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Abstract 24 

The aim of this review is twofold. Firstly, we present the state of the art in dynamic modeling 25 

and model-based design, optimization and control of food systems. The need for nonlinear, 26 

dynamic, multi-physics and multi-scale representations of food systems is established. 27 

Current difficulties in building such models are reviewed: incomplete, piecewise available 28 

knowledge, spread out among different disciplines (physics, chemistry, biology, consumer 29 

science) and contributors (scientists, experts, process operators, process managers), scarcity, 30 

uncertainty and high cost of measured data, complexity of phenomena and intricacy of time 31 

and space scales. Secondly, we concentrate on the opportunities offered by the complex 32 

systems science to cope with the difficulties faced by food science and engineering. Newly 33 

developed techniques such as model-based viability analysis, optimization, dynamic Bayesian 34 

networks etc. are shown to be relevant and promising for design and optimization of foods 35 

and food processes based on consumer needs and expectations. 36 

 37 

Introduction  38 

Food engineering covers a large spectrum of applications that include, but are not limited to: 39 

product engineering, process engineering, control, optimisation and decision support systems. 40 

Some 25 years ago, modelling and simulation of food processing was mostly dedicated to 41 

product preservation with safety considerations, most of the studies focused on time-42 

temperature diagrams for predicting and limiting residual spores or micro-organisms in foods. 43 

Due to increased process understanding and computing power, applications emerged where 44 
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other quality attributes were considered: moisture content, colour, viscosity, sometimes food 45 

composition. More recently, food structure was also considered (e.g. viscosity, porosity) and 46 

models became available to represent the evolution of such structure (Theys, Geeraerd & Van 47 

Impe 2009). In parallel, progress in observation and analytical methods (imaging techniques, 48 

magnetic and electronic beams) allowed investigating different structural scales and 49 

interactions between chemical species, mainly between macromolecules and small molecules. 50 

Food starts to be viewed as a complex system, with various possible interactions between key 51 

variables at different scales (from nano scale to macroscopic one) (Baudrit, Sicard, Wuillemin 52 

& Perrot 2010).  53 

It is now recognised in most scientific domains that dynamic modelling and computer 54 

simulations are valuable tools for product and process understanding, design, optimisation 55 

and control. The purpose of a mathematical model is to capture relevant features (in a given 56 

context) of a complex object or process, based on existing theoretical understanding of the 57 

phenomena and available measurements. Current industrial applications usually rely on 58 

extremely simplified, stationary models that cannot produce a realistic evaluation of transient 59 

effects on plant performance, quality and safety conditions and environmental impact. The 60 

modelling and simulation research efforts should be directed towards main phenomenological 61 

aspects, coupling different scales, such as heat, mass, momentum, population balance coupled 62 

with chemical reactions. 63 

Design of new foods as „intelligent‟ vectors for target molecules responsible for nutritional or 64 

sensory properties became a major goal for food industry. These target molecules can be 65 

sapid or aroma compounds, micro-nutriments or microorganisms of interest (technological 66 
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flora used in the fermented products) whose controlled release or digestion satisfies 67 

physiological objectives of bioavailability. E. Windhab suggested in 2004 an integrating 68 

concept (PIECE: Preference, Acceptance Need) taken over by the platform „Food for life‟, 69 

expressing the need to establish a compromise between all these properties. Up to now, few 70 

studies were able to work in a such a complex design space. Existing reverse engineering 71 

publications focus either on safety or sensory questions. Sustainability and environmental 72 

impact are additional factors to be taken into account. 73 

The emerging field of complex systems science, situated at the crossroads of mathematics and 74 

artificial intelligence (cf. the living roadmap for complex system http://cssociety.org/tiki-75 

download_wiki_attachment.php?attId=123), develops methods and tools to comprehend and 76 

describe instable and changing environments, systems that evolve and adapt through internal 77 

and external dynamic interactions and are not predictable within a conventional scientific 78 

framework. Our thesis is that techniques developed in complex systems science are applicable 79 

and useful to tackle difficulties encountered in food systems. 80 

 81 

Understanding and modelling of complex food systems: state of the art 82 

Model-based approaches in food science, technology and engineering have received great 83 

attention during the past three decades (Banga, Balsa-Canto & Alonso, 2008; Datta, 2008; 84 

