

Overall, the relative results for the 3 scenarios 
from TS90 to TS270 in terms of genetic gain, accuracy, 
genetic variability, and inbreeding yielded the same 
general trends in the 9 combinations of heritabilities 
and QTL densities considered. Consequently, detailed 
results over time are only presented below for the MLh²-
HighQd parameter case, supplemented by tables of the 
time-averaged results per scenario for the 9 cases.

Genetic Variance. The genetic variance of the 2 traits 
decreased over time (Table 1) under all 3 scenarios. This 
decrease can be explained by the increase in frequency of 
favorable QTL alleles in the population due to selection. 
This decrease was even more rapid when the initial QTL 
density was less as shown in Figures 4a and 4b for the 
60 QTL/Morgan and 10 QTL/Morgan initial densities, 
respectively. An initial loss of genetic variance, particularly 

large for Trait 1, occurred during the fi rst year after the 
implementation of selection (TS26 to TS44), its magnitude 
being consistent with the expected theoretical Bulmer 
effect (Dekkers, 1992) considering the applied selection 
intensities and the accuracy of the EBV for both traits. 
The decrease in genetic variance then continued gradually 
(from the slowest to the most rapid decrease: GE-1TP, 
BLUP-AM, and GE-2TP for Trait 1 and BLUP-AM, GE-
2TP, and GE-1TP for Trait 2).

Accuracy. The time course of the accuracy of EBV 
displayed different profi les under the 3 scenarios as shown 
in Figure 5 for the MLh²-HighQd parameter case. The ac-
curacies under the BLUP-AM scenario decreased steadily 
from TS90 to TS270, with the rate of this decrease being 
slow for Trait 2 but more rapid for Trait 1. This trend could 
be explained by the progressive decrease of genetic vari-
ance in the population: since the variance remained con-
stant over time in the simulations, the proportion of the 
phenotypic variance of genetic origin decreased as did the 
ability to predict breeding values with a BLUP-AM evalu-
ation. Because more data were available for Trait 1 than 
Trait 2 under the BLUP-AM scenario, selection was more 
effi cient and the decrease in genetic variance and therefore 
in accuracy was more marked for Trait 1 (Figures 4 and 5).

Conversely, the accuracy of the genomic values 
estimated by considering the TP made up of relatives 
(i.e., Traits 1 and 2 under the GE-1TP scenario and Trait 
2 under the GE-2TP scenario) increased globally over 
time in line with the size of the TP, but the rate of this 
increase gradually slowed down. The accuracy of the 
genomic values for Trait 1 under the GE-2TP scenario 
displayed a similar trend for as long as the number of 
candidates in the TP increased each year (i.e., until 

Table 1. Reduction in genetic variance (%) for Traits 1 and 2 under 3 scenarios during the last 10 yr simulated, 
according to the initial heritabilities of the traits and QTL densities1

Initial 
QTL 
density Scenario2

Reduction in genetic variance for:
Trait 1, genetic variance unit Trait 2, genetic variance unit

Initial heritabilities of traits3,4

0.4/0.4 0.4/0.2 0.2/0.2 0.4/0.4 0.4/0.2 0.2/0.2
10QTL/
Morgan

BLUP-AM –79 –79 –75 –34 –22 –29
GE-1TP –64 –67 –59 –67 –53 –60
GE-2TP –84 –86 –83 –61 –47 –51

30QTL/
Morgan

BLUP-AM –59 –61 –57 –22 –21 –23
GE-1TP –47 –51 –45 –53 –44 –49
GE-2TP –67 –70 –68 –44 –35 –36

60QTL/
Morgan

BLUP-AM –48 –50 –46 –22 –18 –22
GE-1TP –41 –44 –41 –47 –41 –48
GE-2TP –57 –61 –58 –38 –31 –35

1Results are averages of 200 replicates.
2Simulated scenarios: BLUP-AM = breeding scheme based on traditional BLUP-Animal Model genetic evaluations using phenotypes of the candidates 

for Trait 1 and phenotypes of relatives for Trait 2; GE-1TP = breeding scheme based on genomic evaluations using a single training population composed of 
relatives; GE-2TP = breeding scheme based on genomic evaluations using a training population composed of candidates for Trait 1 and a training population 
composed of relatives for Trait 2.

