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Title: On uncertainty analysis in an industrial context:
Or, how to combine available information with decisional stakes

Merlin Keller!, Alberto Pasanisi! et Eric Parent®

Résumé : L’analyse d’incertitudes a pour objet de quantifier le degré de connaissance affectant la valeur d’une quantité
d’intérét, caractéristique du fonctionnement d’un systeme physique, et liée a des enjeux décisionnels. La plupart des
approches rencontrées en ingénierie font appel a I’inférence statistique, et se divisent en trois grandes classes.

Les techniques dites “plug-in” fournissent une estimation ponctuelle de la quantité d’intérét, valable uniquement
en présence d’un grand nombre de données. Lorsque le nombre de données est réduit, il est préférable de faire appel
aux procédures de Bayes, qui déduisent une valeur optimale de la grandeur d’intérét d’une loi a priori décrivant
I’incertitude sur les parametres du modele et d’une fonction de cofit formalisant les enjeux décisionnels. Enfin, les
approches purement descriptives visent a décrire I’incertitude sur la quantité d’intérét, plutdt qu’a en fournir une
estimation ponctuelle.

De nombreuses heuristiques ont été proposées pour contourner le probleme du choix d’une fonction de cofit pour
I’estimation de la quantité d’intérét dans un cadre bayésien. Nous considérons en particulier celle qui consiste a
remplacer dans la définition de la quantité d’intérét la distribution réelle de la variable de sortie du systeme, qui est en
général inconnue, par sa distribution prédictive. Nous montrons que cette approche amene implicitement a utiliser un
estimateur bayésien, relatif a une fonction de coiit qui dépend entérement de 1’expression de la quantité d’intérét. Ce
résultat démontre qu’une estimation ponctuelle sous incertitude repose nécessairement sur le choix, conscient ou non,
d’une fonction de cofit.

Nous illustrons notre propos sur un jeu de données réelles de hauteurs et débits d’un cours d’eau, et discutons plus
généralement la pertinence de chaque approche en fonction des enjeux de I’étude, et de la connaissance plus ou moins
explicite dont dispose 1’analyste.

Abstract: Uncertainty analysis aims to quantify the degree of knowledge aftecting the value of a quantity of interest,
characteristic of the behavior of a physical system, and related to decisional stakes. The approaches most encountered
in engineering practice involve statistical inference, and fall into three broad classes.

So-called “plug-in” techniques provide a point estimate of the quantity of interest, which is only valid in presence
of a large number of observations. When the data are scarce, one may favor Bayes procedures, which deduce an
optimal value of the quantity of interest from an a priori distribution, characterizing the uncertainty on the model
parameters, and a cost function, formalizing the stakes motivating the analysis. Finally, purely descriptive approaches
aim at describing the uncertainty affecting the quantity of interest, rather than providing a point estimate.

Many heuristics have been proposed to avoid the choice of a cost function for point estimation in a Bayesian context.
In particular, we consider the approach that consists in replacing, inside the definition of the quantity of interest, the
true distribution of the output variable of the physical system, which is generally unknown, by its predictive distribution.
We show that this approach leads implicitly to adopt a Bayesian estimator, relative to a cost function that depends
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entirely on the expression of the quantity of interest at hand. Thus, this result demonstrates that point estimation under
uncertainty necessarily requires the choice, conscious or not, of a cost function.

Our argument is illustrated on a real dataset of height and discharge measures from a river section. More generally,
we discuss the relevance of the above-cited approaches, in relation to the stakes motivating the study, and the amount
of information available to the analyst.

Mots-clés : analyse d’incertitudes, théorie de la décision, incertitude épistémique, Estimation bayésienne, estimation
prédictive

Keywords: uncertainty analysis, decision theory, epistemic uncertainty, Bayesian estimation, predictive estimation
Classification AMS 2000 : 62P30, 62C10

1. Modéele déterministe

Le cadre général de 1’analyse d’incertitudes, tel qu’il a été formalisé par [14] entre autres, est
celui d’un modele déterministe, décrit par une équation de la forme :

Y =G(X), (1)

ou X est le vecteur des entrées, G(-) est un code déterministe (une fonction) et Y la sortie du
systéme, que nous supposons scalaire par souci de simplicité. Le fonctionnement de nombre de
systémes physiques se met sous la forme (1), ou le degré de complexité de la fonction G (équation
différentielle ordinaire, aux dérivées partielles, etc.) varie suivant les applications.

Exemple. Pour illustrer notre propos, nous considérons ici un modele hydraulique simplifié
de relation débit/hauteur pour un troncon de riviere, résultant de la résolution des équations de
Saint-Venant en 1D sous hypotheése d’écoulement stationnaire et de section rectangulaire trés
large. La fonction G se présente alors sous une forme analytique paramétrée :

ze=2,+{0/ (BKNZn=27)]L) }0'6 , @)

ou Z. représente la cote de la surface de la riviere en aval (en m), Z,, et Z, les cotes du fond de
la riviere en amont et en aval respectivement (en m), Q le débit (en m3 /s), B la largeur du cours
d’eau (en m), K; le coefficient de Strickler caractérisant la rugosité du lit de la riviere, et L la
longueur (en m) du trongon considéré (voir Figure 1). La connaissance des valeurs des constantes
B.K;,Z,,,Z, et L détermine ici completement la transformation G.

Bien que les données que nous utiliserons dans la suite soient réelles, nous insistons sur le fait
que cet exercice tres simplifié a exclusivement une valeur d’exemple ; ses conclusions ne sont pas
représentatives des méthodes de gestion du risque hydraulique chez EDF R&D.

