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ABSTRACT 

Makowski, D., Bancal, R., and Vicent, A. 2011. Estimation of leaf 
wetness duration requirements of foliar fungal pathogens with uncertain 
data—An application to Mycosphaerella nawae. Phytopathology 101: 
1346-1354. 

Wetness of the host surface is a critical environmental factor for the 
development of foliar fungal diseases, but it is difficult to estimate the 
wetness durations required by pathogens for infection when only few 
experimental data are available. In this paper, we propose a method to 
estimate wetness duration requirements of foliar fungal pathogens when 
precise experimental data are not available. The proposed method is 
based on approximate Bayesian computation. It only requires lower and 
upper bounds of wetness duration requirements for one or fewer tem-
peratures. We describe the method, show how to apply it to an infection 
model, and then present a case study on Mycosphaerella nawae, the 

causal agent of circular leaf spot of persimmon. In this example, the 
parameters of a simple infection model were estimated using experi-
mental data found in the literature for the pathogen, and the model was 
applied to assess the risk in a Spanish area recently affected by the 
disease. The results showed that the probability of successful infection 
was higher than 0.5 for 32% of the on-site wetness durations recorded in 
the affected area. Results obtained with simulated data showed that our 
method was able to improve the estimation of wetness duration 
requirement. Given the flexibility of the proposed method, we expect it to 
become adopted for assessing the risk of introduction of exotic fungal 
plant pathogens. 

Additional keywords: Bayesian statistics, biological invasion, pest risk 
analysis. 

 
Due to the growth in global trade and the increasing concern 

about biosecurity, risk assessment for exotic diseases has become 
an emerging topic within the discipline of plant pathology (5,21). 
Furthermore, the World Trade Organization and the International 
Plant Protection Convention stipulate that, in order to avoid 
unnecessary barriers to trade, regulatory measures should be 
justified on the basis of scientific pest risk assessment (PRA). 
Consequently, standardized guidelines for PRAs have been 
adopted internationally (1). Evaluating the epidemic potential of a 
target disease in the climate of the study area is a key component 
in PRA. Climate comparisons were used to determine potential 
geographical ranges for plant pathogens (8,10,28,29,31,32,34,36). 
However, this approach has some limitations, especially when 
based only on distribution records that lack detailed epidemio-
logical data. The absence of the disease in an area can be a 
consequence of an unsuitable climate as well as of the absence of 
inoculum, and predictions for areas with dissimilar climates can 
be highly inaccurate. 

In the case of fungal pathogens of aerial plant parts, the climate 
comparison approach presents additional limitations. It is gen-
erally based on comparison of temperatures and rainfalls and does 
not take into account wetness of the host surface, which is a 
critical environmental factor for the development of these patho-
gens (30). Magarey et al. (23) proposed a different approach 
based on a generic infection model for foliar fungal pathogens. 

This model was developed primary to be used in exotic disease 
forecasting systems, like the NAPPFAST system implemented by 
the USDA-APHIS (22). The model includes several parameters 
describing temperature and wetness duration requirements for 
infection, and predicts the wetness duration required to achieve a 
given critical disease threshold (e.g., 20% disease incidence or 
5% disease severity) at a given temperature. 

The model presented by Magarey et al. (23) computes the host 
surface wetness duration requirement (W(T)) at temperature T 
using a temperature response function W(T) = f(T, θ), where θ is a 
set of five unknown parameters. Once the parameters are esti-
mated, the wetness duration requirements W(T) computed by the 
model can be compared with observed wetness durations, Wobs(T), 
in order to determine whether wetness duration is a limiting factor 
for the infection process. As shown by Magarey et al. (23), the 
model parameters θ can be estimated from laboratory experiments 
in which plants are inoculated with the pathogen and incubated 
under different combinations of temperature and wetness duration 
(20). When infection studies are not available, as it is the case of 
many exotic pathogens, parameter values should be estimated 
from mycelial growth and spore germination experiments or from 
empirical observations of the disease in the field (23). 

Parameter values derived from such experiments can be highly 
uncertain for some pathogens due to several reasons. A first 
reason is that effects of wetness duration on infection may have 
been experimentally tested for a limited number of temperatures 
only, e.g., three, four, or five temperatures. In such cases, few data 
are available and both extrapolation to other temperatures and 
model parameter estimation can be difficult using classical statis-
tical techniques. Secondly, if only a few different wetness dura-
tions have been tested for a given temperature, it is impossible to 
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derive a precise value of the wetness duration requirement, and it 
is therefore more logical to express the experimental results as 
intervals and not as point values. For example, if a critical disease 
intensity was achieved at T = 20°C with a wetness duration equal 
to 24 h but not with a duration equal to 12 h, the true wetness 
duration requirement can be equal to any value between 12 and 
24 h. 