3Initial heritability for Trait 1/initial heritability for Trait 2.
4For a given QTL density, all values within a column differ (P < 0.001).
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TS144), but decreased globally after that. A second 
annual pattern appeared alongside these general trends 
in all the cases; accuracies improved abruptly every year 
when SNP effects were reestimated on the updated TP 
and then decreased progressively for the next 17 TS.

The average accuracies from TS90 to TS270 
are presented in Table 2 for the 3 scenarios. Both 
genomic scenarios produced signifi cantly (P < 0.001) 
more accurate EBV for Trait 2 than the BLUP-AM 
scenario. Whereas the accuracy of the BLUP-AM 
EBV of candidates for selection was capped at 0.27 or 
0.33 when the initial heritability of Trait 2 was 0.2 or 
0.4, respectively, the accuracy of GEBV rose to 0.36 
(h² = 0.2) or 0.46 (h² = 0.4) as early as TS90 and then 
increased yearly with the addition of new animals to the 
TP (Figure 5). On average, between TS90 and TS270, 
the accuracy of GEBV for Trait 2 was about 50% greater 
than the accuracy of BLUP-AM EBV.

The 2 genomic scenarios generated divergent 
results for Trait 1. As for Trait 2, the GE-2TP scenario 
provided more accurate EBV for Trait 1 (P < 0.001) 
when compared with the BLUP-AM scenario. Accuracy 
increased from approximately 0.30 to 0.50 (for h² of 
Trait 1 = 0.2) and from approximately 0.40 to 0.60 (for 
h² of Trait 1 = 0.4) at TS90 when switching from the 
BLUP-AM evaluation to the genomic evaluation. On 
average, between TS90 and TS270, the accuracies of 
EBV for Trait 1 were 35 to 43% greater under the GE-
2TP scenario than under BLUP-AM. By contrast, the 

accuracies of the EBV for Trait 1 were less (P < 0.001) 
under the GE-1TP scenario than under BLUP-AM at 
TS90 (e.g., 0.40 vs. 0.64 in the MLh²-HighQd case) 
when TP only contained 1,000 animals, and remained 
less until the end of the simulation, despite TP size 
increasing every year by 270 animals (Figure 5).

Genetic Trends. The above differences in genetic 
variances and in EBV accuracies yielded differences in 
terms of genetic trends between the 3 scenarios being 
compared (Table 3). Both genomic scenarios produced 
signifi cantly (P < 0.001) greater average annual genetic 
trends for Trait 2 than the BLUP-AM scenario, this 
superiority tending to be greater for MLh² than for MMh² 
cases (i.e., for a lesser heritability of Trait 2). The average 
annual genetic trends between TS90 and TS270 were 78 
to 128% greater under GE-1TP than under BLUP-AM, 
and 63 to 84% greater under GE-2TP than under BLUP-
AM. For example, in the MLh²-HighQd case, Trait 2 
improved by +0.13, +0.30, and +0.24 genetic SD per 
year (σg/yr) under the BLUP-AM, GE-1TP, and GE-2TP 
scenarios, respectively (Figure 6).

The results of the 2 genomic scenarios differed for 
Trait 1. The annual genetic trends for this Trait were 
27 to 44% less under the GE-1TP scenario than under 
BLUP-AM, this difference (P < 0.001) tending to be 
greater when the heritability of Trait 1 was less (MLh² 
case vs. LLh² case). For example, in the MLh²-HighQd 
case, the genetic level of the population for Trait 1 
increased by +0.62 σg/yr under the reference scenario, 
but only by +0.42 σg/yr under the GE-1TP scenario 
(Figure 6). Conversely, the GE-2TP scenario produced 8 
to 22% greater average annual genetic trends for Trait 1, 
this improvement being signifi cant in all the cases 
considered (P < 0.001) and, as for Trait 2, was greater 
with a smaller heritability of Trait 1.

