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Large datasets from -omics studies need to be deeply investigated.
The aim of this paper is to provide a new method (LEM method) for
the search of transcriptome and metabolome connections. The heu-
ristic algorithm here described extends the classical canonical corre-
lation analysis (CCA) to a high number of variables (without regu-
larization) and combines well-conditioning and fast-computing in
“R.” Reduced CCA models are summarized in PageRank matrices,
the product of which gives a stochastic matrix that resumes the
self-avoiding walk covered by the algorithm. Then, a homogeneous
Markov process applied to this stochastic matrix converges the prob-
abilities of interconnection between genes, providing a selection of
disjointed subsets of genes. This is an alternative to regularized
generalized CCA for the determination of blocks within the structure
matrix. Each gene subset is thus linked to the whole metabolic or
clinical dataset that represents the biological phenotype of interest.
Moreover, this selection process reaches the aim of biologists who
often need small sets of genes for further validation or extended
phenotyping. The algorithm is shown to work efficiently on three
published datasets, resulting in meaningfully broadened gene net-
works.

canonical correlation analysis; local models determination; PageRank
method; Markov and non-Markov chains; structure matrix

1 INTRODUCTION

With the increase of functional genomics studies that aim at
identifying key factors affected by particular physiological
contexts or treatments, the combination of different -omics
techniques such as transcriptomics and metabolomics is be-
coming a popular manner to better understand the biology of
complex systems. The underlying purpose of those integrative
approaches is to find links between heterogeneous datasets to
assess whether connecting them is a more powerful way to
analyze such a large quantity of data and give them a fine-tuned
biological sense at a higher level of understanding than using
classical analyses.

Canonical correlation analysis (CCA) methods (13) have
emerged as an efficient exploratory tool to correlate two
datasets acquired on a same experimental unit. However, a key
assumption in CCA is that the number of biological replicates
has to be higher than the number of variables to correlate in
each set. This assumption is never verified in costly experi-
ments. Furthermore, CCA has been extended to generalized
canonical correlation analysis (GCCA; Refs. 4, 5), to regular-

ized canonical correlation analysis (RCCA, Refs. 11, 18, 32)
and to regularized generalized CCA (RGCCA, Ref. 29) to
overcome the limitations of the method (replicates numbers,
vectors colinearity, more than two sets to correlate). Correla-
tions analyses are particularly useful in nutrigenomics studies
and RCCA, for example, was previously performed to link me-
tabolism and transcriptome in mouse (21) and bovine work (31).

However, none of those methods fully answers mathemati-
cal and biological problems. For example, RGCCA reveals
convergence and matrix conditioning issues because of a too
global approach, which makes the results difficult to interpret.
Moreover, CCA and its extended methods isolate highly cor-
related variables. This approach would be suitable for our
purposes if the neglect of some variables was possible in the
two datasets. However, in nutrigenomics studies the analysis is
based on a huge transcriptomic dataset and a more restricted
metabolic dataset in which parameters are biologically chosen
on their relevance to represent the final phenotype of interest.
This implies that metabolic variables should not be individu-
alized but taken together since they describe a global physio-
logical context that will be used to select for a few genes that
explain the observed phenotype.

The purpose of this paper is to provide a new heuristic
method that gives the linear links between two sets of column
vectors in which each row is issued from measurements of an
individual data. Applied to our examples the first dataset
represents a set of genes; we hope that some of them will be
able to give a linear explanation of the whole metabolic/clinical
second set behavior. The algorithm developed here is designed
to take into account the limited number of individuals by a
multiple exploitation of reduced local CCA models, while the
classical method would fail when applied to the entire set of
genes.

The method consecutively selects restrictive subsets of vec-
tors within the first dataset on the basis of their explicative
levels, measuring the most efficient gene vectors to optimize
models. By increasing a required significance level we force
the process to explore the whole first dataset of gene vectors.
The result is a number of nonredundant linear models. We
describe here that such reduced models can be summarized in
PageRank matrices (23). Thus, we obtain a stochastic matrix,
product of the PageRank matrices, which is the result of the
course of the algorithm.