The notion of wetness duration requirement itself is not fully 
clear. Magarey et al. (23) defined the wetness duration require-
ment as the wetness duration required to achieve 20% disease 
incidence or 5% disease severity. However, it may be difficult to 
select an appropriate critical threshold in practice because such 
thresholds depend on the impact of the disease on crop yield, 
prices, and the objectives of the stakeholders (e.g., maximization 
of farmers’ income, environmental protection). In addition, the 
relationship between disease intensity and crop damages is not 
always well known, especially when only spore germination rates 
are measured (11). In such cases, it would be more reasonable to 
consider a range of possible critical disease thresholds than only 
one value. 

Bayesian estimation methods have become popular in many 
areas, especially in plant pathology (24,26,27). In Bayesian statis-
tics, data are usually related to model parameters using a likeli-
hood function, and the posterior distribution is derived by com-
bining the prior distribution and the likelihood function. In simple 
cases, the posterior distribution is computed analytically but, in 
most situations, the posterior distribution must be approximated 
using Monte Carlo methods (6). However, a limitation of these 
methods is that they require the definition of a likelihood func-
tion, i.e., a distribution defining the probability of the observa-
tions conditioned on the model parameters. Depending on the 
nature of the available data, different types of probability distribu-
tions can be used to define the likelihood (e.g., Gaussian, Binomial, 
and Poisson). In our situation, the definition of a likelihood func-
tion is difficult because the wetness duration requirement cannot 
be easily measured and only ranges of values can be defined for 
this variable. Approximate Bayesian computation (ABC) methods 
(3,25) were developed to deal with this type of problem. Like 
other Bayesian methods, ABC aims at estimating a posterior 
probability distribution of the model parameters from both the 
prior distribution and experimental data. The posterior distri-
bution defines the probability of the parameter values conditioned 
on the data. It corresponds to an update of the prior distribution. 
The difference between ABC and the other Bayesian techniques is 
that ABC is implemented without likelihood. 

In this paper, we show how to estimate wetness duration re-
quirements for infection by foliar fungal pathogens without 
precise experimental data. The proposed method is based on ABC 
methods, and it only requires lower and upper bounds of wetness 
duration requirements for one or few temperatures. It can be used 
to estimate the parameters of the simple infection model of 
Magarey et al. (23), to predict wetness duration requirements, and 
to perform uncertainty analysis. The method was applied in a case 
study on the fungal pathogen Mycosphaerella nawae Hiura & 
Ikata, the causal agent of circular leaf spot of persimmon 
(Diospyros kaki Thunb.). 

MATERIALS AND METHODS 

ABC method. Consider a parametric model f relating the wet-
ness duration requirement for infection (W) to temperature (T) 
and including several unknown parameters (θ), W(T) = f(T, θ). An 
example is provided by Magarey et al. (23), who defined a 
nonlinear function including five parameters. The equations of 
this model are presented in the case study below. The proposed 
method is generic and can be implemented with other infection 
models like models presented by Duthie (9) and de Vallavieille-
Pope et al. (7). 

Our objective is to estimate the parameters θ from two types of 
information: (i) prior information about values of θ derived from 
the literature, and (ii) possible ranges of values of W(T) for one or 
several temperatures T derived from experiments. Prior informa-
tion about θ should be expressed as a probability distribution 
reflecting the initial state of knowledge about parameter values. 
Different types of probability distributions can be used, such as 
uniform, Gaussian, etc., depending on the biological meaning of 
the model parameters and on prior knowledge about their values. 
Ranges of values of W(T) should be derived from results of a 
controlled experiment including one or several temperature–wet-
ness duration combinations. For each tested temperature T, a 
range can be defined by a lower bound WLOW(T) and a upper bound 
WUP(T) such that WLOW(T) < W(T) < WUP(T) (or WLOW(T) < W(T) ≤ 
WUP(T)). For example, if a critical disease intensity was achieved at 
T = 20°C with a wetness duration equal to 24 h but not with a 
duration equal to 12 h, the range of values of W(T) at T = 20°C can 
be defined by 12 h < W(20) ≤ 24 h. In some cases, only a lower or 
an upper bound can be defined from the available experimental 
results, especially when a precise critical disease intensity level 
can not be easily established. Possible ranges of values can then 
be defined by W(T) > WLOW(T) or W(T) < WUP(T). 