Figure 3. Evolution of the accuracy of genomic EBV of candidates 
available for selection at each time step, considering different lengths of sim-
ulated genome and different values for the scaling factor applied to the size of 
the training population. The initial QTL density was 30 QTL/M for each trait, 
and heritabilities of Trait 1 and Trait 2 were 0.4 and 0.2, respectively. The 
results are averages of 30 replicates: Sit1a, 5 pairs of 100-cM chromosomes 
applying a scaling factor of 1/6; Sit1b, 5 pairs of 100-cM chromosomes ap-
plying an inadequate scaling factor of 1/3; and Sit2, 10 pairs of 100-cM chro-
mosomes applying a scaling factor of 1/3.

Figure 4. Evolution of genetic variance under 3 scenarios during the 15 
yr simulated. Initial QTL density = 60 QTL/M (a) or 10 QTL/M (b) for each 
trait, initial heritability of Trait 1 = 0.4, and initial heritability of Trait 2 = 0.2. 
The results are averages of 200 replicates. BLUP-AM = breeding scheme based 
on traditional BLUP-Animal Model genetic evaluations using phenotypes of 
the candidates for Trait 1 and phenotypes of relatives for Trait 2; GE-1TP = 
breeding scheme based on genomic evaluations using a single training popu-
lation composed of relatives; GE-2TP = breeding scheme based on genomic 
evaluations using a training population composed of candidates for Trait 1 and 
a training population composed of relatives for Trait 2.
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As a consequence, scenario GE-2TP was globally 
27 to 33% more effi cient than scenario BLUP-AM in 
improving the global breeding goal (Trait 1 + Trait 2). 
Despite the sampling variance of the results among the 
200 replicates, the average TBV of the population at 
TS270 was greater under the GE-2TP scenario than under 
BLUP-AM in 97.8, 98.1, and 99.7% of the replicates for 
Trait 1, Trait 2, and the global breeding goal, respectively. 
By contrast, scenario GE-1TP was nearly as effi cient as 
the reference scenario, its advantage for Trait 2 balancing 
out its poor result for Trait 1.

Inbreeding. Both genomic scenarios resulted in 
a smaller global increase in the average inbreeding 
coeffi cient of the population than the BLUP-AM 
scenario (Table 4). Compared with the latter, average 
inbreeding at the end of the simulation was 13 to 30% 
less under the GE-1TP scenario and 49 to 60% lower 
under GE-2TP, depending on the initial QTL density and 
initial heritabilities considered. Nevertheless, whereas 
the GE-2TP and BLUP-AM scenarios displayed linear 
time trends for this parameter, the increase in the 
inbreeding coeffi cient was much more marked under 
the GE-1TP scenario during the fi rst time period, before 
slowing down and stabilizing to approximately the same 
trend as that seen with GE-2TP (Figure 7). Therefore, as 
early as 3 yr after the beginning of GS and up to the end 
of the simulated period, the inbreeding was about 30% 
less under the GE-2TP scenario than under GE-1TP.

Table 2. Average accuracy of EBV of young candidates under 3 scenarios during the last 10 yr of the simulated 
breeding schemes, according to the initial heritabilities of traits and QTL densities1

Initial 
QTL 
density Scenario2

Average accuracy of EBV for:
Trait 1 Trait 2

Initial heritabilities of traits3,4

0.4/0.4 0.4/0.2 0.2/0.2 0.4/0.4 0.4/0.2 0.2/0.2
10QTL/
Morgan

BLUP-AM 0.51 0.50 0.45 0.31a 0.26a 0.26
GE-1TP 0.42 0.40 0.34 0.46b 0.37b 0.37
GE-2TP 0.73 0.70 0.64 0.45b 0.37b 0.38

30QTL/
Morgan

BLUP-AM 0.58 0.57 0.50 0.33a 0.27a 0.27a

GE-1TP 0.47 0.46 0.38 0.50b 0.41b 0.40b

GE-2TP 0.80 0.78 0.71 0.50b 0.41b 0.41b

60QTL/
Morgan

BLUP-AM 0.61 0.60 0.52 0.33 0.27a 0.27
GE-1TP 0.49 0.48 0.40 0.51 0.40b 0.41
GE-2TP 0.82 0.81 0.74 0.51 0.41b 0.42

1Results are averages of 200 replicates.
2Simulated scenarios: BLUP-AM = breeding scheme based on traditional BLUP-Animal Model genetic evaluations using phenotypes of the candidates 

for Trait 1 and phenotypes of relatives for Trait 2; GE-1TP = breeding scheme based on genomic evaluations using a single training population composed of 
relatives; GE-2TP = breeding scheme based on genomic evaluations using a training population composed of candidates for Trait 1 and a training population 
composed of relatives for Trait 2.

