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Abstract

Agro-Land Surface Models (agro-LSM) combine detailed crop models and large-scale vegetation models

(DGVMs) to model the spatial and temporal distribution of energy, water, and carbon fluxes within the soil–veg-
etation–atmosphere continuum worldwide. In this study, we identify and optimize parameters controlling leaf

area index (LAI) in the agro-LSM ORCHIDEE-STICS developed for sugarcane. Using the Morris method to iden-

tify the key parameters impacting LAI, at eight different sugarcane field trial sites, in Australia and La Reunion

island, we determined that the three most important parameters for simulating LAI are (i) the maximum prede-

fined rate of LAI increase during the early crop development phase, a parameter that defines a plant density

threshold below which individual plants do not compete for growing their LAI, and a parameter defining a
threshold for nitrogen stress on LAI. A multisite calibration of these three parameters is performed using three

different scoring functions. The impact of the choice of a particular scoring function on the optimized parameter

values is investigated by testing scoring functions defined from the model-data RMSE, the figure of merit and a

Bayesian quadratic model-data misfit function. The robustness of the calibration is evaluated for each of the

three scoring functions with a systematic cross-validation method to find the most satisfactory one. Our results

show that the figure of merit scoring function is the most robust metric for establishing the best parameter val-

ues controlling the LAI. The multisite average figure of merit scoring function is improved from 67% of agree-

ment to 79%. The residual error in LAI simulation after the calibration is discussed.
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Introduction

Ethanol produced from crop biomass has emerged as a

potential contributor to a more renewable transportation

energy mix. Driven by policy mandates and global mar-

kets, the global production of ethanol has increased

more than fourfold between 2000 and 2009 (Licht, 2007).

Sugarcane has the highest energy ratio (energy delivered

per energy spent) of the most commonly used biofuels

and therefore has the best potential to date to produce

ethanol for fossil fuel substitution (de Vries et al., 2010).

Of the 75 million liters of ethanol produced globally in

2009, 45–50% came from sugarcane while another 45%

was produced from corn (Fischer et al., 2008). The recent

rise in sugarcane demand, as driven by biofuel produc-

tion, resulted in an increase in sugarcane area from

19.4 million ha in 2000 to 23.9 million ha in 2010 (FAO,

n.d.). This trend impacts the biosphere–atmosphere

exchanges of water, carbon, and energy, and ultimately

climate at local to continental scales. Fully grasping the

consequences of the conversion of land to bioenergy

crops therefore warrants a better knowledge and simula-

tion of the interactions between sugarcane and its envi-

ronment, and in particular the processes of crop growth

and development which drive the biosphere-atmosphere

fluxes (Smith et al., 2010).

Agronomical plot-scale models generally simulate the

growth and biomass yield of sugarcane (both from a

quantitative and qualitative standpoint) with good accu-

racy under different types of conditions (Keating et al.,

1999; Singels & Bezuidenhout, 2002). They may also be

used to study the interactions between crops and their

environment, for instance soil carbon dynamics (Galdos
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et al., 2009) and water use (Inman-Bamber et al., 1993).

However, they require a high number of input parame-

ters (soil texture, management practices, genotype-spe-

cific parameters) and their application is therefore

restricted to small scales. On the other hand, the land

surface modules of Earth System Models (ESM), which

operate at larger scales, are based on a restricted set of

generic vegetation types and are thus unable to take

into account the specificities of any given crop. Efforts

were made recently to alleviate this limitation and lead

to the development of so-called agro-Land Surface Mod-

els (Agro-LSMs; Table 1). Wheat, maize, and soybean

are the crops most often parameterized in agro-LSMs

(Kucharik, 2003; Gervois et al., 2004; Bondeau et al.,

2007; Lokupitiya et al., 2009; Van den Hoof et al., 2011),

but sugarcane has recently gained interest in the model-

ing community as well. To our knowledge, three agro-

LSMs include sugarcane (Table 1): Agro-IBIS, LPJml,

JULES (Black et al., 2012; Surendran Nair et al., 2012). A

highly simplified sugarcane new crop functional type

was added in LPJml (Lapola et al., 2009) and sugarcane

has also been included to the Agro-IBIS and JULES

models with a different approach, by adding a new

module with specific parameters and allocation rules

(Black et al., 2012; Cuadra et al., 2012). However, none

of these studies included a thorough evaluation of the

sensitivity of the models to the many parameters, or

their calibration. Previous validations of sugarcane

agro-LSMs were obtained with either country or state

level yield data (Lapola et al., 2009; Cuadra et al., 2012),

or site-level micrometeorological and yield measure-

ments (Cuadra et al., 2012). Here, we used the ORCHI-

DEE-STICS agro-LSM, which results from a coupling

between the process-based LSM ORCHIDEE (Krinner

et al., 2005), and the generic crop model STICS (Brisson

et al., 1998). STICS drives ORCHIDEE mainly through

its crop-specific phenology component (Gervois et al.,

2004), while other ecosystem state variables (biomass,

fluxes) are produced by ORCHIDEE (Fig. 1).

Since agro-LSM models generally involve many more

parameters than standard land-surface models, some

calibration is required prior to running them on a large

scale. This step raises two issues regarding computing

time and application scale. Regarding the first point, the

high number of parameters involved (several dozen)

precludes the use of factorial runs (whereby each

parameter is varied one at a time), which would be too

computer intensive. Calibration may be facilitated by

carrying out a preliminary sensitivity analysis (SA) with

the aim of identifying the most important parameters of

the model and restricting optimization to this limited

subset of parameters. Several families of SA techniques

have been developed, which may be categorized based

on several features such as global or local, quantitative

or qualitative, dependent on the model’s structure.