Let π(θ), Y, π(Y|θ), and π(θ|Y) denote the prior parameter 
distribution, the data, the likelihood, and the posterior parameter 
distribution, respectively. In our case, Y should correspond to 
measured values of the wetness duration requirement W. As only 
ranges of values are available, it is difficult to define the likeli-
hood π(Y|θ) and to compute the posterior distribution π(θ|Y). ABC 
aims at estimating the posterior distribution of the model param-
eters conditionally to the ranges of values defined from the exeri-
ment. This posterior distribution can be expressed as 

π[θ|WLOW(Tk) < W(Tk) < WUP(Tk), k = 1,...,Q] (1) 

where Tk is the kth tested temperature in the laboratory ex-
periment, Q is the total number of tested temperatures, WLOW(Tk) < 
W(Tk) < WUP(Tk) defines the range of possible wetness duration re-
quirements at temperature Tk. 

Rejection algorithm. We show below how the distribution 
(equation 1) can be estimated using the rejection algorithms 
presented by Marjoram et al. (25). This algorithm is based on the 
algorithm C presented in Marjoram et al. (25) and proceeds in 
four steps: (i) randomly generate a candidate value θ from the 
prior distribution π(θ); (ii) calculate W(Tk) for all the tested 
temperature Tk using the model f, W(Tk) = f(Tk, θ), k = 1, …, Q, 
with parameter values θ generated at step i; (iii) check whether 
WLOW(Tk) < W(Tk) < WUP(Tk) for all temperatures Tk. k = 1, …, Q; and 
(iv) accept θ if the condition checked in step iii is valid and return 
to step i. 

This algorithm does not require any burn-in period. The set of 
accepted parameter values can be used to estimate key features of 
the posterior parameter distribution (equation 1) such as mean, 
median, and quantiles. This set of parameter values can also be 
used to generate an ensemble of response curves W(T) = f(T, θ) 
which can be conveniently described by computing mean, 
median, and quantile values for different temperatures. 

This algorithm is easy to code (e.g., with the R software, 
www.cran-project.org) and does not require the evaluation of 
likelihoods. However, the accuracy of its results depends on 
several factors, especially on the number of iterations (i.e., on the 
number of Monte Carlo simulations performed at step i), on the 
distance between the prior distribution and the posterior distribu-
tion, on the number of wetness duration intervals (WLOW, WUP) 
considered at step iii, and on the lengths of these intervals. The 
proportion of accepted parameter values at step iv can thus be 
very small if the posterior is a long way from the prior, if the 
number of wetness duration intervals is large or if these intervals 
are narrow. In such cases, the algorithm could become unstable 
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and a large number of Monte Carlo simulations will be required at 
step i to stabilize the results. The appropriate number of Monte 
Carlo simulations can be determined by doing several implemen-
tations of the algorithm and by analyzing the stability of the 
results. 

Case study: Wetness duration requirements for infection by 
ascospores of M. nawae. Leaf spot caused by M. nawae is a 
serious disease of persimmon that induces leaf necrosis, defolia-
tion, and significant yield loss due to premature fruit drop. The 
disease is endemic in regions of Korea and Japan (12,19), charac-
terized by a humid-subtropical-type climate with a summer rain-
fall pattern and yearly precipitation of about 1,500 mm. The 
disease has been recently detected in central-eastern Spain caus-
ing severe epidemics (4). In contrast to Korea and Japan, persim-
mon growing areas in Spain are characterized by a semi-arid 
Mediterranean-type climate. Annual precipitation rarely exceeds 
500 mm and summers are particularly dry. 

M. nawae overwinters on the leaf litter and reproduces pri-
marily by ascospores formed in pseudothecia. Ascospores are 
disseminated relatively long distances by wind and infect leaves 
in the presence of wetness and adequate temperatures. The 
disease is characterized by a long incubation period and symp-
toms are not visible until a few weeks before harvest (13–16). In 
Korea, a secondary inoculum consisting of Ramularia-type 
conidia formed on leaf lesions has been described. Although these 
conidia are infectious, they are considered of minor epidemio-
logical importance compared with ascospores (18,19). In Spain, 
this secondary inoculum has not been observed and all lesions are 
thought to be caused by ascospore infections. Only experiments 
on spore germination and mycelial growth rates have been 
published (17). Therefore, we consider this disease to be a good 
example to evaluate the proposed methodology with uncertain 
data. 