3Initial heritability for Trait 1/initial heritability for Trait 2.
4For a given QTL density, all values within a column differ (P < 0.001) except values with common superscripts.

Figure 5. Accuracy of the EBV of candidates under 3 scenarios during 
the last 10 yr simulated, with an initial QTL density of 60 QTL/M for each trait, 
initial heritability of Trait 1 = 0.4, and initial heritability of Trait 2 = 0.2. The 
results are averages of 200 replicates. BLUP-AM = breeding scheme based 
on traditional BLUP-Animal Model genetic evaluations using phenotypes of 
the candidates for Trait 1 and phenotypes of relatives for Trait 2; GE-1TP = 
breeding scheme based on genomic evaluations using a single training popu-
lation composed of relatives; GE-2TP = breeding scheme based on genomic 
evaluations using a training population composed of candidates for Trait 1 and 
a training population composed of relatives for Trait 2.
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DISCUSSION

The representativeness of stochastic simulation 
results compared with the results of real breeding 
schemes is obviously dependent on the quality of 
modeling. Attention was paid in this study to simulating 
a population with a realistic structure already selected 
for several years when the 3 scenarios started to diverge, 
and the use of adequate short- and long-range LD 
structure and marker density. However, some other 
assumptions were made that might have departed from 
reality. For instance, because the actual number of genes 

affecting a trait in a population is unknown, 3 arbitrary 
QTL densities were considered, but they nonetheless 
generated consistent results on the relative effi ciencies 
of the 3 scenarios. Furthermore, the management of 
inbreeding was not considered in the selection and mating 
procedures whereas inbreeding is a major concern for 
pig breeders. Also, simplifi cations were made in the 
genomic evaluation procedures to keep the computation 
time reasonable. In particular, the yearly renewal of the 
TP and SNP effects reestimation yielded slightly smaller 
accuracies of GEBV than those that would have been 
obtained if the phenotypes of the candidates had been 
added to the TP at every TS. All these assumptions may 
have affected the results, which should therefore be 
considered as trends rather than precise predictions.

The results of this study tend to show that GS could 
substantially and durably increase the genetic gains 
achieved in a purebred pig male line based on the combined 
phenotyping of candidates and relatives for lowly to 
moderately heritable traits while signifi cantly reducing the 
annual increase in inbreeding in the population without 
it being necessary to modify the structure of the current 
breeding scheme. In particular, although it may result in 
a small TP of limited power, a small annual phenotyping 
capacity for traits only recorded on relatives may be 
suffi cient to implement a genomic scheme more effi cient 
than the current breeding scheme based on BLUP-AM 
evaluation, the accuracy of which is poor for these traits. 
This situation is quite different from that of dairy cattle 
breeding schemes where a TP of several thousand bulls 
is needed to achieve the same high degree of accuracy as 
conventional progeny testing (Hayes et al., 2009). In the 
current study, the initial TP for Trait 2 under the GE-1TP and 

Figure 6. Realized genetic trends (in genetic SD units) for Traits 1 and 
2 (a) and for the global breeding goal (Trait 1 + Trait 2)  (b) under 3 scenarios 
during the last 10 yr simulated, with an initial QTL density of 60 QTL/M for 
each trait, initial heritability of Trait 1 = 0.4, and initial heritability of Trait 
2 = 0.2. The results are averages of 200 replicates. BLUP-AM = breeding 
scheme based on traditional BLUP-Animal Model genetic evaluations using 
phenotypes of the candidates for Trait 1 and phenotypes of relatives for Trait 
2; GE-1TP = breeding scheme based on genomic evaluations using a single 
training population composed of relatives; GE-2TP = breeding scheme based 
on genomic evaluations using a training population composed of candidates 
for Trait 1 and a training population composed of relatives for Trait 2.