2. Probabilisation des entrées

Supposons a présent que 1’on ait muni le vecteur d’entrée X d’une structure de variable aléatoire,
de fonction de répartition F(x). Il s’ensuit que Y est également une variable aléatoire, dont la
fonction de répartition H (1) = P(Y <t) = P(G(X) <) est entierement déterminée par la donnée
du couple ® = (F,G). Et pour souligner que tous les résultats de nos calculs dépendent de ces
inconnues, nous noterons dans la suite H(¢) = H(t|®).
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62 M. Keller, A. Pasanisi et E. Parent

FIGURE 1. Modeéle simplifié d’un trongon de riviére

La premiere composante de I’inconnue ® est la loi F. Celle-ci traduit souvent la variabilité
naturelle des grandeurs physiques modélisées par les entrées X. Le fait que Y soit alors également
une variable aléatoire est souvent interprété comme une “propagation d’incertitude” par le systéme
physique de ses entrées a ses sorties (voir a ce sujet [8] ainsi que [5]).

D’un point de vue théorique, le calcul de la distribution H(7|®) fait intervenir le jacobien de
la transformation G, qui est la deuxieéme composante de 1’'inconnue @. Il s’agit d’un probleme
classique de transformation de variables en calcul des probabilités. Certes, en pratique, obtenir
la loi de Y peut s’avérer difficile, en particulier si le code G(-) est numériquement cofiteux.
Dans ce cas, des techniques d’intégration de Monte-Carlo avec réduction de la variance (cf.
par exemple [21] ainsi que [20]), ou d’émulation de code (cf. [22] et [14]) peuvent s’avérer
nécessaires. C’est pourquoi ce calcul est souvent considéré comme 1’un des enjeux majeurs de
I’analyse d’incertitudes.

Enfin, notons que ® = (F,G) récapitule quels modeles statistiques et déterministes sont &
considérer. Il s’agit donc d’un parameétre dans le sens statistique du terme, qui plus est d’un
parametre fonctionnel, puisque F et G sont toutes deux des fonctions. En pratique cependant,
il arrive le plus souvent que I’on se limite a choisir les fonctions F et G dans des familles
paramétriques, de telle sorte que 1’espace fonctionnel contenant ® devienne de dimension p finie.
Dans ce cas, on définit directement ® comme un vecteur de R”.

Le parametre O régit la distribution des entrées comme des sorties du systéme physique
considéré, il caractérise donc entierement le fonctionnement de ce systeme ; ® est encore appelé
état de la nature. En accord avec cette interprétation phénoménologique, ® est une constante : il
ne peut prendre plusieurs valeurs distinctes, la nature ne pouvant se trouver dans plusieurs états a
la fois. Pour le moment jusqu’a la section 4 , la valeur de ® est supposée parfaitement connue de
I’analyste, une situation qualifiée d’information parfaite.
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Analyse d’incertitude en milieu industriel 63

Exemple. Dans le modele hydraulique (2), nous modélisons Q, représentant le débit maximal
annuel, par une variable aléatoire de loi de Gumbel Gu(u,p), de fonction de répartition

F(x) =exp{—exp[p(u —x)]}. 3)

Justifiée par la théorie des valeurs extrémes [7], la loi de Gumbel, appartenant a la famille des
distributions GEV (Generalized Extreme Value), est couramment utilisée par les ingénieurs pour
modéliser la distribution de probabilité de maxima annuels de débits, hauteurs de pluie, vitesses
de vent, etc. La loi de la sortie Z., qui représente la cote maximale annuelle, est alors explicite :

H(r\@):exp<—exp{p<u—BKs,/Z’"L_ZV(r—ZV)5/3>}) (4)

Ici I’état de la nature © est défini comme le vecteur : (B, K, Z,,Z,,L, i1, p) € R7, qui suffit &
déterminer entierement les fonctions F et G.

3. Quantité d’intérét

Une fois déterminée la distribution de la sortie Y, il devient possible d’en évaluer n’importe-quelle
grandeur caractéristique ¢ (moyenne, variance, quantile, etc. . .). Celle-ci dépend de la distribution
H, qui dépend elle-méme uniquement de ®, donc nous noterons ®(0®) pour mettre en évidence
que connaitre I’état de la nature est indispensable pour mener ce calcul.

® (@) résume la distribution de la variable aléatoire Y, qui représente une grandeur physique
caractéristique de I’état du systeme physique étudié. Elle est présentée la plupart du temps comme
directement liée aux enjeux décisionnels ayant motivé 1’analyse, et porte pour cette raison le
nom de “quantité d’intérét” dans ce schéma, que nous pouvons qualifier de “normatif”’. On
considere alors que son évaluation constitue I’enjeu central de I’analyse d’incertitudes en situation
d’information parfaite, puisqu’elle est susceptible de guider le choix d’une certaine décision,
comme le soulignent entre autres [8] ou [1].

Dans les études fiabilistes par exemple, la quantité d’intérét prend généralement la forme d’une
probabilité de dépassement de seuil P(Y > ¢), ou d’un quantile, bien que des expressions plus
complexes, combinant les probabilités jointes de plusieurs événements, puissent étre utilisées
(voir [9] pour une définition plus générale de la notion de fiabilité). Des enjeux économiques sont
souvent associés a la quantité d’intérét. Des lors, il est conceptuellement satisfaisant de supposer
qu’elle minimise les cofits socio-économiques des décisions envisageables au terme de 1’étude :

P(0O) = argrrbin c(d;0), (5)

ou c(d;®) représente le colit d’une certaine “décision” d lorsque 1’état du systéme physique est
donné par ©.

Exemples.

1. Pour fixer les idées, supposons que la décision d a prendre représente la hauteur d’une
digue en construction. On peut alors envisager d’utiliser a cette fin le quantile ®(®) = g
d’ordre f3 de Y, défini par : gg = H~'(B|©).
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En effet, on peut montrer que celui-ci peut s’exprimer comme la quantité d minimisant le
colt linéaire par morceaux :

c(d;0) =E[Y —d[(Bliysa} + (1= B)1y<q})|©]
(voir [17] pour plus de détails), que I’on peut également écrire (grace a une intégration par
parties) :

c(d;@))—/_z{(r\@)dz—dxﬁ. ©)

qp peut donc s’interpréter comme la hauteur de digue optimale si les cofits de construction
et de débordement de la digue sont tous deux supposés linéaires.