Here, we used the method of Morris (Morris, 1991)

described in the next section which is common in crop

model calibration (Monod et al., 2006). It is simple and

easy to implement and interpret. It is also computation-

ally efficient and requires few constraints from the

model. Depending on the number of key parameters

identified, a method can be chosen for calibration, such

as simulated annealing algorithms, genetic algorithms,

or simple factorial minimization of an objective func-

tion, which will be used here.

The second problem faced when calibrating parame-

ters of an agro-LSM has to do with the different scales

of application. Site-level parameterization is a way of

evaluating LSM models, which allows quantifying

model uncertainties and prioritizing possible improve-

ments (Calvet et al., 1998; Harris et al., 2004). However,

calibrations done on a single site have the weakness of

representing a unique situation, which hampers a

generalization to larger areas (Xiong et al., 2008). Multi-

site studies involving both parameterization and

independent ‘cross-validation’ sites provide more

robust evidence that the model may be extrapolated

from plot to regional scales. Here, we developed a

Table 1 Selected characteristics of current Agro-LSMs

Initial model Agro-LSM Reference Crops included

IBIS Agro-IBIS Kucharik & Brye 2003 Corn, soybean, winter wheat, spring wheat, sugarcane (Cuadra et al.,

2012)

ORCHIDEE ORCHIDEE-STICS Gervois et al., 2004; Wheat, corn, soybean, sugarcane

LPJ LPJml Bondeau et al., 2007; Managed grass (grazing or harvested grass, C3), managed grass

(grazing or harvested grass, C4), temperate cereals (wheat, barley,

rye, oat), rice, maize, tropical cereals (millet, sorghum), pulses

(lentils), temperate roots & tubers (sugarbeet), tropical roots &

tubers (cassava), sunflower, groundnuts, soybean, rapeseed

sugarcane (Lapola et al., 2009)

SiB SiBcrop Lokupitiya et al., 2009 Wheat, corn, soybean

JULES JULES-SUCROS

JULES-SC

Van den Hoof et al., 2011;

Black et al., 2012

Winter wheat, sugarcane (Black et al., 2012)
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multisite calibration procedure for sugarcane field trial

sites across a range of contrasted climate conditions in

Australia and La Reunion Island (southern Indian

ocean), to ensure that the parameterization of the OR-

CHIDEE-STICS model remains valid over a range of cli-

matic conditions.

The goal of this study is to calibrate and evaluate the

capacity of ORCHIDEE-STICS to predict the dynamics

of leaf area index (LAI) of sugarcane prior to regional

simulations. We also investigated methodological issues

such as the configuration of the sensitivity analysis and

the scoring function used to define the best parameters

values.

In the next section, we describe ORCHIDEE-STICS

and the sugarcane field trial sites calibration and valida-

tion data as well as the sensitivity analysis and the cali-

bration method (adjustment of the parameters). Then,

we describe the results of the sensitivity analysis and

calibration. Finally, the last section discusses the resid-

ual bias in the simulations after calibration.

Material and methods

ORCHIDEE-STICS Agro-LSM

ORCHIDEE-STICS simulates crop growth in a mechanistic and

dynamic framework at regional to global scales (Gervois et al.,

2004). The approach is a partial coupling of the agronomical

model STICS (Brisson et al., 1998) with the generic model OR-

CHIDEE (Krinner et al., 2005), where some variables are

exchanged between the two models as illustrated in Fig. 1. OR-

CHIDEE is used for carbon fluxes and pools, as well as water

and energy balance and STICS for phenology and LAI, the

main focus of this study. Thus, STICS calculates the growth of

sugarcane on a daily time step (phenology, leaf area dynamics,

root dynamics, nitrogen status, water balance, biomass) based

on meteorological data, crop management and soil parameters,

and given generic and crop-specific parameters. As a generic

model, the strength of STICS is its ability to simulate different

crops with the same set of formalisms through the establish-

ment of analogies. The concepts are therefore adjusted to some

extent from one crop to another. Thus, for sugarcane, the filling

of elements to be harvested refers to the accumulation of

sucrose in the internodes of the cane but for another crop it

could refer to the growth of the grains or the fruits. Another

example, a specificity of sugarcane is that it is an indeterminate

crop (Fauconnier & Bassereau, 1970), meaning that the leaves

keep growing as the cane internodes start filling. In STICS, the

‘indeterminate’ feature of a crop is represented by a significant

trophic stress to imitate the competition between cane inter-

nodes and leaves for assimilates (Brisson et al., 2003). ORCHI-

DEE uses the LAI, nitrogen and irrigation requirements

calculated by STICS on a daily basis to calculate photosynthe-

sis, water and energy balances (with a hourly time step), and

carbon dynamics (biomass, mortality, and soil organic matter

decomposition). In this article, the focus is on the improvement

of the parameterization of LAI simulated by STICS for mini-

mizing the error transmitted to ORCHIDEE. Another study (A.

Fig. 1 Description of the ORCHIDEE-STICS coupling showing the input data, variables exchanged between the model’s components

and output variables. The two components of the model (shaded) are fed input data (dashed arrows) and communicate between each

other through a few variables (solid arrows). Both models require meteorological forcing data at hourly time step (interpolated from

6-hourly forcing data files). STICS also requires data describing the crop management (sugarcane variety, sowing date, irrigation, and

fertilization), and ORCHIDEE requires basic soil data (soil texture and depth).