Table 3. Average realized annual genetic trends under 3 scenarios during the last 10 yr simulated, according to the 
initial parameter values for the heritabilities of traits and QTL densities1

Initial 
QTL 
density Scenario2

Average annual genetic trends, in genetic SD units
Trait 1 Trait 2 Global breeding goal

Initial heritabilities of traits3,4

0.4/0.4 0.4/0.2 0.2/0.2 0.4/0.4 0.4/0.2 0.2/0.2 0.4/0.4 0.4/0.2 0.2/0.2
10QTL/
Morgan

BLUP-AM 0.36 0.37 0.36 0.20 0.15a 0.16 0.40 0.37 0.37a

GE-1TP 0.26 0.27 0.23 0.35 0.28b 0.29 0.43 0.39 0.37a

GE-2TP 0.39 0.40 0.41 0.34 0.27b 0.26 0.52 0.47 0.48b

30QTL/
Morgan

BLUP-AM 0.52 0.53 0.49 0.20 0.14 0.14 0.50 0.47a 0.45
GE-1TP 0.33 0.36 0.27 0.40 0.30 0.32 0.52 0.46a 0.42
GE-2TP 0.57 0.60 0.58 0.35 0.25 0.25 0.65 0.60b 0.58

60QTL/
Morgan

BLUP-AM 0.60 0.62 0.55 0.19 0.13 0.14 0.56a 0.54 0.49
GE-1TP 0.38 0.42 0.32 0.41 0.30 0.33 0.56a 0.51 0.46
GE-2TP 0.68 0.71 0.67 0.35 0.24 0.25 0.73b 0.68 0.66

1Results are averages of 200 replicates.
2Simulated scenarios: BLUP-AM = breeding scheme based on traditional BLUP-Animal Model genetic evaluations using phenotypes of the candidates 

for Trait 1 and phenotypes of relatives for Trait 2; GE-1TP = breeding scheme based on genomic evaluations using a single training population composed of 
relatives; GE-2TP = breeding scheme based on genomic evaluations using a training population composed of candidates for Trait 1 and a training population 
composed of relatives for Trait 2.

3Initial heritability for Trait 1/initial heritability for Trait 2.
4For a given QTL density, all values within a column differ (P < 0.001) except values with common superscripts.
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GE-2TP scenarios contained 1,000 animals phenotyped 
during the 4 yr preceding the implementation of genomic 
evaluation, assuming that the DNA of these animals was 
available. In practice, pig breeding organizations have in 
recent years been building up DNA banks with the most 
important animals in their nucleus populations (including 
animals tested in central testing stations) to prepare for 
genomic research programs. Such an initial TP should 
therefore become available quite rapidly.

Conversely, for traits where a large quantity of 
phenotypes may be available and directly recorded on 
candidates, a breeding scheme based on the BLUP-AM 
methodology is already highly effi cient. In the present 
study, the GE-2TP scenario only outperformed the BLUP-
AM scenario by 8 to 22% with respect to genetic trends 
for Trait 1, despite the fact that the TP contained several 
tens of thousands of animals. By contrast, a breeding 
scheme replacing the phenotyping of candidates with a 
TP of limited size (as under the GE-1TP scenario) would 
clearly be less effi cient for fi eld data. To conclude, GS 
should not be substituted for the direct phenotyping of 
candidates when the latter is possible.

Under the present simulations, TP were updated 
only once a year by adding relatives (GE-1TP and GE-
2TP scenarios) and candidates (GE-2TP) phenotyped 
during the current TS and previous 17 TS. Consequently, 
whereas candidates available for selection in the TS in 
which the SNP effects were estimated or reestimated had 
closely related animals in the TP (sibs or half sibs) or were 

even themselves part of the TP (for Trait 1 under the GE-
2TP scenario), candidates in the next 17 TS were less and 
less closely related to this TP because of the continuous 
renewal of breeding animals. The progressive annual 
decrease in the accuracy of GEBV observed between 
2 consecutive reestimates of the SNP was therefore 
consistent with the fi ndings of several other studies (e.g., 
Solberg et al., 2009; Habier et al., 2010; Wolc et al., 
2011), which showed that GEBV precision decreases 
in line with the degree of relationship between the TP 
and the population under evaluation, thus confi rming the 
importance of continuously renewing the TP.