. La décision d peut aussi simplement consister en le choix d’une estimation. Ainsi, on

montre facilement que ’espérance ®(@®) = E[y(Y)|®] de toute fonction y de la sortie Y
peut étre obtenue en minimisant le colit quadratique :

c(d;®) =E[(d— y(Y))*|@]. (7)

Par exemple, la probabilité de dépassement P(Y > ¢|®) = 1 — H(¢|®) peut étre définie
comme la valeur de d minimisant le colit quadratique c(d ;©) = E[(d — 1;y~})?|®]. Elle
s’interprete alors comme une estimation de I’indicateur binaire de dépassement du seuil ¢
par Y, pour un colit d’erreur quadratique.

. Poursuivant I’exemple bati sur les équations (2) et (3), nous considérons les quantités

d’intérét suivantes :
- La valeur h,),, minimisant la fonction de colt suivante (propos€e et étudi€e en détail par

(4D :
c(d;®) = Iyx(Z,+d)+Cox E[lz-a(Z. —2Z,—d)*|0), (8)

Dans I’expression (8) du colit de construction d’une digue de protection fluviale de
hauteur d (en m), Iy représente un colt d’investissement marginal et Cy un cofit de
dommage marginal. La fonction ®(®) peut étre évaluée numériquement, en utilisant par
exemple une approximation par quadrature ou par simulation Monte-Carlo.

- La probabilité de dépassement ®(®) = P(Z. > Z, +h|®) = 1 — H(Z, + h|®), qui peut
se calculer explicitement d’apres (4). Celle-ci peut s’interpréter comme la probabilité de
débordement d’une digue de hauteur 4 (en m) (voir Figure 1) ;

- Le quantile (@) = gg = H~'(B|©), donné par la formule

1 1 (2, —Z N\ "°
qﬁ:Z‘,—F{(u—ploglogB)/(KsB L>} . )

Si T est un entier naturel, la crue dite de période de retour 7', g;_y /7, 8’interprete comme
la hauteur de la crue T-annuelle, c’est-a-dire qu’il faut attendre en moyenne 7" années
(sous des hypotheses de stationnarité et d’indépendance) avant d’observer une crue

Ze>q1-1r-

Notons que I’évaluation de ® ne pose toujours pas de difficulté conceptuelle particuliere pour

peu que O soit connu : elle prend alors une valeur bien déterminée. Dans un contexte d’information
parfaite, I’analyse d’incertitudes n’est donc qu’un probléme purement probabiliste, plus ou moins
complexe, de transformation de variables aléatoires.
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4. Incertitude épistémique

En pratique cependant, le paramétre O, c’est-a-dire le couple (F, G) ou le vecteur le définissant
(voir Section 2), n’est jamais parfaitement connu. Autrement dit, I’ingénierie ordinaire s’effectue
toujours en situation d’information imparfaite. L’ incertitude qui affecte 1’état de la nature est
dite épistémique, c’est-a-dire par manque de connaissance du systeéme physique. Il devient alors
nécessaire d’estimer les inconnues a partir de I’information disponible.

Ainsi, F peut étre estimée a 1’aide d’un échantillon x = (xy,...,x,) de mesures d’entrées du
systeme physique étudié, assimilées a des réalisations indépendantes de la variable d’entrée X.
De méme, G peut étre estimée a partir de couples (X,¥) = ((£1,¥1),---, (Xm,m)) de mesures
d’entrée/sortie du systéme, en supposant que chaque couple vérifie la relation (1), a d’éven-
tuelles erreurs de mesure prés. Dans la suite, nous notons D = (x, (X,¥)) I’ensemble des données
disponibles.

L’incertitude sur ® est qualifiée de réductible par la collecte de nouvelles informations. De
facon plus formelle, la théorie des statistiques asymptotiques, telle qu’on la trouve par exemple
dans [25], étudie les conditions sous lesquelles on peut faire diminuer arbitrairement I’erreur
d’estimation sur ® en augmentant la taille n de I’échantillon.

Par opposition, I’incertitude affectant les grandeurs modélisées par X est dite naturelle, ou
encore par essence, car, sous les hypotheses de modélisation adoptées, elle résulte de la nature
imprévisible du phénomene observable. Elle est par 1a méme irréductible par construction, car
elle ne peut étre diminuée par 1’ajout d’une quelconque information.

Exemple. Dans le modele hydraulique (2), afin de se focaliser sur un seul parametre essentiel
pour G, nous supposons connues les quantités Z,,, Z,, B et L, qui résument la géométrie du
trongon de riviere considéré (en pratique, ces grandeurs sont en fait mesurées avec une certaine
précision). La transformation G est donc completement déterminée par le coefficient de Strickler
K, qui est a priori inconnu. Ce dernier est donc affecté d’une incertitude épistémique, diie a une
connaissance imparfaite de sa valeur pour le systéme physique considéré.

Par opposition, le débit représenté par la variable Q, varie de maniere imprévisible d’une année
sur ’autre. Il s’agit donc d’une grandeur incertaine par nature dont on ne pourra jamais prédire
exactement la valeur (sauf a changer de modele et introduire d’autres relations, par exemple de
transfert pluie-débit). Enfin, la distribution F de la variable Q est elle-méme, comme G, affectée
d’une incertitude épistémique (les coefficients u et p ne sont pas connus parfaitement). On notera
dans la suite de cet exemple ® = (Kj, i, p) car ce triplet définit ici complétement les inconnues F
et G du modele.

