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 ABSTRACT 

 The single-step genomic BLUP (SSGBLUP) is a 
method that can integrate pedigree and genotypes at 
molecular markers in an optimal way. However, its 
present form (regular SSGBLUP) has a high computa-
tional cost (cubic in the number of genotyped animals) 
and may need extensive rewriting of genetic evaluation 
software. In this work, we propose several strategies to 
implement the single step in a simpler manner. The 
first one expands the single-step mixed-model equations 
to obtain equivalent equations from which the regular 
(including pedigree and records only) mixed-model 
equations are a subset. These new equations (unsym-
metric extended SSGBLUP) have low computational 
cost, but require a nonsymmetric solver such as the 
biconjugate gradient stabilized method or successive 
underrelaxation, which is a variant of successive over-
relaxation, with a relaxation factor lower than 1. In 
addition, we show a new derivation of the single-step 
method, which includes, as an extra effect, deviations 
from strictly polygenic breeding values. As a result, 
the same set of equations as above is obtained. We 
show that, whereas the new derivation shows apparent 
problems of nonpositive definiteness for certain cova-
riance matrices, a proper equivalent model including 
imaginary effects always exists, leading always to the 
regular SSGBLUP mixed model equations. The system 
of equations can be solved (iterative SSGBLUP) by 
iterating between a pedigree and records evaluation 
and a genomic evaluation (each one solved by any it-
erative or direct method), whereas global iteration can 
use a block version of successive underrelaxation, which 
ensures convergence. The genomic evaluation can ex-
plicitly include marker or haplotype effects and pos-
sibly involve nonlinear (e.g., Bayesian by Markov chain 
Monte Carlo) methods. In a simulated example with 

28,800 individuals and 1,800 genotyped individuals, 
all methods converged quickly to the same solutions. 
Using existing efficient methods with limited memory 
requirements to compute the products Gt and A22t 
for any t (where G and A22 are genomic and pedigree 
relationships for genotyped animals, and t is a vector), 
all strategies can be converted to iteration on data 
procedures for which the total number of operations is 
linear in the number of animals + number of genotyped 
animals × number of markers. 
 Key words:   genetic evaluation , genomic selection , 
mixed model 

 INTRODUCTION 

 Genetic evaluations in dairy cattle nowadays include 
massive SNP marker data. This will be referred to as 
genomic evaluation hereinafter. Methods include adap-
tations of BLUP evaluations, sophisticated regressions 
based mainly on Bayesian models, and nonparametric 
techniques. Results have generally shown a superiority 
of genomic evaluations over pedigree-based ones. 

 In pedigree-based models using BLUP, large data sets 
are used. Solution of mixed-model equations (MME) 
usually takes O(n) computing time; that is, central 
processing unit (CPU) time roughly proportional to n, 
the number individuals in the pedigree, using iteration 
on data techniques that reduce storage needs to O(n) 
elements (Schaeffer and Kennedy, 1986; Misztal and 
Gianola, 1987; Strandén and Lidauer, 1999). Genomic 
evaluations that use mixed models, such as Bayesian 
regressions, Lasso, or Elastic Net, can be efficiently 
computed by several strategies, with an O(pm) cost, 
where p is the number of genotyped individuals and 
m is the number of SNP effects (Legarra and Misztal, 
2008; VanRaden, 2008; Friedman et al., 2010; Shepherd 
et al., 2010). Iteration on data techniques can reduce 
storage to O(m) variables. 

 However, all of these strategies work for models 
where the own phenotype of the genotyped individual 
is being analyzed. In dairy cattle, daughter yield devia-
tions (DYD; VanRaden and Wiggans, 1991) are used. 
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Unfortunately, bias in computation of DYD resulting 
from genomic preselection of the best animals may be-
come a problem (Mäntysaari and Strandén, 2010; Patry 
and Ducrocq, 2011a,b). Other problems of DYD are 
their variable accuracy, difficult definition, or computa-
tion for some nonlinear traits (e.g., longevity) or species 
(e.g., sheep or swine).

A solution to this problem is the one- or single-step 
method, suggested simultaneously by Misztal et al. 
(2009), Legarra et al. (2009), Aguilar et al., (2010), and 
Christensen and Lund (2010). We propose here to call 
this method single-step genomic BLUP (SSGBLUP). 
The method uses the property that, at a given locus, 
the covariance of the gene frequency (g = {0, 1/2, 1}) 
for the ith allele of 2 individuals j and k is described by 
the expression Cov(gij, gik) = θjkpi(1 – pi) (Cockerham, 
1969), where θjk is the coancestry of the 2 individuals. 
Thus, the (unobserved) genotype of an individual can 
be modeled using the numerator relationship matrix 
(Gengler et al., 2007; Christensen and Lund, 2010). This 
will equally be true for any linear function of genotypes 
(such as additive breeding values, which are a linear 
function of genotypes at causal loci). Therefore, the ex-
pression can be applied to breeding values, markers, or 
haplotypes, and warrants generality of the derivations 
of SSGBLUP to models based on markers, haplotypes, 
or even nonparametric genomic covariances.