We established as one of the main points of this paper that
a Markov process applied to the previous stochastic matrix
determines our gene selection method. Singularly, this process
is built from a self-avoiding walk i.e., a non-Markov process.
The sequence of powers of the Markov matrix gives local
extended models (LEM) that take into account the persistence
of some genes through several local models (connexity). The
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principle of the gene selection method (or LEM method) is
presented in Fig. 1.

So doing, we also propose a consistent method for structure
matrix determination, while GCCA and RGCCA are unable to
choose a structural partition into sets of genes and the proper
weight for each of these partitions. In fact, the application of
RGCCA block-wise or not (29) to our problems involves
coefficients estimation of the linear combination of the whole
first vector set, in the hope that some will be neglected because
of their values close to zero. RGCCA transforms our mathe-
matical problem into a continuous optimization problem solved
by Gauss-Seidel-like methods and does not take into account
many interesting local models.

As proof-of-principle, the current method has been applied
to two nutrigenomics studies of similar complexities, one
concerning the fertility of dairy cows (31) and the other the role

of PPAR� in the regulation of hepatic metabolism in the mouse
(19). In addition, we extended the use of the method to a larger
dataset dealing with the clinical effect of varying doses of
acetaminophen on rats (3), evidencing in all cases reduced
computing times and increased biological outputs. In this article
we will 1) develop the biological datasets used, 2) describe the
mathematics supporting the algorithm, and 3) conclude on bio-
logical advantages brought by this new method. We also give an
end-user “R” program (25).

2 BIOLOGICAL DATASETS

Datasets

The datasets analyzed with the gene selection algorithm are
presented in Table 1. The two nutrigenomics datasets, referred
to as NutriBov and NutriMous, were of similar complexities.

Fig. 1. Principle of the gene selection method.

Table 1. Datasets

NutriBov NutriMous LiverTox

Diet/Dose n � 2, UF vs. CTRL n � 5, COC, REF, SUN, LIN, FISH n � 4, low (2), high (2)
Tissues n � 3, OVI, ENDO, CL n � 1, LIV n � 1, LIV
Units n � 12, cows 4/diet/tissue n � 40, mice 20/genotype (2) 8/diet n � 64, male rats
Variables n � 2, genes (OVI: 293) blood

metabolites (6)
n � 2, genes (120) hepatic fatty acids (21) n � 2, genes (3,116) clinical measurements (10)

Studied correlation genes/metabolites genes/metabolites genes/measurements
Data matrices 12 � 293 (genes) & 16 � 6

(metabolites)
40 � 120 (genes) & 40 � 21 (FA) 64 � 3,116 (genes) & 64 � 14 (measurements)

Methodology RCCA RCCA, sPLS RCCA, sPLS
Reference list no. 31 12, 14, 19 12

RCCA, regularized canonical correlation analysis; sPLS, sparse partial least squares; UF, underfed; CTRL, control; COC, coconut oil diet; REF, reference diet;
SUN, sunflower oil diet; LIN, linseed oil diet; FISH, fish oil diet; OVI, oviduct; ENDO, endometrium; CL, corpus luteum; LIV, liver; FA, fatty acid.
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They respectively described the effect of diets (two to five) on
tissues (one to three) of dairy cows or genotyped mice
(PPAR��/� vs. wild type), while measuring blood metabo-
lites or hepatic fatty acids and concomitantly evaluating gene
expression changes in the dedicated tissues: oviduct, endome-
trium, corpus luteum (OVI, ENDO, CL) or liver (LIV). To add
upon these first datasets where a limited number of physiolog-
ical measurements (6–21 metabolites) were correlated to hun-
dreds of genes (120–293), we extended our tests to a study
(LiverTox) where 10 clinical measurements were concomi-
tantly analyzed to many more genes (3,116). NutriMous and
LiverTox datasets are publicly available in the “mixOmics”
package (15). For the NutriBov dataset see (31).