Sablani, Datta, Rahman & Mujumdar, 2007) and numerous academic works have been 85 

dedicated to modelling and its applications (Bimbenet, Schubert & Trystram, 2007). The 86 

demand for models is now clearly established; as an example, the European Food for Life 87 

http://cssociety.org/tiki-download_wiki_attachment.php?attId=123
http://cssociety.org/tiki-download_wiki_attachment.php?attId=123
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platform (www.ciaa.be) presents modelling as a key tool for the development of European 88 

food Industries. Compared to chemical engineering, where modelling is now part of virtually 89 

any scientific and technical development, food engineering follows a similar trend, with 90 

considerable (~20 years) delay. In the authors‟ view, one of the main reasons for this delay is 91 

the increased complexity of food systems, including physical, chemical and biological 92 

phenomena on a wide range of time and space scales (Georgakis, 1995; Perrot, Bonazzi & 93 

Trystram, 1998; Christakos, 2002; Banga et al., 2008). 94 

 95 

Dynamic models for food systems 96 

This review makes a particular emphasis on dynamic models, able to describe transient 97 

process operation. Typical examples are batch processes, which always operate in transient 98 

state. For continuous processes, optimising start-up, shutdown or recipe change regimes can 99 

be important for reducing costs and environmental impact. On-line control of continuous 100 

processes also require dynamic models for unavoidable disturbance compensation, such as 101 

variations in raw materials (Trystram & Courtois, 1994). 102 

 103 

First principles vs. data-driven models 104 

When modelling approach is primarily guided by the knowledge of the underlying 105 

mechanisms, the resulting model is usually termed as „first principles‟ or „white box‟. 106 

Classical examples include heat, mass and momentum transfer, chemical and biochemical 107 

conversions, etc. The scales covered by first principles range from atomic to macroscopic 108 

ones. A lot of innovative work today is dedicated to micro and meso scale. As an example, 109 
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SAFES (Fito, LeMaguer, Betoret & Fito, 2007) illustrates the use of thermodynamics to 110 

understand the evolution of food during processing. Multiphase approaches viewed as a 111 

general background by Datta (2008) cover similar scales. Available molecular tools become 112 

increasingly relevant for food matrices but the connection with macroscopic scales remains 113 

difficult. 114 

In contrast with first principles, empirical „data-driven‟ or „black-box‟ models describe 115 

observed tendencies in experimental data by arbitrary mathematical functions such as 116 

polynomials or artificial neural networks (ANN). Quick and easy-to-use when sufficient 117 

experimental data is available, such models also encounter important limitations when applied 118 

to food systems: risk of over-parameterisation, interpretation difficulty, lack of generalisation 119 

ability when food composition or process parameters are changed outside the range of the 120 

initial experimental design (Banga et al., 2008). Last but not least, the number of required 121 

measurements increase exponentially with the number of studied factors. 122 

A quite efficient intermediate approach consists in designing a model structure based on first 123 

principles and complete missing information by empirical relationships derived directly from 124 

experimental data. Such models are sometimes called „grey box‟. A dynamic research field is 125 

the development of artificial intelligence-based approaches (Linko, 1998; Davidson, 1994; 126 

Allais, Perrot, Curt & Trystram, 2007) taking into account the human expert knowledge. 127 

Many applications especially for food quality control (for a review see (Perrot et al., 2006)) 128 

were reported, mostly based on the theory of fuzzy sets. Nevertheless, the bottleneck of these 129 

approaches is the difficulty to capture the dynamic of the system using the expert knowledge. 130 

This difficulty was also pointed out by the community of cognitive science (Hoffman, 131 
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Shadbolt, Burton & Klein, 1995; Farrington-Darby & Wilson, 2006). 132 

 133 

[Figure 1 about here] 134 

 135 

Building of the food models 136 

A typical approach for model development is schematically shown in Figure 1. On the basis 137 

of literature review, previous scientific or expert background and experimental evidence, a 138 

first set of hypothesis, mechanisms, state variables and parameters is defined. Generally, one 139 

space and/or time scale is explicitly taken into account. Other scales are usually lumped into 140 

some apparent or average material properties. Uncertainty is rarely considered. When it is, it 141 

can be taken into account explicitly, e.g. via fuzzy numbers (Ioannou, Mauris, Trystram, 142 