Consider the model

	 y = Xb + Wu + e, 	 [1]

where y is a vector of phenotypes at a trait; b, u, and 
e are fixed effects, random effects, and residuals, re-
spectively; and X and W are incidence matrices.. For 
clarity and without loss of generality, we will consider 
here that R I= σe

2, where R is the covariance matrix of 
e, I is an identity matrix, and σe

2 is the residual vari-
ance.

The MME for single-trait SSGBLUP are
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with terms as previously defined, and 
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where A and G are, respectively, pedigree-based (nu-
merator) and genomic relationship matrices, parti-
tioned in genotyped and ungenotyped individuals, 
σu Var u2 = ( ) is the polygenic genetic variance and 
α σ σu e u= 2 2 .  The model is easily extended to a multiple 
trait or a model including maternal or random regres-
sion genetic effects by including a more general struc-
ture in R, substituting σu

2 by a covariance matrix, and 
using Kronecker products. The G matrix is usually 
formed as in VanRaden (2008); that is, G = ZDZ′, 
where Z is a centered incidence matrix of SNP, Di,i = 
m/2piqi or Di,i = 1/2∑piqi, and pi is the allelic frequency 
of the ith (i = 1 . . . m) locus. An improved G may 
require an appropriate scaling of G so that G and A22 
are proportional to the same variance component σu

2 
(VanRaden, 2008; Vitezica et al., 2011). Computation 
strategies for SSGBLUP are described in Aguilar et al. 
(2010, 2011). The cost of inversions of G and A22 is a 
cubic function O(p3) of the number of genotyped ani-
mals (p).

In our opinion, 3 major barriers for widespread use 
of SSGBLUP are (1) this (cubic) computing cost; (2) 
the need to modify the existing software, which covers 
the wide variety of evaluation models currently used 
(including heterogeneity of variances, multiple-trait 
models, threshold models, test-day models, and sur-
vival models, among others); and (3) its linear form, 
which precludes the use of nonlinear estimators includ-
ing genomic information. We address here 2 of these 
3 problems. We show how to write 2 sets of equations 
equivalent to Equation 2, computable in O(n) + O(pm), 
without explicit inversion and we present an alternative 
derivation of Equation 2, leading to an iterative solu-
tion procedure that allows the use of already written 
BLUP software, which cannot otherwise incorporate 
genomic information. Both allow iteration on data 
techniques. As for the third problem, a partial solution 
is to precompute an improved G matrix (Zhang et al., 
2010; Legarra et al., 2011). We outline a more general 
procedure to include Bayesian estimators, based on the 
iterative approach.

MATERIALS AND METHODS

We propose to solve Equation 2 by iteratively consid-
ering 2 systems: the first one as close as possible to the 
regular MME, apart from a correction of the right-hand 
side, and the second one isolating the block correspond-
ing to genotyped animals. In other words, an iterative 
solution of Equation 2 is obtained, alternating between 
a regular genetic evaluation and a regular genomic 
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evaluation, whatever the model and the methodology 
chosen for either one. Such strategy should lead to only 
minimal modifications of the existing BLUP software 
used for national evaluations and should be compatible 
with most genomic evaluation methods.

Two different derivations of these 2 systems will be 
presented. Although their starting point is quite differ-
ent, they lead to equivalent results.

Extended SSGBLUP MME Introducing  
Additional Unknowns

The first technique is the derivation of an equivalent 
model by including additional unknowns. This form of 
data augmentation can be seen as the opposite of the 
well-known absorption technique, and aims at simpli-
fying computations. For instance, Henderson (1977) 
showed that including all animals in a pedigree in the 
set of unknowns allowed the use of his simple rules for 
inversion of A (Henderson, 1976). Similarly, including a 
permanent environment effect in a simple repeatability 
model leads to an easier solution than explicitly us-
ing the residual covariance structure between repeated 
records of a same animal.

Distinguishing between phenotypes of nongenotyped 
and genotyped animals, we can write Equation 1 as
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Regular SSGBLUP. Consider then an extended 
form of system [2]:
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		  [3]

where, again, subscripts 1 and 2 refer to nongeno-
typed and genotyped animals, respectively, and X′ = 
(X1′X2′). Complex models (e.g., random regression or 
maternal models) would include terms such as W1′W2, 
but this will not be used here (although our derivations 
are completely general). In Equation 3, u was split in 
ungenotyped (u1) and genotyped (u2) animals.