RCCA and nonregularized GCCA (sparse partial least
squares) analysis

So far, these datasets were analyzed by RCCA or sparse
partial least squares (sPLS) (11, 12, 16, 31). In our case studies
(see section 5), we re-analyzed the data with RCCA or sPLS
too, evidencing gene/metabolite correlations for one half or
one third of the physiological or clinical measurements
(NutriBov, 3 out of 6 metabolites; NutriMous, 7/21; LiverTox,
7/14) and at best, half of the interesting gene changes (Nutri-
Bov, 151/293; NutriMous, 27/120; LiverTox, 1,032/3,116).
These results depended on the selected correlation thresholds.
In the published reports there were as follows: NutriBov: r �
0.6, NutriMous: r � 0.5; we choose in our study r � 0.5 for
LiverTox.

RCCA and sPLS limitations

However, using those methods we observed several limita-
tions. In practice, the results obtained by RCCA were highly
sensitive to the quality of the determination of the regulariza-
tion parameters. Those difficulties increased positively with the
size of the datasets until the convergence of the method was not
ensured in a reasonable time on the LiverTox dataset (section
5.4). The sPLS method is derived from the concept of RGCCA
(29) and includes the convergence and matrix conditioning
issues mentioned earlier. To overcome those limitations we
present a heuristic algorithm (LEM method) that doesn’t need
regularization and combines fast computing in R software (25).
This method also aims to maximize the number of metabolites/
clinical measurements to correlate to gene expression, thus
proposing a data-mining tool complementary to RCCA and
sPLS, and biologically: new correlations and/or hypotheses.

3 GENE SELECTION ALGORITHM BASED ON CCA

3.1 Notations, Assumptions, and Objectives

Let us consider two matrices X1 (size n � r) and X2 (size
n � q) respectively evaluating “gene expressions” and “me-
tabolism patterns,” n being the number of individuals and
r �� n � q. Thus, we own a huge number of r genes to test
according to q metabolic variables.

When the number of individuals is smaller than the number
of variables (7) or in case of strong multi-colinearity in X1 or
X2, nonregularized CCA sometimes fails. Then, the determi-

nation of shrinkage estimations and shrinkage constants is
needed (17).

We describe in section 3.3, a heuristic method to extend
CCA to r genes instead of regularization methods. We propose
to test successive classical models of CCA including p genes
(p � q � n �� r). Now, the size of X1 is n � p.

Let us consider the classical model of canonical analysis
using the concatenated

X � �X1�
n�p

�X2�
n�q

, (1)

block-wise defined matrix [size n � (p � q)], where we aim to
find a linear relationship between column vectors of X1 and
column vectors of X2.

The heuristic method allows the choice of a sufficiently
small number p of variables for each performed CCA. Thus,
we reasonably hope X1 and X2 to be full rank matrices
[Rank(X1) � p and Rank(X2) � q]. We also assume that the
columns of X1 and X2 are centered and normalized by using
D-metrics (here D � nxn

Id , Euclidian-metrics).
We want to extract, among (p

r ) potential CCA models, those
giving a maximal explicative level (a notion to be defined
hereafter).

3.2 Explicative Level of a CCA Model, Definition

We know (27) that the number of nonzero eigenvalues in a
canonical analysis is less than, or equal to, Min(p, q) � p (here
p � q). The multiplicity order of the eigenvalue 1 is Dim
(W1 � W2), with:

W1 � �x � �n ⁄ x � X1a, a � �p�,
W2 � �y � �n ⁄ y � X2b, b � �q� . (2)

Then,

∀z � W1 � W2, ∃ �a, b� � �p � �q ⁄ z � X1a � X2b, (3)

and for such a z, a linear combination of the column vectors yj,
j � �1, q� of X2 is given by a linear combination of the column
vectors xk, k � �1, p� of X1.

We thus obtain a relation between the eigenvalues taken by
the initial variables (i.e., to test) from the first set “gene
expressions” (X1) and those of the second set “metabolism
patterns” (X2).

The eigenvectors associated with an eigenvalue 0 generate
the D-orthogonal parts between W1 and W2 so that the figuring
vectors in one or the other part are representing totally inde-
pendent variables.

Canonical analysis gives the proximity to zero (Bartlett test) for
eigenvalues (27), which works with multinormalized samples (we
will further suppose multinormalization of our samples).