Perrot, 2006) or implicitly by considering statistical distributions of model parameters. 143 

Selected model structure primarily depends on the planned use of the model: hypothesis 144 

testing, simulation,  state estimation and software sensors, control design optimisation, etc. 145 

Model parameters are determined from classical experimental designs or from specifically 146 

designed optimal ones (Banga, Balsa-Canto & Alonso, 2008). Once the model is build and its 147 

parameters determined, a range of tools is available for indentifiablity, sensitivity and 148 

uncertainty analysis, both structural and parametric (Walter and Pronzato, 1997). The 149 

outcome of these procedures may be the reconsideration of model hypothesis and structure, 150 

and/or the design of additional experiments to allow reliable parameter identification. 151 

 152 

Limitations of current modelling approaches for food systems 153 
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Model-based approaches in food engineering are usually subject to one or more of the 154 

limitations synthesised in the first column of Table 1 (Bimbenet et al., 2007; Baudrit, Hélias 155 

& Perrot, 2009; Fito et al., 2007; Ioannou, Mauris, Trystram, & Perrot, 2006; Perrot et al., 156 

2006; Van Impe, 1996). Moreover, several of these difficulties often arise simultaneously in 157 

food technology and biotechnology (Van Impe, 1996). 158 

[Table 1 about here] 159 

In many domains, existing knowledge of food scientists has led to specific models, valid in a 160 

tiny domain, either of composition or of physico-chemical environment. Moreover, their 161 

conceptual framework does not allow easy integration of results coming from other existing 162 

models (Rodriguez-Fernandez, Balsa-Canto, Egea & Banga, 2007). For instance, most 163 

processing aspects are covered by differential equations of heat and mass transfer phenomena 164 

(H&M), whereas microbiological or chemical aspects are mostly described by simple kinetic 165 

equations; coupling those is sometimes possible but not easy or general. Moreover non 166 

homogeneous scales can increase the complexity of the modelling task. 167 

Furthermore, experimental data in food science and technology is often limited in amount and 168 

quality. On-line sensors are currently available for technological measurements only, such as 169 

temperature, pressure, velocity, etc. Measurements related directly to food quality (microbial 170 

count, desired or undesired compound concentration, texture…) are still performed by off-line 171 

laboratory analysis and are slow, costly, and labour-intensive. In large projects, a rule of 172 

thumb is that one laboratory analysis is ultimately obtained per full-time equivalent of the 173 

personnel involved in the project and per day. Compared to measurements performed in other 174 

fields (mechanics, electronics and even chemistry), laboratory analysis in food science are 175 
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subject to significant uncertainty. Differences of ±0.5 logarithmic units on replicate microbial 176 

counts, for example, are considered normal, while this represents a factor of 3. In sensory 177 

analysis, 30 or 50% variations between replicates are usual. Testing mechanism hypothesis 178 

and building reliable models based on scarce and uncertain data is obviously a difficult task. 179 

To cope with the bottlenecks bring by the study of food complex systems, some ways of 180 

research appear to be promising (second column in Table 1). 181 

 182 

Co-operation between disciplines 183 

Many scientific fields share the challenge of unifying complex and dissimilar data (Desiere, 184 

German, Watzke, Pfeifer, & Saguy, 2001) and deal with multiple physics models. As shown 185 

by Datta (2008), food structure development is not just a function of current parameters like 186 

temperature and moisture, but of their entire history, when the complex physical structure 187 

develops, changes porosity and transport properties. 188 

One of the research streams is related to the development of reliable models integrating 189 

different sources and format of knowledge is so-called knowledge integration. The principle 190 

is to deal with the different pieces of the puzzle of knowledge represented under different 191 

formalisms: data, models, expertise. One of the problems that must be addressed (Stuurstraat 192 

& Tolman, 1999) is how to cope with the conflicting requirements of each particular 193 

subsystem, optimized for its own knowledge domain. No easy solutions are available by now. 194 