However, the reason for the global slowdown in 
the increase of GEBV accuracy and for the decrease 
after TS144 for Trait 1 under the GE-2TP scenario was 
different. As shown in Eq. [1], the accuracy of GEBV 
depends on the heritability of the trait, which decreased 
over time during the simulations because of the increase 
in the incidence of favorable QTL alleles, thus reducing 
the genetic variance of the traits. Consequently, the 
impact of adding new animals to the TP became weaker, 
and the rate of increase in accuracy gradually decelerated. 
In the case of Trait 1 under the GE-2TP scenario, where 
the TP size remained constant after TS144, renewal 
of the TP by replacing the 13,770 oldest animals with 
13,770 more recent ones did not compensate for the loss 
of power due to less heritability, and the accuracy of the 
GEBV for this trait eventually decreased.

Table 4. Average annual increase in inbreeding among 
young candidates under 3 scenarios during the last 10 yr 
simulated, according to the initial heritabilities of traits and 
QTL densities1

Average annual increase 
in inbreeding coeffi cient, %

Initial QTL 
density

Scenario2 Initial heritabilities of traits3,4

0.4/0.4 0.4/0.2 0.2/0.2
10QTL/
Morgan

BLUP-AM +0.82 +0.84 +1.17
GE-1TP +0.65 +0.65 +0.81
GE-2TP +0.40 +0.43 +0.50

30QTL/
Morgan

BLUP-AM +0.90 +0.79 +1.10
GE-1TP +0.65 +0.68 +0.77
GE-2TP +0.39 +0.38 +0.45

60QTL/
Morgan

BLUP-AM +0.88 +0.81 +1.17
GE-1TP +0.69 +0.67 +0.83
GE-2TP +0.40 +0.37 +0.47

1Results are averages of 200 replicates.
2Simulated scenarios: BLUP-AM = breeding scheme based on traditional 

BLUP-Animal Model genetic evaluations using phenotypes of the candidates 
for Trait 1 and phenotypes of relatives for Trait 2; GE-1TP = breeding scheme 
based on genomic evaluations using a single training population composed 
of relatives; GE-2TP = breeding scheme based on genomic evaluations 
using a training population composed of candidates for Trait 1 and a training 
population composed of relatives for Trait 2.

3Initial heritability for Trait 1/initial heritability for Trait 2.
4For a given QTL density, the 3 values within a column differ (P < 0.001).

Figure 7. Evolution of inbreeding among young candidates under 3 sce-
narios during the 15 yr simulated. Initial QTL density = 60 QTL/M for each 
trait, initial heritability of Trait 1 = 0.4, and initial heritability of Trait 2 = 0.2. 
The results are averages of 200 replicates. BLUP-AM = breeding scheme based 
on traditional BLUP-Animal Model genetic evaluations using phenotypes of the 
candidates for Trait 1 and phenotypes of relatives for Trait 2; GE-1TP = breeding 
scheme based on genomic evaluations using a single training population com-
posed of relatives; GE-2TP = breeding scheme based on genomic evaluations 
using a training population composed of candidates for Trait 1 and a training 
population composed of relatives for Trait 2.
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The observed decrease over time in the genetic 
variance for both traits was actually very marked, 
whichever methodology was used to estimate breeding 
value. For example, only 27 and 35% of the initial 
variance for Trait 1 remained under the GE-2TP and 
BLUP-AM scenarios after 15 yr of selection in the 
MLh²-HighQd case, these values decreasing to 8 and 
12%, respectively, in the MLh²-LowQd case. The overall 
decrease in the genetic variance was less for Trait 2, 
because the EBV were globally less accurate than for 
Trait 1, resulting in a smaller Bulmer effect and a less 
effi cient fi xation of the favorable QTL alleles for Trait 2.