The rejection algorithm described above was implemented 
using the model of Magarey et al. (23). The wetness duration re-
quirement (W(T)) at temperature T is estimated from a temperature 
response function as follows: 

W(T) = f(T, θ) = min[Wmin/h(T), Wmax] (2) 

with  
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where Tmin is the minimum temperature for infection, Tmax is the 
maximum temperature for infection, Topt is the optimum tempera-
ture for infection, Wmin is the minimum value of wetness duration 
requirement for the critical disease threshold at any temperature, 
Wmax is the upper boundary on the value of W(T) because wetness 
is not always a rate-limiting factor. θ = (Tmin, Tmax, Topt, Wmin, and 
Wmax) are the five model parameters. According to this model, an 
infection occurs when the wetness duration is higher than W(T). 
Prior distributions π(θ) of the five model parameters were 
assumed uniform with lower and upper bounds defined from the 
parameter estimates reported by Magarey et al. (23) for a series of 

pathogenic fungi (Table 1). Lower and upper bounds of the 
uniform distributions were set to the minimum and maximum 
reported estimated values after the exclusion of some very ex-
treme values. Uniform distributions give equal weights to all 
values lying between the lower and upper bounds. 

Data were obtained from two experiments reported in Kwon et 
al. (17) on ascospore germination. In one experiment, ascospore 
germination was measured at several temperatures, 5, 10, 15, 20, 
25, 30, and 35°C, but at only one wetness duration (24 h). The 
measured percentage of germination was equal to 100% at 15, 20, 
and 25°C, was equal to 85.9 and 98.3% at 10 and 30°C, respec-
tively, and no germination was reported at 5 and 35°C. In the 
second experiment, ascospore germination was measured at 
several wetness durations (1, 3, 5, 7, 8, 10, 15, 20, and 24 h) but at 
only one temperature (20°C). No germination was reported for 
the durations 1 to 7 h, the percentage of germination was over 
20% with 8 h, and 100% germination was obtained with 20 h. 

Because only spore germination percentages were available to 
fit the model, W(T) was defined as the wetness duration required at 
temperature T to achieve a critical germination leading to suc-
cessful infection. Lower and upper bounds were defined for W(T) 
based on the experimental results reported above. These bounds 
were defined without any strong assumption about critical germi-
nation threshold; we only assumed that germination percentage 
needed to be higher than zero and lower than 100%. The lower 
bound WLOW(T) was defined as the highest wetness duration lead-
ing to 0% germination among the tested durations at temperature 
T, and the upper bound WUP(T) was defined as the lowest duration 
leading to 100% germination among the tested durations at 
temperature T. One hundred percent germination was obtained at 
15°C/24 h and 25°C/24 h (first experiment), and we set W(15°C) 
< 24 h and W(25°C) < 24 h. One hundred percent germination 
was reported at 20°C/20 h (second experiment), and we set 
W(20°C) < 20 h. Finally, 0 and 20% germination were recorded at 
20°C/7 h and 20°C/8 h, respectively, and we set W(20°C) > 7 h. 

The rejection algorithm was implemented in order to estimate 
the posterior distribution defined by 

π[θ|W(15°C) < 24 h, 7 h < W(20°C) < 20 h, W(25°C) < 24 h] 

The number of iterations was set equal to 50,000, and the com-
putations were replicated five times in order to assess the stability 
of the results. Parameter values were randomly generated at step i 
of the algorithm from the prior distributions. Due to the overlap of 
the uniform prior parameter distributions, constraints on 
parameter values were considered at this step in order to satisfy 
Tmax > Topt > Tmin and Wmax > Wmin. Without these constraints, 
some of the values of Tmax and Topt would have been lower than 
Tmin, and some of the values of Wmax would have been lower than 
Wmin. The acceptance rate of the algorithm at step iv was equal to 
9.2%. The posterior distributions of the model parameters and of 
the resulting model outputs were described by computing mean, 
median, standard deviation, 5, 25, 75, and 95% percentiles over 
the 0.092*50,000 Monte Carlo simulations accepted by the 
algorithm. 

The posterior distribution was used to compute the probability 
that wetness durations recorded in the Spanish site Alzira (located 
in a persimmon growing area) were higher than the predicted 
duration requirements. This probability was defined by 

Pr[f(T,θ) < Wobs(T) (4) 

where Wobs(T) is a wetness duration recorded at temperature T. The 
probability (equation 4) was computed for 672 wetness periods 
recorded from September 2007 to July 2010. Hourly temperature 
and leaf wetness were monitored with automated weather stations 
(Watch Dog Data logger 450. Spectrum Technologies Inc., Plain-
field, IL) equipped with a resistance-type leaf wetness sensor. 