5. Estimation “plug-in”

Sur le plan pratique, il existe de nombreuses méthodes permettant d’obtenir des estimations
ponctuelles ® = O(D) des parametres du modele, a partir des données D disponibles. On peut de
maniere grossiere les regrouper en deux classes : les approches paramétriques (par maximum de
vraisemblance, moindres carrés, ... ) et non paramétriques (estimateurs a noyau, empiriques, ... )
(cf. par exemple [28] et [29]). On peut alors estimer toute quantité d’intérét ®(0®) par “plug-in”
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FIGURE 2. Gauche : Ajustement par moindre carrés du modele (2) a m = 8 couples de mesures débit/hauteur. Droite :
estimation par maximum de vraisemblance du modéle de Gumbel a partir de n = 47 mesures de débits maximaux
annuels.

(substitution) :
D =P(0). (10)

Il est donc possible de contourner le probleme de I’incertitude sur I’inconnnue ® en lui attribuant
une valeur estimée, que 1’on espere proche de la vraie valeur, et en effectuant tous les calculs
comme si I’on était en situation d’information parfaite.

Exemple. Nous avons mis en ceuvre I’approche “plug-in” sur un jeu de données composé de :

- n =47 mesures (g;)1<i<, de débits maximaux annuels effectués sur un cours d’eau ;

- m = 8 couples (G;,;)1<j<m de mesures débit/hauteur effectués sur le méme site.

Nous avons supposé que les valeurs de débit g; et G; étaient observées sans erreurs, mais que les
hauteurs d’eau y; étaient mesurées avec une erreur additive, modé€lisée par un bruit blanc gaussien,
d’écart-type o inconnu. Nous avons alors ajusté le modele (2) par moindre carrés ordinaires
(MCO) aux couples (g;,¥;), et estimé le modele de Gumbel (3) par maximum de vraisemblance
(MV) sur la base des g;. On obtient ainsi les estimations suivantes (voir Figure 2) :

- Coefficient de Strickler : - vco

K,  =59.33;

- Parametre de localisation de la loi des débits :
uM = 626.14;

- Parametre d’échelle inverse de la loi des débits :

~

pMY =524 x1073.
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Par “plug-in” de ces valeurs dans les équations (4), (9) et (8), on obtient alors des estimations
ponctuelles des quantités d’intérét suivantes :
- Probabilité de dépassement d’une digue de hauteur h =7.5m :

P(Ze > Z,+h) =3.52x 1073;

- Crue centennale :
q/ggTyb = Zv "’ 696 m;

- Hauteur optimale d’une digue, calculée relativement au coft (8), pour Ip/Co = 1/1000 :
hopt = 8.18m.

Limites de I’approche “plug-in”. L approche décrite ci-dessus permet de calculer relativement
simplement des estimateurs de n’importe quelle quantité d’intérét voulue, et donne des résultats
facilement interprétables. Elle est de plus rigoureuse si 1’on dispose d’un nombre suffisant de
données, pour peu que 1’on utilise des estimateurs qui convergent presque siirement (voir a ce
sujet [15]). Cela revient a dire que, lorsque le nombre d’observations tend vers I’infini, on se
rapproche de la situation d’information parfaite.

En dehors de cette situation idéale cependant, I’erreur commise en estimant ©, et donc P, ne
peut étre négligée. Se posent alors plusieurs questions :

- Comment quantifier I’erreur d’estimation, i.e. I’écart entre la vraie valeur ® et son estimateur,
que nous noterons conventionnellement 0— 0, ainsi que ’erreur résultante ®— P surla
quantité d’intérét ?

- Quelles sont les conséquences de ces erreurs sur la décision éventuelle que doit guider
I’étude ?

La réponse a la premiere question est connue mais rarement menée jusqu’a son terme par les
ingénieurs : les outils de la statistique classique tels que bootstrap [10], delta-method [24], etc.,
permettent de construire des intervalles de confiance, asymptotiques ou non.

Les réponses a la seconde question, on s’en doute, sont multiples. Elles se distinguent avant
tout par le degré d’implication de I’analyste vis-a-vis des enjeux décisionnels qui ont motivé
I’étude. Dans la suite, nous tentons de classer les principales approches utilisées suivant ce degré
d’acces de I’analyste statisticien a la formulation des enjeux décisionnels.

6. Procédures de Bayes

Des lors que la définition de @ inteégre une formalisation des enjeux décisionnels sous-jacents a
I’étude sous la forme d’une fonction de cofit (5), la théorie de I’estimation bayésienne, développée
par exemple dans [17], offre un cadre cohérent permettant de répondre aux deux questions posées
ci-dessus. Etant donnée une loi 7(®) sur les inconnues du modele, la décision optimale au sens
de Bayes correspond au minimum du cofit intégré :

phwves  — argrrbin /c(d;@))n(@)]D)dG), (11)
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ou T(®|D) < £ (D|®)n(®) donne formellement la loi de I’inconnue ® conditionnellement aux
données, .Z(D|0) étant la vraisemblance de celles-ci. Pour traduire cette équation en mots, (11)
réalise une analyse de sensibilité ol chaque colit potentiel ¢(d ; ®) (associé a une décision sous-
optimale par méconnaissance de I’état de la nature) est pondéré par la probabilité de 1’état de la
nature 7(®|D), évaluée conditionnellement aux données dont dispose I’analyste.

D’un point de vue strictement fréquentiste, de tels estimateurs bénificient d’excellentes pro-
priétés, notamment celle de constituer, avec leurs limites, I’ensemble des regles de décision dites
admissibles, ou non dominées (voir par exemple [18]).