Unsymmetric Extended SSGBLUP. An equiva-
lent system of equations is
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where φ and γ are new vectors of unknowns, with the 
same size as u2. Vector γ corresponds to vector s in 
Strandén and Garrick (2009). The lack of symmetry of 
these equations will be used later to describe the con-
vergence of iterative methods to the solution. Absorp-
tion of the last 2 equations into the first 3 equations 
leads to system [3]. Equation 4 can be solved, for in-
stance, by successive underrelaxation (SUR; Broyden, 
1964; which is a special case of successive overrelaxation 
(SOR) with relaxation factors lower than 1; we will 
return to this point later) or the biconjugate gradient 
stabilized method (BiCGstab; van der Vorst, 2003; 
Misztal et al., 2009). If one changes the sign of the 
bottom row of Equation 4, this creates a symmetric 
system of equations. In that case, a negative sign  
is associated with G, which is unusual; this does not 
prevent γ from being a variable with real domain.  
It is, in fact, a linear transformation of u; actually,  
γ = G–1u2, ϕ = −A u22

1
2, with variances 

Var Varu uγ ϕ( ) = ( ) =− −G A1 2
22

1 2σ σ, . 

Extended SSGBLUP MME Introducing Additional 
Unknowns and Marker Effects

For models where G = ZDZ′, another set of equa-
tions explicit on marker solutions ĝ is as follows:
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		  [5]

These equations show that ĝ = DZ′G−1û2, which is 
the best linear predictor of marker effects g given u2 
(Henderson, 1973; Strandén and Garrick, 2009). Simi-
lar systems of equations are being used by some scien-
tists [P. M. VanRaden, US Department of Agriculture, 
Bethesda, MD, personal communication; D. L. John-
son, Livestock Improvement Corp. (LIC), Hamilton, 
New Zealand, personal communication; N. Gengler, 
Université de Liège (ULg), Gembloux, Belgium, per-
sonal communication]. A reduced, but possibly more 
cumbersome, system of equations including u1 and g 
(but not u2) is as follows:
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In contrast to the previous one, the left-hand side of 
these equations is positive definite and symmetric. Its 
derivation is presented in Appendix A.

Extended SSGBLUP MME Derived from  
an Equivalent Model

In model 1, one can decompose u into a strictly 
polygenic part u* and a deviation due to the genomic 
information that we will call d = u – u*:

	 y = Xb + W (u* + d) + e.	  [6]

Let us assume (or impose) that Var u

u
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Although G is guaranteed to be semipositive definite 
and A is positive definite, G – A (although full rank) 
has no guarantees whatsoever; in fact, more often than 
not, the eigenvalues of G – A span negative and posi-
tive values. Thompson (1979) and Thompson and 
Meyer (1990) suggested including imaginary effects to 
deal with negative variances. These equivalent models 
were found to considerably reduce computing time for 
estimation of genetic parameters with a multivariate 
reduced animal model (Besbes et al., 1992). Developing 
this idea, in Appendix C (which we suggest reading 
after Appendix B) we show that mixed model equa-
tions are identical whether G – A is positive definite or 
not, as far as it is invertible.

Distinguishing between phenotypes of nongenotyped 
and genotyped animals, we can write Equation 1 as
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For nongenotyped animals, the deviation d1 due to 
the genomic information is modeled as a linear function 
of d2, obtained by regressing on genomic contribution 
d2 from genotyped individuals: d A A d1 12 22

1
2= − . There-

fore,
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From this model, MME can be derived (details are 
provided in Appendix B), and are
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In Appendix B, we show that the absorption of the 
last equation of system [7] into the first ones leads to 
system [3]: models [1] and [6] are equivalent.

The last equation of [12] is

	 A G A d A u1 1
22 22

1
22 2

− − −+ −( )











  =   2
ˆ ˆ 	

or

	 ( ) ˆ ˆ ˆ ˆ ,*G A d A u d A u1 1 1− − − −
22 22 2 22 22 2 =   ( - )=   	

which becomes, after some manipulations,

	 ˆ ˆ ˆ .d u A G u2 = − −
2 22

1
2 	 [8]

This result implies that ˆ ˆ .*u A G u2 22
1

2= −  Note also that 
ˆ ˆd I A G Zg2 22

1= −( )−  if u2 = Zg.