The key point is the ability to cope with knowledge of different nature, at different scales, 195 

expressed in different formalisms (conservation laws and human rules of expertise for 196 

example) and to be able to take them into account in a unified manner. Nevertheless, this 197 
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issue is a key for the future, enabling us to exploit the different sources of knowledge that we 198 

are developing in our laboratories today. Interactions between various fields of science was 199 

pointed out in connection with environmental and natural resource issues (Christakos, 2002) 200 

biological issues (Olivier et al., 2010), nutrition (McLachlan & Garett, 2008) etc. 201 

 202 

Uncertainty 203 

Another key issue in food processes is the management of the uncertainty. Explicit integration 204 

of uncertainty has become crucial in industrial applications and consequently in decision 205 

making processes (Baudrit, Dubois & Guyonnet, 2006). In food processes, few contributions 206 

are available including uncertainy on model parameters or on model structure itself (Perrot et 207 

al., 2006; Petermeier et al., 2002). However, taking into account the complexity of 208 

microbiological and/or physicochemical transformations in food processes, available 209 

knowledge is often tainted with vagueness, imprecision and incompleteness. Furthermore, for 210 

use in industrial applications, models and especially mechanistic models should be studied 211 

upon their sensitivity to this uncertainty (Bimbenet et al., 2007; Banga, et al., 2008).  212 

 213 

Computing power 214 

Computationally demanding tasks are increasingly used in food processes. These include for 215 

example simulation of spatially distributed models, stochastic migration of molecules to 216 

determine diffusion and partition properties in complex media (Vitrac & Hayert 2007), 217 

mathematical viability calculations (Sicard et al. 2009), dynamic optimisation (Banga, J.R., 218 

Balsa-Canto, Moles & Alonso 2003), global sensitivity analysis etc. These tasks require new 219 
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calculation methods on computer grids to be tested and implemented (Reuillon, Chuffart, 220 

Leclaire, Faure & Hill 2010). 221 

 222 

A representative example: modelling of a cheese-making process 223 

To illustrate previous considerations, consider the case of the modelling and simulation of a 224 

cheese making process. The quality of soft mould cheese depends on environmental factors 225 

during ripening (relative humidity, temperature, gas composition) and on interactions between 226 

inoculated micro-organisms and curd substrates. The concentrations of these substrates is 227 

subject to variations in milk quality and cheese-making conditions (Helias, Mirade & Corrieu, 228 

2007). Over the last 10 years, more than 112 studies (FSTA and ISI web of sciences sources) 229 

have been carried out to understand this process in a microbial, physicochemical, biochemical 230 

and sensory points of view. About 52% of those models were empirical. For example Bonaiti, 231 

Leclerc-Perlat, Latrille and Corrieu (2004) developed a RSM approach to predict the pH and 232 

substrate evolution versus time for a soft cheese. Sihufe et al. (2010) used the principal 233 

component analysis to predict the optimal ripening time, while Jimenez-Marquez, Thibault 234 

and Lacroix (2005) have proposed a neural network to predict the ripening state of a cheese. 235 

Nearly 46% of the studies fell into the first principles category. 44% were mechanistic 236 

approaches based on mass transfer laws, e.g. for syneresis prediction (Helias et al., 2007; 237 

Tijskens & De Baerdemaeker, 2004), sometimes combined with microbial growth laws (Riahi 238 

et al., 2007; Guillier, Stahl, Hezard, Notz & Briandet, 2008). In the remaining 2% of the 239 

publications, expert systems were developed. 240 
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Most of the analysed publications were focused on one specific phenomenon, were limited to 241 

the experimentally explored domain without any generalisation ability and without taking into 242 

account the inherent uncertainty. For example the mass loss model presented in (Helias et al., 243 