Deux courants se distinguent alors :

- Les statisticiens “classiques” a la suite de [27] reconnaissent que cette fagcon de procéder
par pondération 7(0®) fournit simplement une construction mathématique d’estimateurs
intéressants sans vouloir donner un sens a la distribution 7(.) sinon celui de la commodité
calculatoire ;

- Les statisticiens bayésiens font un pas de plus en matiere d’interprétation. Ils munissent aussi
I’espace des modeles d’une structure de probabilité, mais contrairement aux précédents, ils
donnent a (®) le sens d’un pari probabiliste quant aux valeurs plausibles des inconnues
avant considération des résultats expérimentaux (loi a priori).

Exemple. Poursuivant I’exemple hydraulique dans un cadre bayésien, nous avons utilisé les lois
a priori “faiblement informatives” suivantes sur les paramétres ® = (K, i, p) du modele, ainsi
que sur I’écart-type o des erreurs de mesure :

- Coefficient de Strickler : Ky ~ % ([10;100]);

- Précision des erreurs de mesures : 1/62 ~ &(1);

- Parametre de localisation de la loi des débits : u ~ 4(1;500);

- Parametre d’échelle de la loi des débits : 1/p ~ %(1;200),
ou 7% ([a;D]) est la loi uniforme sur I’intervalle [a;b], &(A) est la loi exponentielle de taux A et
4 (a;B) est la distribution Gamma de parametre de forme o et d’échelle inverse . La loi jointe
a posteriori (conditionnellement aux données) de ces parametres n’est pas explicite, en revanche
il est possible d’en simuler un échantillon par diverses méthodes [19]. Nous avons choisi pour ce
faire la méthode d’acceptation-rejet (décrite dans 1’ouvrage ci-dessus notamment). Notons que,
a la différence d’une estimation ponctuelle, I’approche bayésienne fournit pour le vecteur des
parametres une distribution compléte de valeurs possibles, comme I’illustre la Figure 3.

A partir d’un échantillon de la loi a posteriori de ©, il devient alors facile de résoudre
numériquement le probleme d’optimisation (11) en se donnant une grille de valeurs possibles
pour d et en choisissant celle pour laquelle le coit intégré, évalué par Monte-Carlo, est minimal.
Nous avons appliqué cette procédure au probleme de calcul d’une hauteur optimale de digue,
calculée relativement au cofit (8), pour un rapport investissement / colit de dommage pris égal a
Ip/Co = 1/1000. On trouve alors :

——Bayes

hop - =10.76m.

Ce résultat est a comparer a celui obtenu par “plug-in” dans la Section précédente : h,); = 8.18 m.
De maniere informelle, la prise en compte des incertitudes épistémiques sur les parametre du
modeles, se traduisant en incertitudes sur les colits de dommage potentiels, entraine dans le cas
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FIGURE 3. Distributions marginales a priori (pointillés) et a posteriori (trait) des parametres du modeéle hydraulique,
approchées par un estimateur a noyau a partir d’un échantillon de 10000 valeurs. De gauche a droite : Ky, 1, 1/p.

présent un relevement de la hauteur optimale de digue d’environ 2.5 m, et meéne donc a une
décision plus “prudente”. Une telle observation se retrouve dans [4] pour une fonction de cofit et
un modele similaires. Notons toutefois que nous avons considéré ici une fonction de coflit tres
dissymétrique, et pénalisant énormément les erreurs de sous-estimations, d’ou I’écart important
(voire méme exagéré) avec 1’estimateur plug-in.

7. Estimation ponctuelle basée sur la densité prédictive

Peut-on proposer une estimation ponctuelle “raisonnable” de ¢ dans un cadre bayésien, c’est-a-
dire lorsqu’on décrit I’incertitude sur ® par une distribution de probabilité a priori ©(®), mais en
I’absence d’une fonction de cofit ?

Tout dépend bien siir de ce que 1’on entend par “raisonnable”. Diverses heuristiques ont été
proposées pour répondre a cette question, notamment a travers I’emploi de caractéristiques de
localisation de la loi a posteriori de @, telles que le mode [2], la moyenne ou encore la médiane [3].
Notons que ces deux dernieres propositions reviennent a utiliser 1’estimateur de Bayes (11) pour
la fonction de cofit quadratique c(d;®) = (d — ®(®))?, ou valeur absolue c(d;®) = |d — ®(®)],
respectivement.

7.1. Densité prédictive

Une autre heuristique, proposée dans [12], est basée sur la distribution prédictive de la sortie
Y, qui est sa distribution conditionnellement aux données D. La fonction de répartition de cette
distribution, que nous noterons H”"?(¢), n’est autre que la moyenne a posteriori de H(t|®) :

HP™*d (1) = E[H(t|®) | D] (12)
_ /H(t|®)7r(®|D) de.

Hpred (1) s’interpréte comme le pari qu’engagerait I’analyste concernant les valeurs possibles de Y,
mis a jour au vu des données D. Mathématiquement, cette probabilité épistémique peut également
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s’écrire comme 1’estimateur de Bayes de H(z|®) pour la fonction de cofit quadratique. Notons
que dans aucun cas elle ne décrit la distribution de la sortie d’un systéme physique observable.
Pour s’en convaincre, il suffit de considérer p copies indépendantes (Y1,...,Y,) de la sortie Y.
Leur fonction de répartition prédictive jointe s’écrit :

H(1y,...1,) =P[Y| <t1,...,Y, <t1,|D]
_/{n H(1;]©)} 7(®|D)d®

Cette expression n’étant pas factorisable, les distributions prédictives des Y; ne sont pas indé-
pendantes, ce qui traduit le fait que I’on ne peut pas porter un jugement probabiliste prédictif
sur le couple (Y1, Y>) en considérant Y; puis Y, indépendamment. Pourtant, leurs distributions
d’échantillonnage sont, elles, indépendantes (par définition), ce qui s’interprete en disant que,
lorsqu’on connait I’état de la nature ©, les réplicats Y et Y, sont indépendants.