Our study helps alleviate the paucity of literature 
with respect to the evolution of genetic variance in 
GS breeding schemes. A major decrease in the genetic 
variance and accuracy of the EBV was reported by 
Jannink (2010) in a stochastic simulation of GS in barley 
(Hordeum vulgare). Nielsen et al. (2011) also observed 
a great decrease in genetic variance after 10 generations 
of stochastic simulation of a fi sh breeding scheme based 
either on BLUP or genomic evaluations. However, the 
decrease in genetic variance was less than in the present 
study because of lower selection rates, larger initial 
number of QTL and inbreeding management to restrain 
the inbreeding rate per generation to 0.5 or 1%.

The evolution of genetic variance observed here 
during the early years after implementation of selection 
was consistent with what could be expected according 
to the Bulmer effect (Dekkers, 1992). Nevertheless, 
the magnitude of the long-term decrease exceeded 
the theoretical predictions based on the infi nitesimal 
polygenic model. Moreover, this loss of genetic 
variability constituted a deviation from what might 
be observed in true populations selected for tens of 
years, where genetic diversity is still not exhausted. 
Nevertheless, we simulated a fi nite number of QTL at 
the beginning of the simulation, and as the number of 
segregating QTL decreased because of selection, our 
model diverged more and more from the polygenic 
infi nitesimal model underlying the theoretical formulas.

No mutation process was implemented in our 
simulations. However, mutations are not expected to 
impact the results within the fi rst 30 to 40 generations 
of selection (Hill, 1985) whereas our horizon of interest 
was limited to 15 yr of pig breeding (equivalent to 
about 10 generations of selection). As a result, the most 
likely hypothesis is that the large reduction in variance 
observed here was due to the very high intensities of 
selection performed on male and female pathways, and 
to the fi nite number of QTL segregating at the beginning 
of the simulation. Considering a much larger number 
of QTL initially segregating in the population as did 
Lillehammer et al. (2011) and Nielsen et al. (2011) who 
simulated 1,800 and 1,000 QTL, respectively, might be 

a solution to preserve genetic variability. A dynamic 
modeling of gene effects, taking account of interactions 
between loci, might pave the way to exploring the 
preservation of genetic variability. Finally, considering 
the relationships at selection and mating steps, or even 
adding a constraint on the inbreeding rate as made by 
Nielsen et al. (2011), could also slow the decrease in 
genetic variance.

Our results concerning the GE-2TP and BLUP-
AM scenarios confi rm the theoretical expectations 
of Daetwyler et al. (2007) that GS should reduce the 
rate of inbreeding per generation when compared with 
selection based on traditional BLUP-AM EBV. The 
breeding value of an individual can be conceived as the 
combination of the breeding values of its parents and a 
Mendelian sampling term. The Mendelian sampling term 
is poorly estimated with the BLUP-AM methodology, 
the phenotypes of ancestors and relatives mostly 
contributing to estimating the parental component of a 
breeding value. In particular, full-sib candidates obtain 
exactly the same BLUP-AM EBV for traits exclusively 
recorded on relatives (i.e., Trait 2 in the present study). 
Consequently, the BLUP-AM scenario favored the 
co-selection of related animals among candidates. By 
contrast, under the GE-2TP scenario, the genotypes 
at markers enabled a more precise estimate of the 
Mendelian component of breeding values for Traits 1 
and 2, resulting in fewer correlated EBV among sibs and 
more accurate EBV for each of them.

The sharp initial rise in the inbreeding rate under the 
GE-1TP scenario might have appeared inconsistent at 
fi rst sight. Nevertheless, as shown by Habier et al. (2010), 
the GEBV accuracy of an animal is strongly dependent 
on its relationship with the TP. When genomic evaluation 
was implemented at TS90 under the GE-1TP scenario, 
the TP was limited to 1,000 animals sampled from only 
10% of the litters born during the 4 previous years, which 
resulted in a considerably smaller average accuracy for 
Trait 1, when compared with the BLUP-AM scenario 
where all candidates were phenotyped, and compared 
with the GE-2TP scenario where all candidates were 
closely related to the TP for Trait 1. One can therefore 
hypothesize that the candidates belonging to the few 
families most closely related to the TP had a greater 
chance of being selected, because their more accurate 
GEBV were less regressed toward the mean. This would 
explain the greater initial inbreeding rate. Thereafter, as 
the TP size and the average relationship between the 
candidates and TP increased, the co-selection of related 
candidates decreased and the increase in inbreeding 
slowed. Further work, however, has to be done to better 
understand this phenomenon.