2007) is developed under the hypothesis of average water and convective heat transfer 244 

coefficients fixed for air velocity upper than 0.2 m.s
-1

 while for some ripening chamber in the 245 

industry this velocity is lower than 0.2 m.s
-1

.  Water activity is also supposed to be constant 246 

while it is true in some specific configurations of the process. Integrating other type of 247 

information, such as expert knowledge or dealing explicitly with the uncertainty of the 248 

process could have enhanced the results. Each of those studies, constitute a part of the puzzle 249 

of knowledge that were built to understand the cheese making process but are not sufficient, 250 

taken alone, (1) to understand it in its global behaviour including all the scales and (2) to use 251 

it in decision making systems. 252 

Some recent studies have nevertheless proposed approaches for modelling the links between 253 

different scales and different type of knowledge, including uncertainty (Arguelles, Castello, 254 

Sanz & Fito, 2007; Baudrit, Sicard, Wuillemin & Perrot, 2010; Thomopoulos, Charnomordic, 255 

Cuq & Abecassis, 2009). Quite a few such integrating approaches are available up to now. 256 

Knowledge is still missing to model complex processes such as cheese making. Considerable 257 

experimental effort, large databases and progress in microbial physiology are needed to 258 

understand numerous variables relevant for cheese making and their interactions.  259 

 260 

 261 

 262 
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New opportunities: Complex system science for food engineering 263 

 264 

It follows from previous considerations that remarkable opportunities are now open for 265 

theories and techniques developed in the field of complex systems science, to be applied and 266 

adapted to food science and technology. The rest of this review will concentrate on 267 

knowledge integration, management of the uncertainty and model analysis for reverse 268 

engineering purposes. 269 

 270 

Knowledge integration  271 

Knowledge integration has been reported in several application fields, including food science. 272 

Quintas, Guimaraes, Baylina, Brandao & Silva (2007) studied complex caramelisation 273 

reactions. Alternative reaction pathways have been suggested, each described by a different 274 

set of differential equations. Automatic model selection was performed based on parameter 275 

identification results. Allais, Perrot, Curt & Trystram (2007) illustrate how mechanical laws 276 

can be coupled with an expert knowledge database to better comprehend a sponge finger 277 

batter process. Hadyanto et al. (2007) applied similar ideas to quality prediction of bakery 278 

products. 279 

A Systematic Approach for Food Engineering Systems (SAFES) based on the theoretical 280 

framework of irreversible thermodynamics has been proposed by Fito, Le Maguer, Betoret & 281 

Fito (2007). The principle is to define a simplified and unifying space of structural features, 282 

called „structured phases and components‟. These features are grouped in a composition 283 

matrix and are time dependant. The approach has been applied to different processes, e.g. 284 
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prediction of the change in protein conformation during ripening (Arguelleset al., 2007). A 285 

central hypothesis is the identifiability of the resulting model. This hypothesis is not always 286 

satisfied, however,  when establishing relationships between food composition and structure, 287 

in realistic foods. 288 

The contribution presented by Thomopoulos et al. (2009) concentrates on durum wheat chain 289 

analysis. The developed information system allows the integration of experimental data, 290 

expert knowledge representation and compilation as well as reasoning mechanisms, including 291 

the decision tree learning method. The principle is to encode the existing knowledge about a 292 

given food chain in a unified language. The uncertainty pertaining to the expert knowledge is 293 

taken into account in the form of fuzzy sets. The information system can be used in assisting 294 

decision makers but can not handle numeric approaches, like model based optimal control. 295 

As a last example, Baudrit et al. (2010) have shown that by introducing expert knowledge, a 296 

good prediction on the microbial and physicochemical kinetics during the ripening of a 297 

camembert type cheese was possible, based on limited experimental data set. The theoretical 298 

framework used here is that of Dynamic Bayesian Networks (DBNs) proposed by Murphy 299 

(2002). DBNs are classical Bayesian networks (Pearl, 1988) in which nodes  representing 300 

random variables are indexed by time (equation 1). In the considered example, the average 301 

adequacy rate in predicting microscopic and macroscopic scales was of 85%, on a test data 302 

basis of 80 measurements. 303 

 304 
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where 
 )(),...(1)( tNXtXtX 

and 
))(( tiXPa

denotes the parents of 
)(tiX

in the graphical 306 

structure of the DBN. This probability represents the beliefs about possible trajectories of the 307 

dynamic process X(t). Figure 2 illustrates a DBN representing a network applied on the 308 

example of cheese ripening. 309 

 310 

[Figure 2 about here]  311 

 312 

Management of the uncertainty 313 

Uncertainty, as explained in detail by Datta (2008), is usually of significant concern in food 314 

processing, perhaps more than in other domains. Uncertainties are often captured within a 315 

probabilistic framework. It is particularly true in food engineering for risk assessment (Aziza, 316 