Il est donc important de bien garder a I’esprit que la distribution prédictive est un outil
mathématique permettant de coder I’incertitude sur les valeurs de la sortie Y du systéme, du point
de vue épistémique d’un analyste, et non une description de la variabilité effective du systeme
physique étudié. Ainsi, comme I’incertitude sur les Y; contient une part qui leur est commune, a
savoir la méconnaissance de O, il est parfaitement normal que les Y; ne soient pas indépendants
d’un point de vue prédictif. IIs le sont cependant, conditionnellement a 1’état de la nature, quel
qu’il soit.

7.2. Estimateur prédictif

Dans [12], il est proposé d’estimer ®(®), vue comme une fonction ®(H(-|®) ) de la distribution
H(-|®), en remplacant cette derniére, inconnue, par la prédictive H”"(-) :

&)pred:q)(ﬁpred(_)). (13)

Il s’agit donc d’une variante de I’estimation “plug-in” (10), ou la substitution s’effectue sur la
distribution H(-|®) de la sortie plutdt que sur I’état de nature ®. Cette utilisation de la densité
prédictive a des fins d’estimation est également suggérée dans [8], ou le calcul de la densité
prédictive (12) est interprété comme une “propagation d’incertitude” de @ a Y, les incertitudes
épistémiques et par nature étant de fait traitées de la méme maniere.

Notons cependant que, a la différence de I’estimateur “plug-in”, drred pe bénéficie d’aucune
interprétation physique, puisqu’il ne caractérise la sortie d’aucun systéme physique observable.
De ce point de vue, la définition (13) peut apparaitre comme incohérente en termes d’interpré-
tation, puisqu’elle applique la fonction ®, censée donner une caractéristique a fort enjeu de la
distribution de sortie d’un systeéme physique, a une distribution qui a perdu toute interprétation
phénoménologique.

Quelles sont les conséquences du choix d’une telle heuristique au plan décisionnel ? Dans
[6], un premier €lément de justification théorique a Iestimateur défini par (13) est apporté, en
montrant que, pour toute quantité d’intérét pouvant s’écrire : (@) = E[g(Y)|@)], &P coincide
avec la moyenne a posteriori de ®(0®), soit I’estimateur de Bayes pour le colit quadratique

c(d;®) = (d— CI>(®)) On peut généraliser ce résultat en montrant que, pour une large classe de
fonctions d’intérét, &7 coincide également avec un estimateur de Bayes :
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Théoréme 1. (Estimation basée sur la prédictive) Soit ®(H(-|®)) une fonction d’intérét de la
distribution de Y. On suppose que :

1. En tant que fonction opérant sur les fonctions de répartitions H(-), ® peut-étre définie
comme minimisant une certaine fonction de coiit :

B(H()) = argmin ¢(d: H()).

2. La fonction de coiit c(d;H(-)) est linéaire en H(-), ¢’est-a-dire que
Y pixeldit() =c(d:{ L pixHi() } ),
J J

pour toutes fonctions de répartitions {H;(-)} et tous poids {p;} tels que : p; > 0 et
Yipi=1

Alors, Uestimateur dPred défini par (13) coincide avec [’estimateur de Bayes relatif au coiit
c(d:H(0)).

Preuve. Par définition (13) de prred, par la premiere hypothese du théoreme, puis par la
définition (12) de H”"*/(-) on a:

C/I\)pred _ q)(ﬁpred(‘) )
= argnbin c(d; HP™*(.))

= argrrbin c(d;E[H(-|®)|D]).
La deuxieme hypothese du théoréeme (linéarité du cofit) entraine alors que :
&7 = argmin E[c(d;H({0)) |D]
— argmin / c(d;H(-|©))7(0|D)d®.

Cette derniere expression coincide bien avec la définition (11) de I’estimateur de Bayes, relatif au
coit c(d;H(-|®)) O

Les conditions d’application de ce théoreme sont tres générales ; en particulier, nous montrons
dans les exemples ci-dessous qu’il s’applique a toutes les quantités d’intérét définies en Section 3,
et qui sont les plus utilisées en pratique dans les études industrielles.

Linterprétation de ce résultat est claire : utiliser I’estimateur drred revient implicitement
a employer I’estimateur de Bayes relatif & une fonction de cofit enticrement déterminée par
I’expression de la quantité d’intérét. Ces conclusions nous paraissent en contradiction flagrante
avec le but premier de la méthode, qui est de proposer une estimation ponctuelle de ® en 1’absence
d’une fonction de cofit. Ainsi, en pratique, la méconnaissance volontaire des propriétés théoriques
de I’estimateur ®7"¢ signifie que son utilisateur délegue le choix d’une fonction de cofit a
I’heuristique qu’il a adoptée.
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Exemples. Continuant I’analyse bayésienne commencée en Section 6, nous avons appliqué le

résultat ci-dessus a I’estimation basée sur la densité prédictive des quantités d’intérét suivantes :

- La probabilité de débordement P(Z. > Z, + h|®) d’une digue de hauteur 7 = 4.5m : cette
probabilité peut s’écrire en fonction de la distribution de Z, sous la forme

P(Z. > Z,+h|®) =1 —H(Z,+h|©).

L’estimateur prédictif de cette quantité d’intérét est donc la “probabilité prédictive de
débordement”, égale a :

PPd(Z. > Z,4+h) =1 —HP"*(Z,+h)
=59x%x1073.

On remarque que cette probabilité prédictive n’est en fait pas autre chose que 1’espérance a
posteriori de la probabilité sachant ®, soit encore I’ estimateur bayésien relatif a la fonction de
cofit quadratique : ¢(d;H(-|®)) = d* —2d(1 — H(Z,+h|®)) (a laquelle on a retiré le terme
H(Z,+h|®)?, qui n’intervient pas dans 1’ optimisation). On retrouve donc les conclusions du
théoréme dans ce cas, puisque P(Z, > Z, + h|®) minimise la fonction de coiit ¢(d;H(:|®))
ci-dessus, et que celle-ci est bien linéaire en H(:|®).