Iterative Solution of SSGBLUP MME: Iterative 
SSGBLUP

Splitting the MME in [4] into 3 parts, one gets the 
following block iterative solution algorithm:
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for ˆ,b  û1, and û2.
(2) Solve

	 A u G u22 2 2ˆ ˆ ˆ ˆ for ˆ ˆ.ϕ γ ϕ γ= =  and      and 	 [10]

Equivalently, splitting the MME in [7] leads to the fol-
lowing:
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(2) Solve

	 A G A d A u1 1 1
22 22 2 22 2
− − −+ −




=( ) ˆ ˆ 	

for ˆ ,d2  which becomes, after some manipulations com-
parable to those leading to [7] and using [8]:

(2′) Compute

	 A d A G u1 1
22 22

1
2

− − −= −( ) = −ˆ ˆ ˆ ˆ,2 ϕ γ 	 [12]

which is identical to [10]. In other words, the solution 
of the equivalent systems [2], [4], and [7] can be achieved 
by iterating between system [9] and [10], where [9] can 
be viewed as the regular MME used for most classical 
genetic evaluations, except for a correction term 
α αu uA d22

1
2

− = −( )ˆ ˆ ˆϕ γ  of the right-hand side for geno-
typed animals. This contribution of genomic informa-
tion is proportional to the difference between 2 similar 
expressions: ˆ ˆϕ = −A u22

1
2 and ˆ ˆ .γ = −G u1 2  If A22 and G are 

of large size, an iterative algorithm to solve A u22 2ˆ ˆϕ =  
and G uˆ ˆγ = 2 can be implemented.

It is well known (Coleman, 1984) that convergence 
of (block) Gauss-Seidel or SOR for Bx = t, where B 
is the matrix of coefficients of the MME and x is the 
vector of unknowns at each iteration, does exist if and 
only if B is positive definite when B is symmetric and, 
therefore, [9–10] will converge if [7] is positive definite. 
It can be shown that this is the case if G – A22 is itself 
positive definite. This is rarely the case.

However, a less-known result is that, for B not sym-
metric, if B+B′ is positive definite (this is the case of 
[4]) then, a positive, real number wg exists so that for 0 
< w < wg, the iterative solution using SOR/SUR with 
a relaxation parameter w will converge to the solution 
(Broyden, 1964; Varga and Niethammer, 1993). Usually 
wg will be lower than 1. Therefore, because G – A22 is 
usually not positive definite, updates of iterative SS-
GBLUP using [9–10], need to be done by block SUR 
(Broyden, 1964), where new solutions are a weighted 
average of the solutions to [9–10] and the former solu-
tions. Therefore, SUR iterations should be as follows. 
At iteration t,
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where 
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 is a solution to [9], ˆ ˆ ˆ ,*ϕ ϕ ϕt t= + −( ) −ω ω1 1  

and ˆ ˆ ˆ ,*γ γ γt t= + −( ) −ω ω1 1 where ˆ*ϕ  and ˆ*γ  are solu-
tions to [10]. As for the system of Equation 5, this can 
be implemented iteratively as follows:
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(2) Solve A u22 2ˆ ˆϕ =  for ˆ;ϕ
(3) Either solve ĝ = DZ′G−1û2 and ˆ ˆγ = −G Zg1  or 

compute ˆ ˆγ = −G u1 2 and ˆ ˆg DZ= ′ .γ  [13]

Small Example

Consider the pedigree in Figure 1. Only 2 individuals 
in this pedigree are genotyped: 4 and 6. We simulated 
by gene dropping 20 biallelic markers. As a result, ma-
trices G and A22 have values

	 G =












1 36 1 45
1 45 2 45
. .
. .

	

and

	 A22

1 38 1 19
1 19 1 50

=












. .

. .
;	

records are y = (1, 2, 0.3, 5, 0.2, 0.1), and the heritabil-
ity is h2 = 0.1; the left-hand side of the mixed model 
Equation [4] is shown in Figure 2 to show the sparsity 
pattern. Equation [5] and regular SSGBLUP [3], un-
symmetric extended SSGBLUP [4], iterative SSGBLUP 
[9–10] (with ω = 1) provided exactly the same results, 
namely û = (−0.12, 0.00, −0.17, 0.03, −0.11, −0.19) 
with ˆ . , . .d2 0 07 0 16= − −( )  This contrasts with û = 
(−0.05, 0.05, −0.07, 0.10, −0.03, −0.03) when the ge-
nomic information is ignored.

Simulated Example

We used the QMSim simulator (Sargolzaei and Schen-
kel, 2009) to simulate 28,800 individuals, from which 
1,800 were genotyped for 30,000 polymorphic loci. The 
scenario is roughly as in Vitezica et al. (2011). Geno-
typed individuals were the last 2 generations, half of 
them with performance records and half without. Ma-
trix G was created and tuned to fit A22 as in Vitezica et 
al. (2011) BLUPFST. Matrices G and A22 were positive 
definite; G – A22 was not: about half of its eigenvalues 
were negative.