Mettler, Daudin & Sanaa, 2006). Generally, uncertainty pertaining to the parameters of 317 

mathematical models representing physical or biological processes can be described by a 318 

single probability distribution. However, this method requires substantial knowledge to 319 

determine the probability law associated with each parameter. It is more and more 320 

acknowledged that uncertainty concerning model parameters has two origins (Ferson & 321 

Ginsburg, 1996): 322 

It may arise from randomness (often referred to as „stochastic uncertainty‟) due to natural 323 

variability of observations resulting from heterogeneity or the fluctuations of a quantity over 324 

time. 325 

Alternatively, uncertainty may be caused by imprecision (often referred to as „epistemic 326 

uncertainty‟) due to a lack of information. This lack of knowledge may arise from a partial 327 
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lack of data or because experts provide imprecise information. For example, it is quite 328 

common for experts to estimate the numerical values of parameters in the form of confidence 329 

intervals according to their experience and intuition. 330 

The uncertainty affecting model parameters is thus due both to randomness and incomplete 331 

knowledge. This is typically the case in presence of several, heterogeneous sources of 332 

knowledge, such as statistical data and expert opinions. The most commonly used theory for 333 

distinguishing incompleteness from randomness is the imprecise probabilities calculus 334 

developed at length by Peter Walley (1991). In this theory, sets of probability distributions 335 

capture the notion of partial lack of probabilistic information. While information regarding 336 

variability is best conveyed using probability distributions, information regarding imprecision 337 

is more accurately represented by families of probability distributions. Examples of tools to 338 

encode probability families include probability boxes (Ferson & Ginsburg, 1996), possibility 339 

distributions (also called fuzzy intervals) (Dubois, Nguyen & Prade, 2000) or belief functions 340 

introduced by Dempster (Dempster, 1967) and elaborated further by Shafer (Shafer, 1976) 341 

and Smets (Smets & Kennes, 1994) make it possible to encode such families.  342 

 343 

 [Table 2 about here] 344 

As an illustration, consider mass loss model during a ripening process, developed by Baudrit, 345 

Hélias & Perrot (2009). The idea of this contribution is to take into account the imprecise 346 

nature of available information about the heat and water transfer coefficients and to jointly 347 

propagate variability and imprecision to the estimation of cheese mass loss through the 348 

ripening process. In order to do this, the most faithfully available knowledge and the 349 
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associated form of uncertainty was implemented (Table 2). For the measurements, spatial 350 

variations of humidity and temperature due to climate control were taken into account. Due to 351 

low airflow velocity inside ripening chambers, imprecision about the heat and mass transfer 352 

coefficients reported in the literature was incorporated and represented by means of a 353 

possibility distribution. The joint propagation of these uncertainties, coupling random 354 

sampling with interval calculus, has led the authors to provide key information for improving 355 

the control of the mass loss of cheeses under industrial conditions. A further step forward 356 

would be the integration of the uncertainty as part of the model equations. 357 

 358 

Analysis of the models for reverse engineering purposes applied to complex food systems 359 

 360 

Model based optimization for identification and control 361 

Model-based optimization is usually implemented for three major areas in food technology 362 

(Banga et al. 2008): optimal identification of model parameters, building reduced-ordered 363 

models for faster simulation and selection of optimal operating policies (model predictive 364 

control). A worked-out example in the first category is given by Balsa-Canto, Rodriguez-365 

Fernandez & Banga (2007), where the identification of kinetic parameters for thermal 366 

degradation of microorganisms is considered. Authors show how well-designed time-varying 367 

experiments can achieve an accurate and robust identification of model parameters, with a 368 

reduced experimental effort. In modelling of fermentation kinetics, optimal experimental 369 

design was applied by Bernaerts, Versyck, &Van Impe (2000), Smets, Versyck, Van Impe 370 