Let us consider the whole set of eigenvalues �1,..., �k,
�k�1,..., �p written with their multiplicity order, classified by
decreasing values. We keep in mind:

∀i � �1, p�, 0 � �i � 1. (4)

Then, the H0 null hypothesis is:
If �1,..., �k have a significance level �5% (or any accept-

able value), those �1,..., �k are judged significantly different
from zero. Then, we can test �k�1,..., �p for nullity.

We remind that the error of first kind is P(reject H0|H0

TRUE) and that the significance level is the smallest value of
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the error of first kind that we could have chosen while still
rejecting H0.

More explicitly, we own the quantity:

�	n � 1 � k �
1

2
�p � q � 1� � 


i�1

k 1

�i
�ln	 �

i�k�1

p

�1 � �i�� ,

(5)

where �i�k�1
p �1 � �i� is the Wilks lambda.

If the theoretical value of �k�1,..., �p is zero, then for a big
enough n � 2k, the real random variable Z associated with this
quantity is an estimation of the proximity to zero of �k�1,...,�p

and it approximately follows a 	(p�k)(q�k)
2 law.

If Z takes the value zk, assuming H0, the probability to
observe a so large value of Z is

P�Z � zk� � Pk (6)

with Pk significance level of the nullity of every term �i, i �
�k � 1, p�. This Pk is generally obtained by a reverse reading
in the 	2 table of fractiles, where

Pk � 1 � P�Z � zk� . (7)

Besides, if the columns xk of X1 and yj of X2 are D-normal-
ized, then the canonical analysis gives pairs (
i,�i) of D-nor-
malized eigenvectors, 
i and �i being associated with the same
eigenvalue �i � cos2(
i, �i). The canonical coefficient of cor-
relation is �i � cos(
i, �i) [cos(
i, �i) � 0 by construction],
where these 
i are pairwise D-orthogonal in W1 and these �i are
pairwise D-orthogonal in W2.

Now, we only consider pairs in which the significance degree
associated with the Bartlett test is �5% (or any acceptable value).
The number of Bartlett-significant pairs is s, with s � Min(p,q).

The canonical analysis then gives the coordinates of Pr(xk)
and Pr(yj), where Pr represents the D-orthogonal projection
from �n to the vector space generated by these (
i), i � �1, s�
or, alternatively, by these (�i), i � �1, s�.
Then, the canonical analysis coefficients are calculated:

Pr�xk� � 

i�1

s

	k
i 
i ; Pr�yj� � 


i�1

s

�j
i
i (8)

or alternatively,

Pr�xk� � 

i�1

s

�k
i i ; Pr�yj� � 


i�1

s

�j
ii . (9)

Since, by hypothesis, the vectors xk and yj are D-normalized,
|�k

i | � |cos(xk, 
i)| represents the coefficient of correlation between
the initial variable xk and the canonical variable 
i,
(k, i) � �1, p� � �1, s�, similarly |�j

i| � |cos(yj, 
i)| represents the
coefficient of correlation between the initial variable yj and the
canonical variable 
i, (j, i) � �1,q� � �1, s�. The same applies to
the alternative choice.

For a pair of chosen values (
i, �i), if cos(
i, �i) is significantly
different from zero, we will consider that the initial variable xk in
the first group X1 is related to the initial variable yj in the second
group X2 when |�k

i | � 0.25 (or any chosen level in [0,1], a level
of 1⁄p performing at least a correlation with one of the
canonical variables) and simultaneously |�j

i| � 0.25.
The initial variable xk is the vertex of degree

card��j
i ⁄ ��j

i� � 0.25, j � �1, q�� (10)

of a multifunction bipartite graph. We thus obtain a directed
bipartite graph with respect to the pairs of values (
i, �i) pre-
sented in Fig. 2.

Then, we assign to xk its degree degk
i and we will call the

explicative level of xk in a CCA model the integer

Nk � 

i�1

s

degk
i . (11)

The integer

N � 

k�1

p

Nk (12)

will be called the explicative level of the canonical analysis,
with respect to the tried set X1 � [x1]...[xp], while X2 �
[y1]...[yq] is a priori fixed.