© 2013 Blackwell Publishing Ltd, GCB Bioenergy, 6, 606–620
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Valade, N. Vuichard, P. Ciais, N. Viovy, F. Marin, N. Huth, J-F.

Martin�e, in preparation) addresses the full uncertainty budget

of the coupled ORCHIDEE-STICS model with crop biomass as

a target variable.

Experimental sites

Eight data sets were collated from five field trial sites in Aus-

tralia (Ayr, 3 years; Ingham, 2 years; Grafton, 1 year) and two

sites on the island of La R�eunion (Colimac�ons, 1 year; Tirano,

1 year), providing a gradient of climatic conditions (Fig. 2).

The Australian sites are located in the sugarcane cultivation

belt on the East coast of the continent. The Grafton site has a

temperate climate (Keating et al., 1999) and the Ayr and Ing-

ham sites have a tropical climate but with very different pre-

cipitation seasonality (Muchow et al., 1994; Robertson et al.,

1996). The sites in La Reunion are located on the western coast,

the driest part of the island, in mountainous areas where the

weather is strongly influenced by topography. The Colimac�ons
site is located at an altitude of 800 m a.s.l., and the Tirano site

is located south of the western coast at an altitude of 150 m.

The locations and management characteristics of the experi-

mental sites are given in Table 2. All the sites received irriga-

tion and fertilization inputs, so that the model could be

parameterized under optimal growing conditions. For the rest

of the study, each combination of site, year and treatment is

called ‘site’ and named with a convention of ‘site-year’, for

example, ‘Ayr 92–93’ for the Ayr field trial data during the

1992–1993 growing season. At each site, crop biomass and LAI

were measured six to eleven times during the growing season.

When replicate plots were available, we pooled the correspond-

ing observations.

Soil characteristics

At regional scales, it is difficult to know and prescribe with

accuracy the spatial distribution of soil properties with the

level of detail required by the STICS crop model (water hold-

ing capacity, drainage class, rooting depth). We thus per-

formed several test runs of STICS with different soil

configurations and found that the model’s predictions of LAI

was only weakly impacted by the soil characteristics – in

particular because the crops were irrigated and fertilized. We

therefore used the same soil configuration for all sites (see

Table 3 for soil characteristics).

Meteorological forcing data

ORCHIDEE-STICS requires hourly meteorological data that are

usually interpolated from 6-hourly forcing files. We need to

use the best possible meteorological forcing for the model at

each site, to prevent the aliasing of climate forcing bias to

parameter estimation bias. We thus gathered weather station

measurements of precipitation, air temperature, and solar radi-

ation (arguably, the best possible forcing) close to each site. For

Australia, the data were downloaded from the website of the

Australian Bureau of Meteorology (BOM), and for La Reunion,

they were obtained from stations close to the field sites. How-

ever, these weather station data cannot be directly used to force

ORCHIDEE-STICS, because (i) additional variables are

required by the model (specific humidity, wind speed, pres-

sure, and long wave downward radiation), and (ii) the station

data were only available at a daily time step. We combined the

local station measurements with numerical weather predic-

tion globally gridded data from the ECMWF ERA-Interim
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reanalysis product (Dee et al., 2011). For the missing weather

variables, we used directly the ERA-Interim fields sample at

the grid point containing each site, and when weather station

measurements were available, we corrected the 6-hourly ERA-

Interim data to match the observed daily data with the method

of (Berg et al., 2003) (section S1 of Supplementary Material).

The correction of the bias between the ERA-Interim and station

data was based on a ratio-based algorithm for precipitation

and solar radiation fields, and upon a difference-based algo-

rithm for temperature, to conserve the diurnal amplitude cycle.

The bias correction led to an important reduction in the root

mean squared error (RMSE), of 1.8 °C for daily air tempera-

ture, 422.6 mm for cumulative precipitation, 17.4 MJ m�2 for

daily solar radiation (Table S1).

The Morris method to identify sensitive parameters

The Morris method (Morris, 1991) is a one-at-a-time approach.

First, each parameter is assigned a range of variation divided

regularly to provide p levels, or possible values, for each param-

eter. Then, from a random starting point in the parameters

space, each of the k parameters of the model is varied one after

the other to the previous or next level, generating as many new

points in the parameters space as there are parameters and thus

building a ‘trajectory’. Once one trajectory has been built by

varying all parameters once, the sampling procedure is repeated

r times by selecting different starting points in the parameters

space, resulting in r*(k + 1) different samples of the parameter

space. For each of the r trajectories, the elementary effect eei(Y)

for the output variable Y associated with each input factor i

(parameter Pi) is calculated by Eqn (1) (Saltelli et al., 2004) that

gives the elementary effect, ee, based on the gradient of the

output variable Y generated by a normalized change D in the ith

input parameter Pi

eeiðYÞ ¼ Yð. . .;Pi þ D; . . .Þ � Yð. . .;Pi; . . .Þ
D

ð1Þ

The Morris method defines two sensitivity indices: l*, the
average of elementary effects’ absolute values, and r, their

standard deviation. The value of l* provides information about

the importance of each parameter (the larger the value of l*,
the more important the parameter) which defines a ranking for

multiple parameters. The larger the value of r, the more non-

linearities are involved.