(2002), with similar conclusions. 371 
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A comprehensive review of optimal control for food processes was provided by Garcia, 372 

Balsa-Canto, Alonso & Banga (2006). Global optimisation methods like evolutionary 373 

algorithms, scatter search and particle swarm optimisation ensure robust convergence towards 374 

optimal control profile despite the presence of constraints and local optima. An interesting 375 

contribution can be found applied to the alcoholic fermentation of a beer production process 376 

(Trelea, Titica & Corrieu, 2004). The results demonstrate the possibility of obtaining various 377 

desired final aroma profiles and reducing the total process time using dynamic optimization of 378 

three control variables: temperature, top pressure and initial yeast concentration in the tank. 379 

Applied to the alcoholic fermentation, it has led to the reduction of the production cost 380 

(reducing the process residence time from 121 hours to 95 hours) for an existing sort of beer 381 

without altering its aroma profile (figure 3). Compared to classical sequential quadratic 382 

programming optimisation (SQP), PSO optimisation, as well as other stochastic search 383 

algorithms, require much less conditions on the dynamic model, objective function and 384 

constraints (continuity, derivability) and can thus be applied to almost any existing process 385 

model without further reformulation. 386 

[Figure 3 about here] 387 

 388 

Viability theory for decision help or control purposes 389 

Given the dynamics of a complex process, a „viable‟ control is sequences of actions driving 390 

the process along admissible evolutions. Admissible evolutions are such that the industrial 391 

production constraints are satisfied and the consumer expectations, expressed as targets, are 392 

reached. The main purpose of the viability theory is to explain the evolution of a system 393 
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(model exploration), determined by given non deterministic dynamics and viability 394 

constraints, to reveal the concealed feedbacks which allow the system to be regulated and 395 

provide selection mechanisms for implementing them. Cost function can also be associated to 396 

trajectories in the state space. The aim is to reach a target with an optimal trajectory (minimal 397 

cost). If we denote SF(x), the set of evolutions governed by the controlled dynamical system 398 

x'(t)=f(x(t),u(t)), the viability kernel is defined by (Equation 2): 399 

 KtxtxSxKxKViab FF  )(,0),((.):)(
 (2) 400 

This is a variant of the viability problem called capture basin. Numerical schemes to solve 401 

`viability' or `capture' problems were firs proposed by Saint Pierre (1994). 402 

As in model-based optimizations methods, an optimal control can be calculated on the basis 403 

of the dynamic model. The advantage of the viability approach compared to the previous one 404 

is that the exact calculus of the frontier of the admissible evolutions is included in the viability 405 

scheme (Martin, 2004). It is also possible, by evaluation of the distance of each evolution to 406 

the calculated frontier at each time step, to quantify the robustness of each control trajectory 407 

in the state space (Alvarez, Martin & Mesmoudi, 2010). Indeed, nearer is the evolution to the 408 

frontier of the tube, less robust is the selected viable trajectory. Nevertheless viability suffers 409 

from the curse of dimensionality, with a need for an exhaustive search in the state space, in 410 

contrast to stochastic calculus. Such a bottleneck is in pass to be solved with research led in 411 

computer science and increased availability of powerful computer systems (Reuillon, et al., 412 

2010). 413 

. 414 

 415 
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A pioneering application of viability theory to food processes was the optimisation of 416 

Camembert cheese mass loss during ripening, while preserving an equilibrate growth of 417 

ripening microorganisms (expressed using the expert knowledge). The control variables taken 418 

into account in the algorithms were the relative humidity and the temperature of the ambient 419 

air of the ripening chamber (Sicard et al. 2009). In this study, the computation was achieved 420 

by the distribution of the algorithm on a cluster composed of 200 CPU (Central Processing 421 

Units). An example of viability kernel calculated for 12 days of ripening is presented figure 4. 422 