3.3 Heuristic Strategy to optimize Local CCA Models

Integers Nk, k � �1, p� as well as the integer N allow, for a
fixed p, a strategy of choice of the most relevant CCA models
among the (p

r ) possible models. Our strategy consists in choos-
ing the models that maximize the Nk and in fine N. Neverthe-
less, calculating the integers Nk and N for each of the (p

r )
possible models would be extremely time-consuming and will
lead to too many results to analyze in the end.

One of the major originalities of our work is that we
consequently adopt a heuristic strategy to optimize the research
of genes highly correlated with metabolism. Genes enter or exit
a screen of size p used to generate different local CCA models
until the whole set of r genes is tested. The explicative levels
of the genes are used to characterize those that are suitable to
be retained or exited of the models.

This strategy is formulated as follows:
1) We rank the list of genes by increasing the index num-

bers: (x1,..., xr).
2) We choose the first p genes (x1,...,xp) and we compute the

list of pairs [(x1, N1),...,(xp, Np)].
3) We then rank these pairs by decreasing explicative levels

(maybe with some duplicated levels).
Through a reorganization of the indexes, N1 � ... � Nk � ... �

Np will be assumed. Then, it is also assumed that we are given a
certain integer threshold level N0.

4) We only keep (x1,..., xk0) in the list of genes, where k0 is
the greatest integer such that Nk0 � N0. The following nonex-
plored genes are now introduced to fulfill the list. By this, we
obtain a p-terms list (with at most p incoming terms) and we
reiterate the process by recomputing the list of pairs.

x1 ... xk1
... xk2

... xp

y1 ... y j1
... y j2

... yq

Fig. 2. Directed bipartite graph with respect to the pairs of values (
i, �i), where
xk (k from 1 to p) is the gene sequence; yj (j from 1 to q) is the metabolite
sequence. An arrow represents the association between a gene and a metabo-
lite.
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However, if we choose N0 � 0, there is no progression of the
process and we just retain the very first model given by the first
p genes. To increase the explicative level of models, we
propose to increment N0 from 0 to the first value of N0 until all
xk, k � �1, r� included in the initial list have been transferred
to canonical analysis.

4 MATHEMATICAL STUDY OF THE ALGORITHM

4.1 Construction of PageRank Matrices

Let us consider a directed bipartite graph made of the set Z
of r � q vertices:

Z � �x1, . . . , xr, y1, . . . , yq� , (13)

where {x1,..., xr} represents the r genes to test and {y1,..., yq}
the q metabolites to explain.
The set E consisting of all arcs of the graph is built as
follows:

After a CCA on p genes selected among r according to the
rules of the algorithm outlined above, each gene xk, k � �1, r�
is associated with a set of metabolites

�yj ⁄ j � Jk, Jk � �1, q�� , (14)

which may be empty. We create arcs with origin xk and with
extremity each value yj, j � Jk.

Then, we build a PageRank type stochastic square matrix
G(gkj) with r rows and r columns (2, 23):

We choose  � [0, 1[.A reminder:

∀k � �1, r�, Nk � 

i�1

s

degk
i , (15)

with s number of significant eigenvectors used in the CCA and

N � 

k�1

r

Nk (16)

(assumed nonzero) for p tested genes.
Note that with this writing, if xk is not among the p vectors

tested in the CCA necessarily for k � �1, r�, Nk � 0.
Then, will be denoted by Xm the real random variable corre-

sponding to the index of a gene in the model at step m. Xm � zm,
where zm � �1, r�.

We set:
For k � �1, r�, index of a tested gene,

gkk � � � �1 � ��
Nk

N
� P�Xm�1 � k�Xm � k� , (17)

∀j � �1, r�, j � k, gkj � �1 � ��
Nj

N
� P�Xm�1 � j�Xm � k� .