To calculate the Morris indices, all the elementary effects are

calculated at different points in the space of the parameters.

The settings of the parameter screening (the number of levels,

p, and the number of trajectories, r) are left to the user’s choice.

A requirement is that r must be large enough compared to p,

so that all levels are sufficiently explored. According to (Saltelli

et al., 2004), values of p = 4 and r = 10 give good results in the

Morris method, and this combination has been used by

(Cariboni et al., 2007) for 103 parameters in a best practice

study for sensitivity analyses for ecological models. Previous

studies (Francos et al., 2003; Confalonieri et al., 2010; Richter

et al., 2010) compared the results obtained with different p and

r values for crop models, and found that there was little effect

of the number of r and p on the ranking of parameters.

We performed two sensitivity analyses using the Morris

method based on the variable of the maximum seasonal value of

LAI during one growing season.

Not all the parameters in STICS need to be included in the

SA, because some parameters are either not used for the sugar-

cane application of the model or because they are known to

have little or no effect on LAI (Ruget et al., 2002). Therefore,

from the ca. 200 parameters used to describe sugarcane growth

in STICS, and based on expert knowledge from the model

developers, we selected a subset of 50 parameters that could

govern LAI (Table 4). Of these 50 parameters, twelve are soil-

related (8) or general (4) generic plant parameters (applying to

all species), while the others are specific to sugarcane, yield

(10), biomass growth (5), phenological stages (10), nitrogen (1),

Table 2 Description of the experimental sites in Australia and La Reunion used for the sensitivity analysis and calibration

Site name Year

Latitude/

Longitude

Altitude

(m)

Crop class,

variety

Start day

(julian) Irrigation

Fertilization

(kg N ha�1) Reference

Ingham, Qld,

Australia

1992–1993 18.7S/146.2E 10 Plant, Q117 239 Irrigated 257 Robertson et al., 1996;

1993–1994 Plant, Q117 230 Irrigated 774 Muchow et al. 1996

Ayr, Qld,

Australia

1991–1992 19.5S/147.3E 15 Plant, Q96 109 Irrigated 250 Muchow et al., 1994;

1992–1993 Plant, Q117 112 Irrigated 257 Keating et al., 1999;

1993–1994 Ratoon, Q117 254 Irrigated 350 Keating et al., 1999;

Grafton, NSW,

Australia

1994–1995 29.5S/152.9E 9 Plant, Q117 271 Irrigated 590 Keating et al., 1999

Colimac�ons,
La R�eunion

1994–1995 21.1S/55.3E 786 Ratoon, R570 215 Irrigated 210 JF Martin�e (unpublished)

Tirano,

La R�eunion

1997–1998 21.3S/55.5E 150 Ratoon, R570 330 Irrigated 242 JF Martin�e (unpublished)

Table 3 Selected properties of the soil used in all field sites

Layer

depth

(cm)

Field capacity

water content

(g g�1)

Permanent

wilting

point (mass %)

Bulk

density

(g cm�3)

Layer 1 30 41 30 1.2

Layer 2 40 42 35 1.14

Layer 3 90 42 35 1.14

© 2013 Blackwell Publishing Ltd, GCB Bioenergy, 6, 606–620

610 A. VALADE et al.



water (2), radiation interception (1), foliage development (5),

and root growth (4). The selection of a range of variation

allowed for each parameter is of importance because it impacts

the results of the SA. We selected upper and lower bound val-

ues based on previous work with STICS for sugarcane (Smith,

2001), on a survey of scientific publication results on sugarcane

modeling (Teruel et al., 1997; Zhou et al., 2003; Singels et al.,

2008), and on the expert opinion of developers (F. Ruget, INRA

Avignon, DATEN) when no information was available.

A preliminary analysis, described in Supplementary Material

(section S2), was carried out to test the influence of the number

of repetitions of the Morris algorithm on the results of the SA.

We found that for the most sensitive parameters, a number of

repetitions between 20 and 30 had negligible influence on

parameter ranking (Figure S2). Thus, we set the value of r to 20

repetitions to limit computational costs. Four of the sites were

randomly selected among the eight available. The SA was

carried out for each of the four sites separately with Morris

settings of p = 6 levels and r = 20 iterations, therefore requiring

(50+1)*20 = 1020 runs per site.

Design of the calibration experiment

The number of parameters chosen for the calibration results

from a trade-off between computation costs and improved fit

to the data. Because the goal of this study is to obtain a multi-

site calibration, our selection of the most important parameters

retained for calibration from the Morris sensitivity analysis is

constrained by two criteria: the importance of a parameter at

all the sites, and the limited amount of nonlinearities and/or

interactions associated with this parameter. The calibration of

STICS for the LAI was therefore performed on the three most

sensitive parameters only, with a simple factorial method,

whereby the model was run for all possible combinations of

the three parameters within predefined ranges. Consistent with

our approach (White et al., 2000) used for vegetation models

only a small number of parameters that had a significant

impact on plant growth. For the parameters with little nonlin-

earities, the calibration was done by exploring extensively the

parameters ranges. For parameters associated with nonlineari-

ties, only few key values were explored. Modeled LAI values

were then compared to observations through a scoring func-

tion. The minimization of the objective scoring function over all

the simulations gave an optimal set of parameters.