It may seem inconsistent that the GE-2TP scenario 
produced the smallest increase in the average inbreeding 
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rate while at the same time causing the most rapid 
reduction in genetic variance. In fact, the GE-2TP 
scenario produced the greatest genetic trends because of 
the strong accuracy of its EBV, resulting in more rapid 
fi xing of favorable alleles of the QTL. As mentioned 
above, the co-selection of related animals is small in a 
highly accurate genomic breeding scheme. Consequently, 
a larger proportion of the homozygosity observed in the 
population results from selection of identity-by-state 
loci in GE-2TP compared with BLUP-AM and GE-1TP. 
Therefore, the pedigree-based inbreeding measurement, 
which only takes into account the identity-by-descent 
part of the population homozygosity, does not fully 
refl ect the genetic diversity of the population.

No attention was paid in the simulations to 
inbreeding management in the selection and mating 
procedures whereas limitation of the inbreeding rate is 
an important concern for pig breeders. As mentioned by 
Lillehammer et al. (2011), adding a constraint on this 
parameter would probably have reduced the inbreeding 
rate, but might also have affected genetic trends under 
the BLUP-AM scenario. The superiority of GE-2TP over 
BLUP-AM would therefore be even greater with respect 
to genetic gains in the context of a constant inbreeding 
rate across the scenarios.

In light of these results, one might ask if it would 
be economically profi table to move from a classical 
pig male line breeding scheme to a genomic breeding 
scheme organized as under the GE-2TP scenario. As 
an initial response to this question, one may consider 
a very simple breeding goal combining ADG and feed 
effi ciency, representing Traits 1 and 2 of the simulations, 
respectively. The GE-2TP scenario resulted in additional 
genetic gains of +0.09 σg/yr for Trait 1 and +0.11 σg/yr 
for Trait 2 when compared with the BLUP-AM scenario 
(HighQd × MLh² case). Considering that half of the 
genetic improvement achieved in the selection nucleus 
is transmitted to the 15,000,000 pigs fi nished in France 
each year and bred by a purebred Piétrain sire, the 
estimated increase in profi t in production herds due to 
GS would be approximately €1,300,000/yr. Assuming 
that the costs induced by creating the 2 initial TP would 
be written off within 4 yr, the cost of genotyping should 
not exceed approximately €140 per animal, so that the 
extra profi ts due to increased genetic gains in production 
would compensate for the annual genotyping costs of 
13,770 new candidates and 270 animals increasing the 
TP for Trait 2. The break-even cost, however, would 
depend on the size of the nucleus population and on its 
extent at the production level. For example, the break-
even cost of genotyping in the same terminal male line 
with only 10,000,000 fi nished offspring per year would 
be approximately €100 per animal.

A comprehensive economic study considering a 
more realistic breeding goal and appropriate economic 
weights is obviously needed to reach a fi rm conclusion, 
but this rough estimate suggests that the implementation 
of genomic evaluation in a pig male line is economically 
feasible. The porcine 60K BeadChip is currently expensive, 
but the price will almost certainly decrease in the future as 
happened in the case of cattle in recent years. Another way 
to reduce costs would be to genotype candidates with a less 
expensive lower density array and use genotype imputation 
techniques to preserve the effi ciency of genomic evaluation, 
following the example of dairy cattle (Dassonneville et al., 
2011; Wiggans et al., 2012).

Finally, it would also be useful to quantify the increase 
in genetic gain that might be achieved if the additional 
cost of implementing genomic evaluation were invested 
in improving the current BLUP-AM breeding scheme, 
for example, by increasing phenotyping capacity for 
relatives. A constant cost comparison of the results of 
alternative breeding schemes would aid decision making 
regarding the economic value of GS.
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