Notons que I’estimateur prédictif est recommandé dans [9] pour le calcul de fiabilité, justifiant
ce choix sous I’hypothese d’un coilit de dommage constant. Cependant nous voyons qu’en
tant qu’estimateur bayésien, il est fondé sur le colit quadratique, qui pénalise également la
sur- et la sous-estimation du risque de défaillance. Dans des situations ot la défaillance peut
entralner des colits trés importants, on pourra donc lui privilégier des fonctions de colts
dissymétrique par souci de conservatisme.

- La crue centennale gggq, : celle-ci s’écrit en fonction de H(-|®) sous la forme

~1
q999% = H " (99%|0),
donc I’estimateur prédictif associé est la “crue centennale prédictive” :

qg/g\%pred _ (ﬁpred)—l (99%>
= 8.56m.

Mais, comme rappelé en section 3, gggg, peut étre défini comme minimisant le cofit linéaire
par morceaux : ¢(d;H(-|®)) = [?_H(t|®)dr —99%d. Ce coiit est en outre linéaire en
H(-|®), de sorte que, par application du théoréme 1, gogs,” rd n’est autre que I’estimateur
bayésien relatif a c(d; H(-|9®)).

Or, nous avons vu que ce colit peut s’interpréter comme étant celui résultant de la construction
d’une digue de protection fluviale, pour un rapport coiit d’investissement/coiit de dommage
égala: Iy/Co = 1/99, et pour un colit de dommage linéaire en la hauteur de crue, plutdt que
quadratique (voir [17] pour plus de détails). Ainsi, on peut interpréter ce résultat en disant
que la conjonction d’une norme de slireté (la digue doit pouvoir résister a la crue centennale)
et d’une heuristique d’estimation (I’estimateur prédictif) meéne a adopter implicitement une
certaine évaluation des cofits de dommages (linéaires), qui peut-étre tres éloignée des colits
réels (si ceux-ci sont quadratiques par exemple).
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- La hauteur optimale de digue h,,, minimisant le coiit (8) : ce cofit est bien lin€aire en
H(:|®) (par linéarité de I’espérance d’une variable aléatoire relativement a sa loi). Donc par

c PRRS —pred . . £ PN A
application du théoreme 1, A, coincide avec I’estimateur bayésien relatif a cette méme
fonction de cofit, soit I’estimateur calculé dans la section précédente :

—pred ——Bayes

h()p[ = h()p[ =10.76m.

8. Approches descriptives

Lorsque 1’analyste ne dispose pas de fonction de cofit explicite, la responsabilité lui est souvent
laissée d’en proposer une, reflétant sa connaissance des enjeux décisionnels.

A défaut de pouvoir quantifier cette fonction de cofit précisément, et sous I’hypothése qu’elle
est deux-fois dérivable en d autour de d = ®(0), il pourra se contenter de la fonction de coiit
quadratique (7), que 1’on peut voir comme résultant d’un développement limité au deuxieme
ordre de la “vraie” fonction de colit ¢(d,®), dont la forme exacte est inconnue, en d autour de
d = ®(0). Ce choix équivaut donc a opter pour une estimation par moindres carrés.

Cependant, il se peut que 1’analyste ne dispose pas d’éléments suffisants pour justifier ce choix,
ou bien estime qu’une telle approche n’est pas appropriée. C’est le cas notamment lorsque 1’étude
n’a pas pour objectif premier de guider une décision, mais plutdt de vérifier le respect d’une
norme réglementaire, que 1’on peut formaliser sans perte de généralité par le respect d’une borne
supérieure sur @ :

D <M. (14)

Les études de fiabilité structurelle notamment visent le plus souvent a vérifier qu’une probabilité
de défaillance, (ou, de maniere équivalente, un quantile d’ordre donné) est en deca d’une certaine
limite réglementaire. Les exemples de ce type d’études abondent, avec des domaines d’application
aussi variés que la stireté d’un site de stockage de déchets nucléaires [13], le risque de rupture des
réacteurs d’une navette spatiale [16] ou I'impact sur un habitat naturel d’un polluant [26], pour
n’en citer que quelques-uns.

Etant donné I’incertitude épistémique sur la valeur de ®, il est impossible de déterminer de
maniere certaine si la condition (14) est vérifiée. Le fait de fournir une réponse basée sur une
estimation ponctuelle de @ reviendrait dans ce cas pour I’analyste a effectuer un pari sur le respect
de la norme, basé le cas échéant sur une fonction de cofit traduisant les enjeux d’un tel pari. S’il
refuse de s’engager dans cette voie-1a, il doit alors au moins quantifier I’incertitude sur @, sous la
forme :

- soit d’un intervalle de confiance contenant la vraie valeur de ® dans approximativement

95% des cas (par exemple), s’il adopte un point de vue fréquentiste ;
- soit de la distribution a posteriori complete de d, assortie d’indicateurs tels que la probabilité
a posteriori épistémique de respect de la condition (14), s’il adopte un point de vue bayésien.

Enfin, notons que certaines normes incluent explicitement de telles descriptions de I’incertitude
sur les grandeurs considérées. C’est le cas en écotoxicologie par exemple, ol la dose maximale
autorisée de polluant dans un habitat, notée HCs s, est définie comme la borne inférieure d’un
intervalle de confiance symétrique a 90 % sur la dose de polluant minimale affectant 5 % au moins
des especes vivant dans le milieu considéré (voir [26] pour une définition plus précise).
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FIGURE 4. Densité a posteriori du quantile qogq, (moins la cote Z, de fond de la riviere) approchée par un estimateur
a noyau a partir d’un échantillon de 10000 valeurs. La droite verticale correspond a la hauteur de la digue.