The choice of the scoring function to select the best estimate

of the most important parameters is not straightforward

(Evans, 2003). Our goal here is the best possible match between

the observed and modeled LAI at several sites, given uncer-

tainties of measured LAI. Three different scoring functions are

tested for the calibration: the Root Mean Squared Error

(RMSE), the Figure of Merit (FM), and a Bayesian quadratic

misfit function, here referred to as the J function. Each function

is a multi-objective function as it aims at scoring the parameter

sets at several sites simultaneously. The multi-objective config-

uration of the problem was tackled by aggregating the scores

of all sites into a single score (Madsen, 2000). The functions are

defined by Eqns (2–4) where n is the number of observations;

obs and run stand for the observed and simulated LAI, respec-

tively, at site s and time tj; P1, P2, P3 are the values of the 3

most sensitive parameters identified from the sensitivity analy-

sis, and P1prior, P2prior, P3prior are the prior estimates. robs, rP1,
rP2, rP3, respectively, refer to the errors on observation and on

the prior estimates of the parameters.

We define below all three objective functions for site s, at

times tj. Observed and simulated LAI are, respectively, referred

to as ‘obs’ and ‘run’. n is the number of observations, for the

observed LAI (respectively, simulated LAI).

RMSE ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
j¼1

obs s; tj
� �� run

� �2

n

vuuut
ð2Þ

is defined as follows

FM ðsÞ ¼ 1� FMT ðsÞ ¼ 1�

Pn
j¼1

minfobs s; tj
� �

; run s; tj
� �g

Pn
j¼1

maxfobs s; tj
� �

; run s; tj
� �g

ð3Þ

Jðs;P1;P2;P3Þ ¼
ðP1 � P1priorÞ2

r2p1
þ ðP2 � P2priorÞ2

r2p2
þ ðP3 � P3priorÞ2

r2p3

þ 1

n

Xn
j¼1

ðrunðs; tjÞ � obsðs; tjÞÞ2
r2obs

ð4Þ

The figure of merit in time (FMT) is usually defined as the

ratio of overlapping between the observed and simulated LAI

curves, that is, the area defined by the union below the two

curves divided by the area defined by their intersection

[Eqn (3)]. Here we use, FM = 1 � FMT, to more easily compare

the three scoring functions. A value of FM close to 0 means a

perfect agreement between model and observations (i.e., opti-

mal parameter value) as opposed to a value of FM close to 1

meaning no match between both data sets.

The RMSE and the J function are quadratic error functions

[Eqns (2) and (4)]. They quantify the distance between mod-

eled and observed LAI, but with an extra term in the Bayesian

function J to represent the quadratic distance between opti-

mum and prior parameter value. By adding a prior term in

the J scoring function, we put weight to a specific location in

the parameters space based on the most likely value of the

parameter (i.e., the prior). The intent of the calibration is to

minimize each of the FM, RMSE, and J functions, to determine

a set of parameters that minimizes a distance between

observed and modeled LAI.

Cross-validation

Cross-validation is performed to evaluate the dependence of

the calibration to the choice of sites. For this, we use a leave-

one-out method where the same calibration is performed using

different combinations of sites, each with one site being

removed and therefore used for validation purposes.
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Table 4 List of parameters included in the sensitivity analysis

Processes

involved Parameters descriptions

Parameters notations

and names

Lower

values

Upper

values References

Soil Thickness of 3rd layer of soil (cm) epc3 5 60 Smith, 2001

Organic nitrogen content in moisture soil horizon

(from the soil surface to profhum) as a weighted %

Norg 0.05 0.2 Smith, 2001

Initial profile of amount of mineral nitrogen in

Kg N ha�1

Ninitf1 0 30 Smith, 2001

Ninitf2 0 30 Smith, 2001

Ninitf3 0 30 Smith, 2001

Initial profile of water content in weighted % for

fine soil

Hinitf1 11 22 Smith, 2001

Hinitf2 11 22 Smith, 2001

Hinitf3 10 21 Smith, 2001

General Links storage organs’ n demand to N status of the

crop (unitless)

absodrp 0.02 0.078 Smith, 2001

Threshold to calculate trophic stress on LAI:

minimum value for source/sink ratio for leaf

growth (unitless)

splaimin 0 0.3 Smith, 2001

Reference temperature for soil mineralization

parameters (�C)
TREF 15 27 Smith, 2001

Radiative effect on conversion efficiency (unitless) coefb 0.0015 0.0815 Smith, 2001

Yield

components

Maximum number of set cane internodes per cane

and by degree per day

afruitpot 0.0015 0.2 Smith, 2001

Speed for increase in N harvest index

g grain. g plant�1. day�1

vitirazo 0.0085 0.0115 Smith, 2001

Cane internode’s relative age when growing speed is

maximum (unitless)

afpf 0.15 0.5 Smith, 2001

Maximum growing speed relative to cane internode’s

maximum weight (unitless)

bfpf 1 10 Smith, 2001

Maximum daily allocation of assimilates to cane

internodes (unitless)

allocamx 0.63 0.86 Smith, 2001

Biomass remobilized each day (g.m�2.d�1) remobil 0.68 0.92 Smith, 2001

Number of ‘age classes’ for growth of cane internodes

for indeterminate plants

nboite 12 25 Smith, 2001

Time during which cane internodes are set (degree.day) sdrpnou 552.5 747.5 Smith, 2001