Three ways of estimating breeding values were used: 
regular SSGBLUP [3], unsymmetric extended SSGB-
LUP [4], and iterative SSGBLUP [9–10]. In regular 
SSGBLUP, G and A22 and their inverses were created 
using preGSf90 software (Aguilar et al., 2011); resolu-
tion was by preconditioned conjugate gradient (PCG) 
as implemented in the Blupf90 package. In unsymmet-
ric extended SSGBLUP, G and A22 were read from file 
and stored in memory; resolution was by BiCGstab as 
implemented by I. Aguilar (INIA Las Brujas, Canelo-
nes, Uruguay) in the Blupf90 package. In iterative SS-
GBLUP, 2 solution loops were used: the outer loops 
updated the right-hand side in [9] and [10]; the inner 
loops solved [9] and [10]. Equation 9 was solved by 
PCG; as for [10], 2 strategies were used: one was to 
solve A u22 2ˆ ˆϕ =  and G uˆ ˆ ;γ = 2  this mimics the iteration 
on data situation. The other one was to apply (17) us-
ing ˆ ˆϕ = −A u22

1
2 and ˆ ˆγ = −G u1 2 with already inverted G−1 

and A22
1− .

Values of ω = (0.2, 0.5, 0.6, 0.7, 1.0) were tried. In 
all cases, equations were stored in memory using hash 
techniques, but conclusions about convergence are the 
same as for iteration on data techniques. The number of 
nonzero elements in traditional MME was 214,911. The 
number of nonzero elements in G and A22 was 1,8002 
= 3,240,000. Convergence levels were set to 10−12 in all 

Figure 1. Example pedigree.
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iterative solvers (PCG, BiCGstab, and SUR), although 
they are not strictly comparable across methods. Table 
1 summarizes the different computing options.

RESULTS AND DISCUSSION

Simulated Example

Table 1 reflects the computing times and number of 
operations for each method. Figure 3 shows the pro-
gression of convergences for each method. All methods 
reached the same solutions (correlation >0.9999) once 
converged. The iterative SSGBLUP did not converge 
for ω = 0.6 or higher, whereas convergence for ω = 0.5 
took 83 iterations (213 iterations for ω = 0.2). Overall, 
and according to results in Table 1, all solvers are com-
petitive. However, this will not be so for other numbers 
of total and genotyped individuals and number of SNP. 
We will discuss this point later.

The need for integrating all data in genomic evalua-
tion implementations is well acknowledged (VanRaden 
et al., 2009; Wolc et al., 2011). In addition to being the-
oretically appealing, implementation of the single-step 
methodology provides good results in both simulated 
(Christensen and Lund, 2010; Vitezica et al., 2011) and 
dairy cattle, poultry, and pig real data (Aguilar et al., 
2010; Chen et al., 2011; Christensen et al., 2011). It is 
crucial to use single step to get unbiased estimates if 
early selection based on genomic proofs becomes a real-
ity (Patry and Ducrocq, 2011a). Yet, the need for new 
software as well as a lack of understanding of features 
of the method seem to somehow hamper its implemen-

tation. We herein provide an alternate derivation and 
techniques (expansion of MME, iterative solutions, and 
algorithms that can work for iteration on data) that 
may help practitioners. The expansion was used by 
Henderson (1977) to include the sparse inverse of the 
numerator relationship matrix in the MME. The al-
ternate derivation follows the logic of unknown parent 
groups (e.g., Quaas and Pollak, 1981), with the added 
complexity that, in the latter, group effects were added 
to the founders, whereas here deviations d due to SNP 
effects are added “in the middle” of the pedigree. We 
prove in Appendix C that this derivation is correct re-
gardless of whether G – A22 is positive definite or not.

Distributional Properties

In all symmetric transformations, the distributional 
properties of [1] are kept. For instance, reliabilities of 
û can be computed from the inverse of the left-hand 
side of [4] (in its symmetric counterpart) or [5] or [7]. 
Further, a Gibbs sampler can be implemented by us-
ing [9–10] or [9, 10, and 13]. This Gibbs sampler can 
eventually update G without the need to calculate its 
inverse.

Theoretical Convergence

As presented above, let B be the left-hand side coef-
ficients of [4]. Because B + B′ is positive definite, then 
for some 0 < w < wg, the iterative solution using SUR 
will converge to the solution (Broyden, 1964; Varga and 

Figure 2. Left-hand side of the mixed model equations according to Equation 4 for the example.
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Niethammer, 1993). Usually wg is lower than 1. There-
fore iterative SSGBLUP [9–10], which is a block variant 
of SUR (Coleman, 1984), will converge to a solution. 
As for the BiCGstab used in unsymmetric extended 

SSGBLUP, this is a robust algorithm (van der Vorst, 
2003). Note that only (block) stationary methods were 
considered here. Nonstationary methods (e.g., variants 
of PCG) could lead to faster convergence.