TABLE 1. Lower and upper bounds of the uniform prior distributions of the
five model parametersa 

Parameter Lower bound Upper bound 

Tmin (°C) 1 13.3 
Topt (°C) 8.5 28 
Tmax (°C) 18 35 
Wmin (h) 2 48 
Wmax (h) 6 96 

a These bounds were derived from the estimated parameter values reported for
a series of pathogenic fungi by Magarey et al. (23). 
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Environmental monitors were located between two trees on the 
central row of each orchard at 1.5 m above the soil surface.  
The electronic wetness sensor faced north at an angle of 30° to 
the horizontal. The wetness threshold was adjusted at the 
beginning of the study using a paper string wetness recorder 
(Bazier, Jules Richard; Argenteuil, France) and visual obser-
vations. Two series of probabilities were computed successively; 
one with the prior parameter distribution, one with the posterior 
distribution (2). All computations were done using the R software 
v.2.11.1 (www.cran-project.org). The code is available upon 
request. 

Simulation study: Performance of the method as a function 
of the number of data. A simulation study was carried out in 
order to assess the performance of the method. An artificial 
fungus species was created for this purpose. It was assumed that 
the true parameter values of this species were equal to Tmin = 5°C, 
Topt = 25°C, Tmax = 34°C, Wmin = 10 h, and Wmax = 23 h, and the 
corresponding response of W to T (i.e., the true response of the 
artificial fungus species) was computed. Artificial data were 
simulated from the true response curve in order to evaluate the 
ability of the rejection algorithm to recover the true response of W 
to T in function of the number of data. Data were simulated 
according to five scenarios (S1 to S5) corresponding to five 
different experimental designs: 
• S1: One tested temprature, T = 25°C, and one tested wetness 

duration, W = 20 h. 
• S2: One tested temperature, T = 15°C, and five tested wet-

ness durations, W = 8, 12, 16, 20, and 24 h. 
• S3: One tested temperature, T = 25°C, and five tested 

wetness durations, W = 8, 12, 16, 20, and 24 h. 
• S4: One tested temperature, T=35°C, and five tested wetness 

durations, W = 8, 12, 16, 20, and 24 h. 
• S5: Three tested temperatures, T = 15, 25, 35°C, and five 

tested wetness durations for each temperature, W = 8, 12, 16, 
20, and 24 h. 

An upper bound WUP(T) was defined from the computed re-
sponse for each tested temperature T and each scenario. A lower 
bound WLOW(T) was also defined for each tested temperature T for 
the last four scenarios. These scenarios differed on the tested 
temperatures (equal to the true value of Topt in S1, S3, and S5, but 
different from the true value of Topt in the other scenarios) and on 
the number of tested wetness durations (i.e., the number of data 
available to run the rejection algorithm). 

The rejection algorithm was implemented for each scenario 
with 50,000 iterations and the posterior means of W were 
compared with the true response both graphically and by 
computing mean squared errors (MSE). 

RESULTS 

Prior and posterior distributions for M. nawae. Prior and 
posterior distributions of parameter values obtained for M. nawae 
were summarized by their mean, median, standard deviation, and 
5 and 95% percentiles (Table 2). Posterior means of Tmin and Topt 
were slightly decreased compared with prior means (by less than 
5%), whereas the posterior mean of Tmax was 8% higher than its 
prior mean. The posterior standard deviations of the three tem-

perature parameters were slightly decreased compared with their 
prior standard deviations. The length of the interval defined by the 
5 and 95% percentiles of Topt was smaller in the posterior distri-
bution than the prior. This is confirmed in Figure 1 where the 
posterior distribution of Topt showed a more peaked (kurtosis =  
–0.81) shape than the prior (kurtosis = –1.15). The posterior 
distribution of Tmax was more skewed toward high values than the 
prior (Fig. 1), and the 5% quantile of Tmax was higher with the 
posterior distribution (Table 2). 

Posterior means and medians of Wmin and Wmax were decreased 
by more than 30% compared with their prior values. The standard 
deviation of Wmin was also decreased. The difference between the 
5 and 95% percentiles were much smaller in the posterior distri-
bution of Wmin than in the prior (11.8 h versus 41.4 h). Figure 2 
shows that the posterior distribution of Wmin is much more peaked 
(kurtosis = –0.47) than the prior (kurtosis = –1.19). The posterior 
standard deviation of Wmax was slightly higher than the prior  
(26.7 h versus 27.8 h). However, the 5 and 95% percentiles 
obtained for this parameter were smaller in the posterior distri-
bution than in the prior distribution (Table 2), and the posterior 
distribution of Wmax was skewed toward small values. 

The results were consistent across the five series of computa-
tions performed to assess the stability of the algorithm. For 
example, the five posterior means of Wmin ranged from 10.31 to 
10.45 h, and the five posterior standard deviations of this param-
eter ranged from 3.53 to 3.64 h. The results of the rejection 
algorithm were thus stable with 50,000 Monte Carlo simulations. 