Growing period for cane internodes, from setting to

maturity (degree.day)

dureefruit 2850 3000 Smith, 2001

Maximum grain weight (0% water) (g) pgrainmaxi 1200 2000 Smith, 2001

Biomass Maximum growing efficiency between LEV and

AMF (g.MJ�1)

efcroijuv 1.7 2.3 Smith, 2001

Maximum growing efficiency between DRP and

MAT (g.MJ�1)

efcroirepro 2 6 Smith, 2001

Maximum growing efficiency between AMF and

DRP (g.MJ�1)

efcroiveg 3.2 6 Smith, 2001

Optimum temperature for growth in biomass

(if plateau between teopt and teoptbis) (�C)
teoptbis 0 15 Smith, 2001

Optimum temperature for growth in biomass (�C) teopt 15 34.4 Smith, 2001

Development &

Phenological

stages

Minimum threshold temperature for development (�C) tdmin 10 14 Smith, 2001

Maximum threshold temperature for growth in

biomass (�C)
tdmax 28 40 Smith, 2001

Parameter to compensate between the number of

stems and the density of plants (unitless)

adens �1 �0.2 Smith, 2001

Cumulated development units allowing

germination (degree.day)

stpltger 50 200 Teruel et al.,

1997

Stress threshold from which there is an effect on

the LAI (supplementary senescence compared

with natural senescence) (unitless)

tustressmin 0 1 Smith, 2001

Time between emergence and senescence (degree.day) stevsenms 400 800 Smith, 2001

Cumulated development units between the

LEV and AMF stages (degree.day)

stlevamf 50 400 Smith, 2001
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Results

Sensitivity analysis and selection of sensitive parameters

Here, we used maximum LAI during the annual growth

cycle as a target variable to define the most sensitive

parameters. Figure 3a–d shows the results of the Morris

sensitivity analysis at the four sites with l* (elementary

effects mean of absolute values) as x-axis and r (elemen-

tary effects standard deviation) as y-axis. Figure 3e dis-

plays the ranking of all parameters by decreasing order

of importance (at the four sites) for their influence on

l*. The important parameters stand out from the Morris

sensitivity analysis based on their l* with little variabil-

ity from site to site, especially for the three most impor-

tant parameters whose roles and related equations are

explained in Fig. 4 (Brisson et al., 2009). The parameter

dmax
LAI comes out consistently as the most sensitive one

controlling LAI across the four sites (Fig. 3a–d: highest

l* and a relatively low r revealing a first order effect on

maximum LAI). This parameter intervenes in the calcu-

lation of LAI to limit the maximum daily increment of

foliage per degree-day (number of degrees that separate

actual temperature from a minimum temperature

threshold; see Fig. 4). A higher value of dmax
LAI allows a

faster growth of LAI during the first stage of the crop

development.

Following dmax
LAI in importance, two other parameters,

bdens and INNmin have a high impact on l*. The bdens
parameter corresponds to a critical plant density below

which there is no competition between individual plants

to form LAI (Fig. 4). The parameter INNmin is a thresh-

old for the nitrogen nutrition index (INN) of the crop,

which controls the sensitivity of the crop to nitrogen

stress and impacts LAI in an indirect way. This parame-

ter is associated with nonlinearities in the response of

LAI to parameters as shown by the high r values.

Because of the nonlinearity of the response of LAI to

Table 4 (continued)

Processes

involved Parameters descriptions

Parameters notations

and names

Lower

values

Upper

values References

Cumulated development units between AMF and

LAX stages (degree.day)

stamflax 1000 2100 Smith, 2001

Cumulated development units between the

LEV and DRP stages (degree.day)

stlevdrp 1000 1740 Smith, 2001

Fraction of senescent biomass (with relation to the

total biomass)

ratiosen 0 1 Smith, 2001

Nitrogen Minimum INN value possible for the crop INNmin innmin 0 1 Smith, 2001

Water Absolute value for start of reduction in cell

expansion (unitless)

psiturg 1 5 Smith, 2001

Absolute value for stomatic closure potential (bars) psisto 5 15 Smith, 2001

Radiation

interception

Coefficient of extinction (unitless) extin 0.424 0.7 Zhou et al.,

2003

Muchow et al.,

1994

LAI Maximum rate of production of net leaf

surface area m2 leaf . plant�1 . degree.day�1

dmax
LAI dlaimax 0.0002 0.0015 Smith, 2001

Minimum density as from which there is

competition between plants for leaf growth plants.m�2

bdens bdens 2 10 Smith, 2001

Minimum temperature for growth (�C) tcmin 10 14 Singels et al.,

2008

Maximum temperature for growth (�C) tcmax 35 42 Smith, 2001

Coefficient of sink strength of vegetative

organs cm2.g�1

sbv 127.5 172.5 Smith, 2001

Roots Shape of root profile depth of tillage (m) zlabour 17 23 Fauconnier &

Bassereau, 1970

Shape of root profile: depth at which root density is

half of surface density for reference root profile (m)

zpente 24 110 Fauconnier &

Bassereau, 1970

Shape of root profile: maximum depth for reference

root profile (m)

zprlim 111 140 Fauconnier &

Bassereau, 1970

Growing rate of root front (cm.degree-day�1) croirac 0.05 0.2 Smith, 2001

Development stages are LEV: emergence, AMF: end of juvenile phase, DRP: beginning of harvested elements filling, MAT: physio-

logical maturity, LAX: maximum leaf area index (Brisson et al., 2003).
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this parameter, only a few key values of INNmin are

included in the calibration procedure, like in White et al.

(2000).