Table 1. Computing options and performances to solve the single-step model in a simulated example 

Item1
Regular  

SSGBLUP2
Unsymmetric  

extended SSGBLUP
Iterative  

SSGBLUP [1]
Iterative  

SSGBLUP [2]

Needs inverted G−1 and A22
1− Yes No No Yes

Solving method PCG3 BiCGstab4 SUR5 (outer loop) SUR (outer loop)
PCG (Equations 9 and 10) PCG (Equation 9)

Number of iterations 62 240 836 836

Computing time, s 2 47 286 19
1G = genomic relationship matrix; A22 = pedigree relationship matrix.
2SSGBLUP = single-step genomic BLUP.
3Preconditioned conjugate gradient.
4Biconjugate gradient stabilized method.
5Successive underrelaxation.
6Outer loop.

Figure 3. Convergence of regular single-step genomic BLUP (SSGBLUP), unsymmetric extended SSGBLUP, and iterative SSGBLUP in the 
simulated data. Color version available in the online PDF.
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Different Definitions of G

An overlooked aspect about Equation 2 is that 
the derivation is general: other matrices can be used 
instead of the VanRaden (2008) G, as long as they 
describe additive covariances (not necessarily relation-
ships) among individuals. For instance, in the French 
dairy cattle evaluation, gametic effects based on haplo-
type segments are used (Guillaume et al., 2008). If the 
incidence matrix of gametic effects in locus i is Zi, and 
the covariance matrix among gametic effects is Λi, then 
G = κ0A22 + ∑κiZiΛiZi′, where κi are fractions of the 
total genetic variance.

Computing

In unsymmetric extended SSGBLUP or iterative SS-
GBLUP, no explicit inverses of A22 and G are needed. 
These are expensive. Computation of A22 has a cost of 
O(pn) or O(p2) if a sub-pedigree is extracted (Aguilar 
et al., 2011); computation of G has O(mp2) cost. Invert-
ing either matrix costs O(p3). Direct computation of 
G−1 costs O(mp2) if the Sherman and Morrison (1949) 
formula is used. This is not tenable for very large p.

However, in such a case, equations can be solved by 
iteration on data using Jacobi or PCG methods, with-
out explicit computation or storage of either A22 or G. 
In both, the kernel and more expensive part of the solv-
ing method consists in repeated multiplications of the 
form t = Bx (in BiCGstab, this computation is done 
twice per round). For classical MME (i.e., [9]), the PCG 
method using iteration on data has been described by 
Strandén and Lidauer (1999), and consists in reading 
data and pedigree files and adding contributions. 
Modifications for unsymmetric extended SSGBLUP [4] 
would consist of adding the A22φ and Gγ contribu-
tions. The first one can be done, without explicit com-
puting of A22, by reading twice the pedigree file, with 
cost O(n) (Misztal et al., 2009). The second one can be 
done, if G has a form similar to G = ZDZ′ (e.g., Guil-
laume et al., 2008; VanRaden, 2008; Calus et al., 2009) 
by computing Gγ = Z[D(Z′γ)] (Strandén and Garrick, 
2009), at a cost O(mp) if D is diagonal or very sparse, 
which is usually the case. If mp is very large, the prod-
uct can be computed by iteration on data. In iterative 
SSGBLUP, solving G uˆ ˆγ = 2 and A u22 2ˆ ˆϕ =  (i.e., [10]) 
can be achieved by PCG with the same requirements. 
Indeed, O(mp) is the lowest bound attainable, because 
this is the cost of reading the raw genotypic data.

In regular SSGBLUP equations (i.e., [3]), inversions 
of G and A22 can be avoided as well. The multiplication 
t = Bx, needed in PCG:
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and 

	 αu G u A u− −−( )1
2 22

1
2ˆ ˆ ,	

where the latter can be constructed by solving the sys-
tems of equations G uˆ ˆγ = 2 and A u22 2ˆ ˆ .ϕ =

Therefore, solving the regular SSGBLUP Equation 
[3], the unsymmetric expanded SSGBLUP using [4] or 
[5], or the iterative SSGBLUP system [9–10] has a cost 
O(n) for the least squares, A−1, and A22 parts; and 
O(mp) for the G part (times a certain number of itera-
tions to solve the equations G uˆ ˆγ = 2 and A u22 2ˆ ˆ ,ϕ =  
when needed). This is equivalent to the cost of running 
a 2-step genetic evaluation where pedigree-based and 
genomic-based genetic evaluations are run in succes-
sion. In addition, solving of regular MME (as in [9]) can 
be done using any existing, already optimized, software. 
Table 2 summarizes the number of operations and 
memory needed for each system in the cases of iteration 
on data. The case of regular SSGBLUP without inver-
sion of G and A22 is as iterative SSGBLUP [1]. It can 
be seen that, whereas all methods are in principle fea-
sible, its effectiveness for large p depends critically on 
the number of iterations needed to achieve convergence 
of global equations and of blocks in the case of iterative 
SSGBLUP and of regular SSGBLUP without inversion. 
This deserves further investigation with real, large data 
sets.