Figure 2 shows the prior and posterior distributions of the 
model outputs resulting from the prior and posterior parameter 
distributions presented in Figure 1. The range of wetness dura-
tions covered by the prior distribution was very large; from 2 to 
96 h (Fig. 2A). This is due to the chosen prior parameter distri-
bution being defined from parameter values estimated for a large 
series of species with different characteristics. The range of 
wetness duration values covered by the posterior distribution is 
much narrower for temperatures between 10 and 30°C. The use of 
the lower and upper bounds (WLOW and WUP) defined from ex-
perimental data led to a strong reduction of the uncertainty about 
wetness duration requirement of M. nawae for these temperatures. 
Compared with the prior distributions, the quantiles obtained with 
the posterior distribution of the model outputs were systemati-
cally lower, and the predicted wetness duration requirements were 
lower with the posterior distribution. The shape of the posterior 
distribution was different from the shape of the prior distribution. 
The prior distribution of the model output was nearly symmetrical 
for all temperatures, whereas the posterior distribution was 
skewed toward low wetness durations for the high and low tem-
peratures (T > 30°C and T < 10°C). 

Figure 3 shows the probabilities for the 672 wetness durations 
recorded in Alzira (Spain) to be higher than the estimated dura-
tion requirements (equation 4). Probabilities were computed using 
either the prior distribution (Fig. 3B) or the posterior distribution 
(Fig. 3C). A probability close to 1 indicates a high chance for the 
recorded wetness duration to be higher than the wetness duration 
required by M. nawae. On the other hand, a probability close to 
zero indicates a low chance for the recorded wetness duration to 
be sufficiently high to meet the estimated fungus requirement. 

TABLE 2. Main characteristics of the prior and posterior distributions of the five model parameters for Mycosphaerella nawaea  

 Prior distribution  Posterior distribution  

Parameter Mean Median 5% 95% SD Mean Median 5% 95% SD 

Tmin (°C) 7.13 7.09 1.61 12.70 3.56 6.81 6.61 1.58 12.56 3.49 
Topt (°C) 18.67 18.70 9.91 27.10 5.45 18.20 18.51 10.00 25.83 4.73 
Tmax (°C) 27.80 28.26 19.65 34.32 4.56 30.08 31.03 21.26 34.65 4.01 
Wmin (h) 24.98 24.91 4.32 45.74 13.26 10.31 9.78 5.08 16.89 3.59 
Wmax (h) 60.64 61.86 22.27 92.63 21.79 42.38 35.69 11.48 89.76 26.68 

a Mean, median, 5% percentile, 95% percentiles, and standard deviation (SD) estimated from 50,000 Monte Carlo simulations. 
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Results showed that, when computed from the prior, most of the 
calculated probabilities were close to zero. Only 3% of the 672 
probabilities were higher than 0.5 and only 1% of these prob-
abilities were higher than 0.8 (Fig. 3B). The probabilities com-
puted from the posterior (Fig. 3C) were much higher: 32% of the 
672 probabilities were higher than 0.5 and 8% of these prob-
abilities were higher than 0.8 (Fig. 3B). According to the posterior 
distribution, almost one third of the wetness periods recorded in 
Alzira are thus likely to meet the fungus requirement. 

Simulation study: Assessment of the estimated responses. In 
the simulation study, the experimental design of the scenario S1 
only includes one temperature (25°C) and one wetness duration 
(20 h). According to the response curve obtained with the true 
parameter values, the wetness duration requirement for T = 25°C 
is lower than 20 h. For scenario S1, the posterior distribution was 
thus computed using the rejection algorithm (50,000 iterations) 
with an upper bound set to 20 h (W(20°C) < 20 h). The prior 
means of the model outputs and posterior means are both pre-
sented as a function of the temperature in Figure 4. The posterior 
means were closer to the true wetness duration requirements than 
the prior means; the MSE was equal to 1,015.6 and 256.6 with the 
prior and posterior means, respectively. Wetness duration require-
ments were overestimated by both prior and posterior means. 
However, for temperatures between 15 and 25°C, the estimated 
wetness duration requirements provided by the posterior means 
were closer to the true values and wetness duration requirements 
were overestimated by less than 4 h. For temperatures lower than 
15°C and higher than 25°C, differences between posterior means 

and true values were larger, but were still smaller than differences 
between prior means and true values (Fig. 4). The use of a single 
upper bound of wetness duration defined for a single temperature 
thus considerably improved the estimation of the wetness duration 
requirements. 