Exemple. On se donne pour but de vérifier que la crue centennale gggg, est inférieure a 1’altitude
d’une digue de hauteur & =7.5m, ce qui s’ interprete en disant qu’elle ne sera débordée en moyenne
qu’une fois par siecle. Rappelons que I’estimation “plug-in” par maximum de vraisemblance
donne : gggg, = Z, + 6.96m, ce qui suggere que le risque de débordement est bien en dega de
la limite souhaitée. Cependant, étant donnée 1’incertitude sur la valeur réelle de ggg9¢,, On peut
Iégitimement se demander dans quelle mesure cette premiere réponse est fiable.

Continuant I’analyse bayésienne commencée dans les Sections précédentes, nous avons calculé
la distribution a posteriori du quantile gggq, (voir Figure 4). Ce quantile dépasse la hauteur de la
digue avec une probabilité a posteriori de :

P(qgg% >Z, +7.5|D) =0.17,

qui est loin d’étre négligeable, suggérant que I’estimation par “plug-in” améne a sous-estimer
le risque de débordement considéré. Au vu de ce résultat, le décideur pourra donc juger prudent
d’envisager des travaux d’agrandissement de la digue afin de réduire ce risque.

Ce cas précis illustre le danger qu’il y a a ne considérer que des estimateurs ponctuels sans tenir
compte de I’incertitude affectant les grandeurs d’intérét considérées, et la nécessité pour 1’analyste
de fournir le maximum d’informations au commanditaire de 1’étude afin de lui permettre une
prise de décision la plus renseignée possible.

9. Discussion

En conclusion de cette réflexion sur la pratique de I’ingénieur sous incertitudes, il nous semble
important de mettre en avant les points suivants, qui devraient éclairer 1’analyste dans le choix
d’une méthode.

Dans un premier temps, le critere le plus important est la quantité d’information disponible. En
effet, en situation d’information parfaite ou presque, c’est-a-dire lorsqu’on dispose d’assez de
données pour estimer les inconnues du modele avec grande précision, on peut se contenter d’une
estimation “plug-in” de la quantité d’intérét, basée sur n’importe quelle méthode d’estimation
ponctuelle garantissant une convergence presque sire.
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Si I’on ne dispose que de peu de données, il est en revanche impératif de prendre en compte
les incertitudes affectant les quantités d’intérét a évaluer. Un deuxiéme critere est alors 1’acces a
une fonction de colit formalisant les enjeux décisionnels de 1’étude, auquel cas le choix d’une
approche bayésienne est a privilégier. Si le probleme ne peut étre formalisé a 1’aide d’une fonction
de colt, il demeure important de fournir au destinataire de 1’étude une description détaillée de
I’incertitude sur les quantités d’intérét étudiées, ainsi que nous 1’avons illustré dans le cas de
I’estimation d’une hauteur de crue centennale.

Par ailleurs, par souci de simplicité, nous n’avons pas étudié completement la seconde com-
posante du parametre ® : I’incertitude porte aussi sur le code souvent complexe G. Quel poids
accorder a son estimation au vu des données disponibles ? Dans notre exemple nous avons traduit
cette incertitude par une erreur de mesure indépendante, mais les techniques statistiques avancées,
par exemple par [22] ou [14], considérent G comme la réalisation d’un objet probabiliste complexe
(processus stochastique, le plus souvent gaussien), ce qui permet d’introduire une structure plus
réaliste des erreurs de modele.

Enfin, une autre conclusion qui ressort de cette réflexion est la nécessité de séparer les modeles
mathématiques de variable aléatoire utilisés lors d’une analyse d’incertitudes d’une interpréta-
tion événementielle purement physique, afin de conserver une interprétation cohérente tout au
long de I’étude. Ces recommandations semblent aller de soi, cependant nous avons vu que le
risque de mélanger les incertitudes épistémique et par nature est relativement courant. Une telle
confusion peut mener a I’utilisation d’heuristiques aux conséquences mal maitrisées, ainsi que
nous I’avons montré dans le cas de 1’estimation ponctuelle d’une quantité d’intérét basée sur la
densité prédictive.

Le risque de confusion entre les différents types d’incertitude apparait le plus clairement dans
I’emploi de la densité prédictive, mais il s’étend en fait a toute I’analyse bayésienne, ainsi que le
note [11]. Ce dernier préconise 1’utilisation de 1’analyse par intervalles pour propager I’incertitude
épistémique, combinée avec une modélisation probabiliste des incertitudes par nature. Une telle
approche hybride présente I’avantage de séparer explicitement les deux sources d’indétermination,
et évite la question du choix d’une distribution a priori.

Plus généralement, il existe d’autres représentations de I’incertitude épistémique que celle,
probabiliste, que propose la théorie bayésienne, comme par exemple la logique floue, développée
dans [30], ou la théorie de Dempster-Shafer, introduite par [23]. Cependant, de telles approches
soulevent d’autres problemes difficiles. Notamment, la simplicité conceptuelle avec laquelle
I’approche bayésienne permet de prendre en compte un contexte décisionnel via des fonctions de
colit, ainsi que les propriétés d’optimalité des estimateurs de Bayes, n’ont pas, a notre connaissance,
d’équivalents dans un cadre extra-probabiliste.

Il nous semble donc que, si le choix d’un “bon” outil pour représenter I’incertitude épistémique
souleve encore nombre de débats dans la communauté des ingénieurs, la piste de la théorie
statistique de la décision, malgré son grand age, offre des garanties de cohérence toujours
d’actualité :

- sur le plan théorique, grace aux fondements axiomatiques de 1’approche bayésienne,
- sur le plan pratique grace a la théorie du calcul des probabilités.
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