Parameter calibration results

The factorial calibration of the values of the three top

ranked parameters was repeated with three scoring

functions [Eqns (2–4)]. The optimal value of the nitro-

gen stress threshold parameter INNmin, was rapidly

determined since all best scores are reached for the

same value of INNmin = 0.2, below which no change is

observed in the LAI simulations. The bivariate response

of each scoring function to variations of parameters dmax
LAI

and bdens (axes of the horizontal plane) is shown in

Fig. 5, with INNmin fixed at a value of 0.2.

All three scoring functions reached a local minimum

in the (dmax
LAI , bdens) two-dimensional parameter space

that corresponds to the best parameter values, but the

location of this minimum (i.e., the optimum parameter

sets) and the shape of the 2-D response surfaces (dmax
LAI ,

bdens) around the minimum differs between the func-

tions. The three optimum parameter sets resulting from

the different scoring functions are shown in Fig. 6. The

corresponding simulations of LAI are shown in

Fig. 7(a–h).

The optimum parameter sets obtained with the three

scoring functions are hereafter called p-RMSE, p-FM,

and p-J. Overall, the date of LAI emergence was gener-

ally well reproduced by STICS (Fig. 7). Later during the

crop foliar development, different growth trajectories

and onsets of senescence were obtained from the differ-

ent parameter couples, leading to different trajectories

of LAI. None of the three couples of optimal parameters

led to a better simulation at all sites simultaneously. As

an example, the p-FM couple of parameters favored a

LAI growth with a very late LAI senescence, whereas

the p-RMSE couple resulted in an earlier than observed

decrease in LAI. For this reason, the choice of a best

(i.e., most robust) scoring function is not trivial. We

introduce an additional criterion for the selection of a

robust scoring function that the parameter calibration

should be as independent as possible from the set of

sites used for calibration. The selection of a robust scor-

ing function is done through a cross-site validation, as

explained below.
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Fig. 3 Morris indices and ranking of the parameters for the four sites included in the Morris sensitivity analysis. (a–d) Morris indices

l* and r for each site, respectively. A large value of l* indicates a large impact on the maximum LAI simulated, a large r indicates

the involvement of nonlinearities or interactions between parameters. (e) Ranking of the parameters based on their l* comparing the

rankings at the four sites. The first three parameters show a very good consistency between the sites, after the third parameter a large

dispersion of the rankings appears.
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Cross-validation

We performed a leave-one-out cross-validation to assess

the robustness of the calibration for the three scoring

functions (Fig. 8). In Fig. 8, each group of adjacent bars

represents the model-data misfit at one site for nine pos-

sible combinations of sites used for calibration (all of

the eight sites used, or one site removed at a time being

used as cross-validation). The misfits shown in Fig. 8

are very different between the scoring functions. For

example, the RMSE at site Ayr 92–93 is 25% higher

when this site is left out for calibration.

The calibration based on J is found to be the most

site-dependent (Fig. 8c), with a large variation in the

misfit depending on which sites are excluded from the

calibration. With the J scoring function (Fig. 8c) for

instance, the use of Colimac�ons 94–95 as a calibration

site impacts most of the misfits of optimized LAI at

other sites. When Colimac�ons 94–95 is removed from

the calibration, seven sites out of eight had a much

lower score (higher J), whereas the Ayr 92–93 site had

a much better score (lower J). With the RMSE func-

tion, the Ayr 92–93 site has the largest impact on the

calibration, with its own score being severely

degraded (higher RMSE) where it is excluded,

whereas five sites out of eight have a lower RMSE

when Ayr 92–93 was removed. With the FM function

(Fig. 8b), excluding the two Ingham sites from the cali-

bration has a large influence on the misfit at those

sites but only a slight impact at the other sites. The

RMSE and FM functions have similar results as far as

cross-validation is concerned with a relative good sta-

bility of the calibration regardless of the sites combina-

tions used. However, because of the large impact of

the exclusion of Ayr 92–93 at this site, we conclude

that the use of the FM as a scoring function is more

robust than the two other functions, and therefore,

parameters determined from this approach will be

chosen for future applications of the ORCHIDEE-

STICS model to sugarcane. With the calibration per-

formed using the FM scoring function, we obtain a

multisite average figure of merit score (average of the

FM-scores at each site) of 79% of agreement instead of

67% before calibration.

Parameter Variable impacted Equation Impact on LAI 

dens

LAI
dev = LAI

max

1+ e f kLAI( )LAI
max

LAI
max   : Maximum daily increment of foliage

        per degree.day (m2  leaf. plant–1.degree.day–1)

kLAI    : LAI development stage (dimensionless)

LAI
dev  : Crop development based 

       increment of LAI

dens  : Minimum density as from which there is

       competition between plants for leaf growth 

       (plants.m 2 )

dens  : Ability of a plant to endure increasing 

       densities (dimensionless)

d       : Plant density (plants.m 2 )

INNmin

LAI
dens = e

dens log
d

dens d

LAI
stress : Nitrogen and water stress

        effect on increment of LAI

LAI
stress = min

INN = max
CN

plant

CN
crit , INNmin

Ws

INNmin :  Minimum Nitrogen nutrition index value

        possible (dimensionless)

CN
crit , CN

plant  : Critical and actual Nitrogen concentration 

        in the plant (gN. g dry matter –1)

Ws       : Water stress index (dimensionless)