The distance of the determined viable trajectory to the boundary (frontier) of the viability tube 423 

is shown. An optimal ripening control trajectory calculated using the viability algorithm was 424 

implemented and validated experimentally. The gain in ripening time with a trajectory 425 

selected in the viability kernel for a given quality of the cheese, was of 5 days, to be compared 426 

with the residence time in the ripening chamber of around 12 days for a standard control 427 

policy (92% relative humidity and 12°C). 428 

 429 

[Figure 4 about here] 430 

 431 

Finally, both optimal control and viability theory are relevant approaches for reverse 432 

engineering purposes and can integrate global requirements encountered in food industry 433 

(nutritional, organoleptic, economical, technical, environmental, etc...). Nevertheless, their 434 

main limitation is the availability of dynamic models sufficiently representative of the 435 

complex phenomena involved in food processes. 436 

 437 
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Conclusion 438 

The paper reviews current trends in modelling, design and control of foods and manufacturing 439 

processes, by pointing out modern promising approaches to tackle complexity, uncertainty, 440 

lack of complete first principles understanding and of reliable data and its high cost. 441 

Considerable opportunities are now open to capture and manage the complex dynamics of 442 

food systems, coupling different scales and reduce the associated uncertainty. Tight 443 

collaboration with various disciplines is needed to unify complex and dissimilar data and 444 

knowledge. Fundamental tools developed in complex systems science appear to be able to 445 

deal with the identified bottlenecks: 446 

 Develop high-dimension models, integrating all relevant time and space scales, 447 

without reduction. 448 

 Develop approaches for decision making and reverse engineering, integrating various 449 

sources of information and associated uncertainty. 450 

Key issues towards these goals are knowledge integration, unifying mathematical formalisms, 451 

uncertainty representation and management, optimal control, viability and increased 452 

computing power. Complex system science provides appealing research directions for these 453 

issues and has proven some efficiency to tackle such complex problems as multiscale 454 

reconstruction in embryogenese (Olivier et al., 2010). Nevertheless, it is obvious that further 455 

interdisciplinary work is required at the frontier of complex system science, which is on its 456 

own  at the boundary of mathematics, physics and computer science, and food science. A 457 

generic structure for this modelling approach could lead in the future to intelligent systems 458 
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able to guide the user in defining a model, coupling different mathematical tools and solving 459 

the problem by bringing together available knowledge, irrespective of its format and scale. 460 
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Figure 3: Fermentation time reduction of an existing beer without changing the final aroma 

profile. Top: aroma concentrations at the end of the alcoholic fermentation. Bottom: operating 

conditions for the alcoholic fermentation process. 
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Figure 4: An example of viability tube for 12 days of a cheese ripening process. Distance 
square map for each point is presented in colour: from blue near the boundary of the viable 
tube, to red at the heart of the tube. 3 dimensions are taken into account for the calculus of the 
viable state: mass, respiration rate of the microorganisms and temperature of the surface of the 
cheese.  
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Table 1: Difficulties for the development and analysis of the models in food engineering 

(column 1) and possible solutions (column 2). 

 

Difficulties Possible solutions 

Diversity of the mechanisms 

(physicochemical reactions, microbial 

reactions)  

Multidisciplinary research team 

Knowledge integration through 

appropriate formalisms 

Different and non homogeneous scales 

for variables and different type of 

knowledge 

Unifying mathematical formalisms 

Non linear connections between the 

variables 

Time scale coupled with space scale  

Adapted formalisms 

Increased computing power  

 Uncertainty on the measurements and 

inconsistency in data 

Formalisms able to cope with epistemic 

and stochastic uncertainties 

Empiricism and fragmented 

knowledge 

Cost and duration of experiments 

 

Co-operation between scientists and 

experts from different disciplines 

Modular modelling approach, able to 

integrate building blocks of different 

nature 

  

 

Table 1



Sources of 

information

Character of 

knowledge

Mode of 

representation

Input 

variables

Respiration rates

ro2,rCo2

Measurements Precise Fixed values

Climate control

Rh(t), T∞(t)
Measurements Spatial variability

Probability 

distribution

Model

parameters

Transfer 

coefficients

h,k

Expert opinion + 

literature
Imprecise Fuzzy sets

Literature physical 

constants

σ, λ, α,

wco2, wo2,

ε,s,C,aw

Literature Precise Fixed value

Table 2: Type of uncertainties propagated in a mechanistic model of cheese mass loss during a ripening process.
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