Estimation of SNP Effects

As for Equation 5, this is explicit in SNP effects. 
Note that ĝ = DZ′G−1û2; that is, assuming multivari-
ate normality, ĝ is the best predictor of g, given û2, or, 
equivalently, the solution to the system û2 = Zg, with 
D the covariance matrix of g and no residual terms. 
There are ways of solving for g, the marker effects, 
which do not involve explicit construction or inversion 
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of G (Legarra and Misztal, 2008; VanRaden, 2008; 
Strandén and Garrick, 2009) and also nonlinear meth-
ods (BayesB and Bayesian Lasso, among others; Meu-
wissen et al., 2001; VanRaden, 2008; de los Campos 
et al., 2009). Note that even if there is no residual (û2 
= Zg), g has a posterior distribution because g has a 
prior distribution; therefore, the different g where û2 = 
Zg (and, therefore, equally likely) have different a pos-
teriori probabilities. Thus, the same software used for 
nonlinear genomic evaluation methods can be used for 
single step, provided it iteratively uses current values of 
û2 as input data, possibly (for the sake of practicality) 
fitting a very small residual variance. Use of nonlinear 
models for g within [5] will be an approximation be-
cause [5] was derived on the pretence of multivariate 
normality. Matrix G involved in computation of γ = 
G−1Zg should be updated if the variance explained 
by each SNP changes (as in BayesA, BayesB, or the 
Bayesian Lasso). Whereas individual variances of SNP 
effects depend much on the prior assumptions, use of 
estimated G, which is a function of all of them, seems 
to be a robust alternative (Zhang et al., 2010; Legarra 
et al., 2011), possibly because the weight of the prior 
fades out.

A Special Case

Situations exist where it is desired to base genomic 
evaluations on a reference population for genomic selec-
tion differing from the complete list of genotyped ani-
mals in the national evaluation. This is the case when 
there are some phenotypes from genotyped animals 
that we would like to exclude from the genomic evalua-
tion part: in most European countries and Canada, own 
records from bull dams are excluded for the estimation 
of marker effects, because of fear of preferential treat-
ment. Even if cows are not subject to preferential treat-

ment, the bias in genotyping (genotyped animals hav-
ing higher breeding values than the average) might lead 
to bias of genomic proofs (Vitezica et al., 2011). On the 
other hand, there may also be some extra phenotypes 
from genotyped animals that need to be included in the 
genomic evaluation part but are not routinely included 
in regular evaluations. A typical example is phenotypes 
(usually deregressed international EBV) from foreign 
bulls in multinational reference populations. A variant 
of the single-step approach would consist of including 
a usual genomic evaluation before the second step (i.e., 
Equation 10) of the iterative procedure to get a û2 es-
timate based on the desired information. This estimate 
would be plugged into [10]. The convergence in practice 
to a proper solution needs to be studied.

Current Limits

In practice, to our knowledge, current software (as 
implemented by Aguilar et al., 2011) and hardware has 
allowed the use of single step with computed inverses of 
G and A22 for up to 17,000 genotyped individuals and 
18 traits (Tsuruta et al., 2011). This is possibly enough 
for many animal populations (e.g., in other dairy cattle 
or sheep populations). However, in the Holstein popula-
tion of large countries (United States, Germany, and 
France, among others), the number of genotyped ani-
mals is already or will soon exceed 50,000 or 100,000 
animals. Therefore, at some point, explicit inverses will 
no longer be possible to be computed and stored. Also, 
with high-density SNP chips, computation of G itself 
will become a challenge; again, using approaches that 
do not compute G explicitly, (e.g., solving [9–10] or [4] 
by BiCGstab) the cost is O(mp), that is, the same order 
of magnitude as reading the data. Further, iteration on 
data are available so memory is not a real challenge. 
Extensive testing in challenging situations (complex 

Table 2. Number of operations and memory needed for iteration on data with different solvers1 

Item2
Regular  
SSGBLUP3

Unsymmetric  
extended 
SSGBLUP

Iterative  
SSGBLUP [1]

Iterative  
SSGBLUP [2]

No. of operations
G−1 and A22

1−  needed Yes No No Yes

Computing G−1 and A22
1−

O(mp2) + O(pn) + 
O(p3) + O(p3) 0 0

O(mp2) + O(pn) + 
O(p3) + O(p3)