LAI = LAI
dev

LAI
T

LAI
dens

LAI
stress .splai.dt

0

T

LAI
dens  : Plant density effect on

       increment of LAI

LAI
T   : Temperature effect on increment of LAI ( C)

splai : Trophic stress index for competition 

        between leaves and harvested components

        (dimensionless)

Fig. 4 Impacts of the parameters dmax
LAI , bdens and INNmin on the calculation of LAI in the STICS model. The parameters dmax

LAI , bdens
and INNmin, respectively, impact on the calculation of intermediary variables, daily increment of LAI, competition effect from plant-

ing density, and threshold for nitrogen nutrition index.
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Discussion and conclusion

A successful and robust multisite calibration relies on

the assumption that the same model can be improved

(i.e., systematic errors reduced) at different sites

through the adjustment of few parameters only. For our

purposes of regional applications of the model, for

instance to estimate regional sugarcane yields, we need

to avoid local fine-tuning of a large number of

parameters.

Parameters dmax
LAI , bdens and INNmin were the top most

influential parameters for LAI simulations at the eight

sites in ORCHIDEE-STICS, with dmax
LAI being far more

important. These three parameters were already among

those identified as critical for STICS applied to maize

and wheat (Guillaume et al., 2011; Ruget et al., 2002;

Tremblay and Wallach, 2004). Parameter dmax
LAI in particu-
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Fig. 6 Values obtained for the parameters and after optimiza-

tion of the three scoring functions Root Mean Squared Error

(RMSE), Figure of merit (FM), Bayesian function (J).

Fig. 5 Surface representations of cost functions (a) RMSE, (b)

FM, (c) J for all combinations of the values of dmax
LAI and bdens

parameters within their ranges of variation shown on the hori-

zontal axes, for INNmin = 0.2 (optimal value). The optimal

parameter set is the point for which the objective functions are

the smallest.
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lar was shown to have a much stronger influence on the

maximum rate of LAI increase in the beginning of the

growing season which is crucial to the simulation of

harvested biomass (A. Valade, N. Vuichard, P. Ciais, N.

Viovy, F. Marin, N. Huth, J-F. Martin�e, in preparation).

Parameter bdens indicates the importance of the initial

planting density as a management factor influencing the

seasonal trajectory of LAI through competition between

individuals. The identification of the threshold for nitro-

gen nutrition index as the second most important

parameter on sugarcane LAI illustrates the connection

between below-ground nutrient availability and green

leaves development.

After calibration of the three most important parame-

ters determined from the Morris sensitivity analysis, the

overall simulation of LAI is improved, but a residual

error remains mainly in the late LAI development cycle,

which may arise either from parameter values

(discussed in this article), but also from forcing data

and model structure (e.g., other factors that influence

the LAI during the late development phase not included

in STICS).

Part of the model error due to internal parameters

has been addressed in this article. Here, only three

parameters were calibrated based on the intersite con-

sistency of model sensitivity to these parameters.

Another issue related to the internal model parameters

setting is that by searching a common set of parameter

values to apply to all sites, we assume that all crops are

of the same variety and type (all crops are considered to

be planted each year, as opposed to real-field conditions

where sugarcane is often ratooned, i.e., cut and left in

the soil to grow again the following year), which in real-

ity may differ from one field to another and one region

to another. For example, in this study, all Australian

sites are planted with variety Q117 (or R570 in La

Reunion), except Ayr 91–92, which could partly explain

the poor results after calibration at that site along with

other factors such as an over-detected water stress

(Table 2).

Ayr 91–92 Ayr 92–93 Ayr 93–94

Ingham 92–93 Ingham 93–94

Colimaçons 94–95 Tirano 98–99

Grafton 94–95

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 7 LAI simulated at each site after multisite parameters calibration based on the optimization of the RMSE (dashed), Figure of

merit (dash-dotted), J (dotted).
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Just like variety differences, environmental condi-

tions and accuracy of forcing data add uncertainty to

the simulation and are responsible for a fraction of the

residual error. In particular, using a generic soil

physics parameterization (depth, texture, water holding

parameters) ignores local specificities that are determi-

nant for describing accurately soil water content, water

availability to plants, and therefore root growth and

water stress. The identification of the limitation of the

nitrogen nutrition index as the second parameter
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Fig. 8 Cross-validation scores for the calibration with the three scoring functions. (a) RMSE, (b) FM, (c) J. The horizontal axis indi-

cates the site that is evaluated. The shades of the bars refer to the site that is left out of the calibration and therefore considered a vali-

dation site (the white bar refers to the reference calibration based on all eight sites).
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exerting the most influence on LAI simulation also

highlights the need for a more detailed and thorough

description of soil conditions. However, the type of

data needed, such as soil carbon content, organic nitro-

gen content, or minimum soil humidity exploitable by

the plant, is not easily retrievable during crop growth

experiments and is therefore not often available to

constrain models, even for site-level simulations.

A complete account of the soil’s characteristics

however requires data about the nature of the land at

this site but also about the previous years’ manage-

ment practices, that are difficult to gather at regional

level.

Leaf area index is an indicator of crop development

and was considered the only output variable in this

study. However, at the ecosystem level, other variables

driven by crop development are also of interest, such as

biomass or net primary productivity, which are con-

trolled by different parameters and processes than LAI.

The calibration of LAI alone is not sufficient for a good

simulation of other variables by the model, but it is a

necessary pre-requisite for the model to provide good

estimates of plant growth and interactions with its local

environment and climate.
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