Figure 5 shows the results obtained for scenarios S2 to S5. 
Wetness duration lower and upper bounds were defined from the 
true response at 15, 25, and 35°C, assuming that wetness dura-
tions 8, 12, 16, 20, and 24 h were tested at each temperature. In 
scenario S2, a single temperature T = 15°C was considered, and 
wetness duration lower and upper bounds were set equal to 20 
and 24 h, respectively (20 < W(15) < 24 h), based on the true 
response. The posterior means obtained in this scenario were 
close to the true wetness duration requirement at T = 15°C 
(difference between the true value and the posterior mean equal to 
0.3 h at this temperature), but the estimations were less accurate 
for other temperatures. The MSE was equal to 596.9 and was thus 
higher than the MSE obtained with S1 (256.6), but this value was 
lower than the MSE obtained with the prior means (1,015.6). 

In scenario S3, a single temperature equal to 25°C was con-
sidered, and wetness duration lower and upper bounds were set 
equal to 8 and 12 h, respectively, for this temperature (8 < W(25) < 
12). The results obtained in this scenario were similar to the 
results obtained with scenario S1: the MSE was equal to 252.4 
and was close from the MSE obtained with S1 (256.6). Estima-
tions provided by the posterior means overestimated duration 
requirements, but differences with true values were lower than 3 h 
for temperatures in the range 15 to 25°C. 

 

Fig. 1. Prior and posterior distributions of the model parameters for Mycosphaerella nawae. Tmin is the minimum temperature for infection, Tmax is the maximum 
temperature for infection, Topt is the optimum temperature for infection, Wmin is the minimum value of wetness duration requirement, and Wmax is the upper 
boundary on the wetness duration requirement. 
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In scenario S4, a single temperature equal to 35°C was con-
sidered, and wetness duration lower and upper bounds were set 
equal to 20 and 24 h, respectively, for this temperature (20 < 
W(35) < 24). The MSE was equal to 23.98 in this scenario. The 

estimations provided by the posterior means were close to the true 
values for all temperatures, but the optimal temperature (i.e., the 
temperature minimizing the wetness duration requirement) was 
underestimated (Fig. 5). 

 

Fig. 2. Prior and posterior distributions of the model outputs for Mycosphaerella nawae; 5 and 95% percentiles (dotted lines), first and third quartiles (dashed 
lines), and median (continuous line). Black points indicate the upper bounds of wetness durations used for parameter estimation at T = 15, 20, and 25°C. The gray 
point indicates the lower bound considered at T = 20°C. 

 

Fig. 3. A, Recorded wetness durations and temperatures during 672 wetness periods in Alzira (Spain), and histograms of the corresponding 672 probabilities that
the recorded wetness durations are higher than the required wetness durations. These probabilities were computed from the B, prior distribution and C, posterior 
distribution for Mycosphaerella nawae. 
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The best wetness duration requirement estimations were ob-
tained in scenario S5 where three temperatures and their corre-
sponding wetness duration lower and upper bounds were all used 
together to compute the posterior means (MSE = 9.45). In this 
scenario, the estimated response provided by the posterior means 
were close to the true values for all temperatures and the optimal 
temperature was correctly estimated (Fig. 5). 

DISCUSSION 

In this paper, we presented a Bayesian method based on Monte 
Carlo simulations to estimate wetness duration requirements for 
infection without precise experimental data. The main idea is to 
estimate the parameters of a simple infection model (23) from 
wetness duration intervals derived from experiments. The pro-
posed method has several advantages. It only requires lower and 
upper bounds of wetness duration requirements for one or several 
temperatures and can thus be implemented when only few experi-
mental data from the target species are available in the literature. 
This method does not require the specification of a precise critical 
disease intensity threshold such as 20% disease incidence or 5% 
severity (23). This is an important advantage because the choice 
of such thresholds is often difficult, especially when the impacts 
of the disease on plant growth or crop yield are not well known or 
are highly variable. 

The method can take into account expert knowledge about 
parameter values. Candidate parameter values are randomly gen-
erated from a prior parameter probability distribution. This prior 
distribution describes the initial stage of knowledge about model 
parameter values, before using experimental data. It should be 
defined from plausible values found in the scientific literature or 
in technical reports. When no information about parameter values 
is available, it is possible to define a prior probability distribution 
covering large ranges of possible parameters values. 

Another interest of the proposed method is that it provides 
information on the uncertainty, which is an inherent part of PRAs 
(1). This method computes posterior probability distributions for 
model parameters and estimated wetness duration requirements. 
These distributions can be used to compute extreme quantiles 
(e.g., 5 and 95% percentile) for parameter values and wetness 

duration requirements, and to compute the probability that some 
recorded wetness durations would exceed the estimated duration 
requirements. Another advantage is that the method is based on a 
simple algorithm that is easy to code with any programming 
language and could be included in decision support tools devel-
oped for risk analysis like NAPPFAST (22). 