Solving (1 iteration) O(p2 + n) O(pm + n + n) O(tMn + tGpm + tAn) O(tMn +2p2)
    Memory    
  O(p2 + n) O(n + 2p) O(n + 2p) O(p2 + n + 2p)
1m = number of SNP; n = number of individuals in pedigree; p = number of genotyped individuals; tM, tG, and tA: number of iterations needed 
to achieve convergence of regular genetic evaluation (Equation 9), G uˆ ˆ ,γ = 2  and A22φ = û2 (Equation 10), respectively.
2G = genomic relationship matrix; A22 = pedigree relationship matrix.
3SSGBLUP = single-step genomic BLUP. The case of regular SSGBLUP without inversion of G and A22 is as iterative SSGBLUP [1] without 
inversion.
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models and large number of genotypes) will be needed 
to find out the feasibility and accuracy of the solutions 
we propose in this work.

CONCLUSIONS

Single-step evaluations including records, pedigree, 
and genotypes can, in principle, be carried out with 
little additional computing costs or changes compared 
with 2-step procedures. Convergence of the method is 
guaranteed from existing theory. This will facilitate its 
introduction in routine evaluation.
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APPENDIX A

A possibility in SSGBLUP MME is to specifically fit marker (or gametic) effects. Assume u2 = Zg, where g are 

marker effects. Consider, as in Legarra et al. (2009), p(g) ~ N (0,D) and p N uu u A A u A1 2 12 22
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This is the kernel of a normal distribution and, thus, p (u1, g) = N (0, T), where
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which shows that T is always positive definite. Therefore, the MME can be constructed as
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which, by including additional unknowns ϕ̂( ) as in expression [4], can be written as
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These equations are nevertheless more cumbersome than [4], [5], or [7].

APPENDIX B

Here, we provide details about the equivalent derivation of the MME. We start from the model

	 y = Xb + W (u* + d) + e. 	 [B1]

According to the assumptions in the main text, the corresponding MME are
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Now, mimicking the development of Quaas and Pollak (1981) for groups of unknown parents, let
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Inserting S−1S between the coefficient matrix and the vector of unknowns and premultiplying both sides of the 
system by S−T, we get
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The rules for the inverse of a partition matrix (Searle, 1982) imply that A A A A 011
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Absorbing the last equation of system, we get
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with C A A G A A A A G A A= + −( )
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Let a matrix
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Applying the rules for the inverse of a partition matrix (Searle, 1982) to matrix K leads to
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and
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Replacing C in [B3] by expression [B4] gives the MME [3].

APPENDIX C

In this appendix, we show how the problem of lack of positive definiteness of G – A can be circumvented. 
Consider the model

	 y = Xb + Zu + e, 	 [C1] 

with Var uu G( ) = σ2 .

We want to consider an equivalent model where u is decomposed into uncorrelated u* + d with Var uu A* .( ) = σ2  

and Var ud G A( ) = −( )σ2 , where A is the numerator relationship matrix.
Let P = G – A = V D V′ with 
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Matrices D+ and D– are positive diagonal matrices of size n+ and n–. Decompose the matrix of eigenvectors 
accordingly: V = [V+V–]. By definition, VV′ = V′V = I or
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We have

	 u = u* + d. 	 [C2] 

Rewrite
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(note: d and δ+ are vectors of real numbers and δ– is a vector of imaginary numbers). Assume



4644

Journal of Dairy Science Vol. 95 No. 8, 2012
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and cov(u, δ′) = 0.
Rewrite [C2] as 

	 u = u* + d = u* + V+δ+ – iV–δ–. 	 [C3]

We have 
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Therefore, the model with u* and δ is equivalent to the model with u* and d.
The model with u* and δ leads to usual MME, where the variance of δ is the positive definite matrix
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Regular MME are usually derived for variables with real domain. However, in this case, we deal with δ– being 
imaginary random effects. Because δ+ and δ– are uncorrelated and, further, they are either real or imaginary (but 
not complex numbers), they vary according to the so-called circular symmetric complex normal distribution, for 
which, roughly speaking, regular expressions of multivariate normality for real numbers apply (Picinbono, 1996). 
Indeed, some derivations of BLUP (Henderson, 1973) do not involve normality or even probability distribution 
functions, but only covariance matrices. These MME are
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and
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premultiply both sides of these MME by
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and insert 
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between the coefficient matrix and the solution vector. We get
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	 [C4]

Now, this shows that if we have a model [C2] such that var(d) is not positive definite, there is an equivalent 
model [C3] in which all variance matrices are positive definite, which leads to the same MME [C4]. The only 
requisite is that the covariance matrix be nonsingular (i.e., invertible). In other words, there is no need to care 
whether G – A is positive definite or not.
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