In addition to infection, disease development depends on other 
components of the pathogen life cycle; incubation, sporulation, 
dissemination, and survival. However, these components will be 
unable to occur without successful infection and, for exotic patho-
gens, data on other elements of the life cycle are rarely available. 
The proposed method could be useful for risk assessors who need 
to estimate wetness duration requirements for infection of inva-
sive pathogens. Epidemiological knowledge of invasive fungi is 
often limited and their impact on plants is not always well known 
(35). It is thus often difficult to derive precise values of wetness 
duration from published experimental data for these species. Our 
approach could help risk assessors to estimate the response of 
wetness duration requirements for infection to temperature, and to 
analyze the uncertainty of the estimated values. Model outputs 
should be interpreted considering the interactions of other factors 
such as availability and connectivity of susceptible hosts, poten-
tial inoculum dynamics, and reproductive traits of the pathogen. 

The utility of the method was illustrated in a case study on M. 
nawae, a fungal pathogen of persimmon. We used data on spore 
germination published in Korea to define lower and upper bounds 
of wetness duration requirements for infection. The relationships 
between germination, disease incidence, and persimmon produc-
tion were not established for this pathogen, and the number of 
tested temperature–wetness combinations was quite limited. It 
was not possible to deduce precise wetness duration requirements 
from the available data, but we were able to define lower and 
upper bounds without any arbitrary assumption about the critical 
germination threshold. Although only very few data were pub-
lished for this pathogen, results obtained with our method showed 
that the climatic conditions recorded in one location in Spain 
were compatible with the estimated wetness duration require-
ments. Before its detection in Spain, circular leaf spot of persim-
mon was restricted to the agroclimatic region of Korea and Japan. 
Based on classic climatic comparisons, the emergence of the 
disease in a semi-arid area was completely unexpected (33). This 
case study showed that our method can provide risk assessors 
with useful results, even when the number of published data is 
limited. 

The performance of the proposed method depends on several 
factors. In our applications, we used the model presented by 
Magarey et al. (23). This model has several advantages: its 
parameters have biological interpretations and the model is simple 
and generic. However, our method could be implemented with 
other models such as those proposed by Duthie (9), and it will be 
interesting to compare results obtained with different models. 
Models may differ in how well the ABC approach works. 

The method performance may also be influenced by the prior 
probability used to generate the candidate parameter values at 
step i of the algorithm. In this study, we used uniform distri-
butions with lower and upper bounds defined to cover the wide 
ranges of parameter values reported by Magarey et al. (23) for 
many fungal pathogens. Other prior distributions could be defined 
when specific information about parameter values is available. 
The choice of the prior distribution may have an effect on the 
required number of iterations needed to reach stable results with 
the rejection algorithm. A high number of iterations is needed 
when the prior is a long way from the posterior distribution (25). 

The type of experimental data used to define wetness duration 
intervals also influences the performance of the method. Our 
simulation study showed that the accuracy of the estimated wet-
ness duration requirements depends on the experimental design, 
especially on the number and values of the tested temperatures. In 

Fig. 4. Simulation study: Comparison of the true response curve (thick
continuous line) with the response curves estimated by the prior mean (thin
continuous line) and by the posterior mean (dashed line). Scenario S1. MSE
corresponds to the mean square error computed from the true response curve
and the posterior mean. 
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our simulation study, estimated values were more accurate with 
experiments including three temperatures than with experiments 
including only one temperature. However, in all the considered 
scenarios, the posterior means of the model outputs were always 
closer to the true values than the prior means. 

Bayesian inference techniques like MCMC have attracted a lot 
of interest since the last two decades in many different areas, 
especially in plant pathology (24,26,27). These approaches are 
powerful but require that we can compute the likelihood function, 
i.e., the probability of obtaining the observations given some 
parameter values. Since the likelihood can be difficult to compute, 
ABC method (also named likelihood-free inference) has been 
developed to avoid the need for a likelihood function. This 
approach was first applied in population genetics (3) and is 
increasingly used in other fields (2), but has not been applied in 
plant pathology so far. The rejection algorithm used in this study 
is one of the simplest algorithms developed for ABC method. It 
has several advantages; it is easy to code, does not require a burn-
in period, and can use parallel computations (25). This algorithm 
performed well in our application and led to stable results with a 
reasonable number of Monte Carlo simulations (50,000). How-
ever, this algorithm may require a very high number of simu-
lations to solve more complex problems and, in such cases, the use 
of more sophisticated ABC algorithms could be useful (2,3,25). 
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