(18)

If k is not the index of a tested gene,

gkk � 1 and ∀ j � �1, r�, gkj � 0. (19)

Consequently, for a tested gene:

If Nk � 0, then gkk � � and ∀ j � �1, r�, gjk � 0. (20)

The probability given to the gene j at step m � 1 knowing the
probability given to the gene k at step m depends only on the ratio
coming from CCA at step m. This ratio is formed by the
explicative level of the gene j divided by the explicative

level of the general model for which the gene k, but the
other tested genes also potentially have a contribution. This
probability is not generally invariant under a transposition
of indexes j and k.

G is stochastic because:
1) G is clearly positive.
2) For k � �1, r�, index of a tested gene,



j�1

r

gkj � gkk � 

j�1

j�k

r

gkj � � � �1 � ��
Nk

N
� 


j�1

j�k

r

�1 � ��
Nj

N

(21)

�� �
�1 � ��

N 

j�1

r

Nj � � �
�1 � ��

N
N � 1.

If k is not a tested gene, it is clear that



j�1

r

gkj � 1. (22)

Now, we describe the matrices and tests used by the algo-
rithm:

If, as suggested for the initialization step, we choose a priori the
p first genes (x1,..., xp) associated with the row probability vector
V0 of coordinates vk

0 � P(X0 � k), where @k � �p � 1, r�, vk
0 �

0, we obtain for the first iteration:
1) G1(gkj

1 ) stochastic matrix r � r.
2) V1(vk

1) row vector with V1 � V0G1.
Thus, V1 is a probability vector, where:

∀j � �1, r�, vj
1 � P�X1 � j� � 


k�1

r

vk
0gkj

1 � vj
0gjj

1 � 

k�1

k�j

r

vk
0gkj

1 .

(23)

In obvious notations, for a 1 � [0,1[ chosen:

∀j � �1, p�, vj
1 � vj

0	�1 � �1 � �1�
Nj

1

N1
�

� 

k�1

k�j

p

vk
0	�1 � �1�

Nj
1

N1
� � vj

0�1 � �1 � �1�
Nj

1

N1
,

(24)

and

∀j � �p � 1, r�, vj
1 � 0. (25)

The block-wise matrix G1, the vector V0 and V1, are repre-
sented in the Fig. 3. The square blocks in the main diagonal of G1

are from the left to the right of respective dimensions p and r � p.
The coefficient (1 � 1)/N1 being strictly positive, if N0

1 is a
fixed strictly positive threshold level for this step, the equiva-
lence

∀j � �1, p�, Nj
1 � N0

1 ⇔ vj
0�1 � �1 � �1�

Nj
1

N1
� vj

0�1

� �1 � �1�
N0

1

N1

(26)

allows an exclusion test for genes.
Let us consider for this step the matrix G1

0 obtained by
replacing in G1 every Nj

1 by N0
1, where j describes the set of

indexes of the p tested genes in the CCA. Then, the exclusion
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test for genes collects those l1 indexes that break the constraint
V0G1 � V0G1

0 (term to term inequality for row vectors)
because for j index of the p tested genes, if (V)j is the jth
coordinate of the row vector V,

�V0G1�j � �V0G1
0�j ⇔ Nj

1 � N0
1. (27)

Now we suppose 0 � l1 � p and p � l1 � r. The next step
is a CCA in which are removed these l1 genes, and then we get
the 11 following ones in such a way that p genes are still tested.
We chose 2 � [0, 1[.The CCA is used to build a block-wise
stochastic matrix G2(gkj

2 ) where, to simplify the notation with-
out loss of generality, it is assumed here

∀j � �p � 11 � 1, p�, �V0G1�j � �V0G1
0�j . (28)

We obtain the row vector V2(vk
2) using V2 � V1G2. Thus, V2

is a probability vector where

∀j � �1, r�, vj
2 � P�X2 � j� . (29)

The block-wise matrix G2 and the vector V2 are represented
in Fig. 4. The square blocks in the main diagonal of G2 are
from the left to the right of respective dimensions p � l1, l1, l1,
r � (p � l1).

Let us consider for this step the matrix G2
0 obtained by replacing

in G2 every Nj
2 by N0

2 (fixed threshold level with N0
2 � N0

1), where
j describes the set of indexes of the p tested genes in the CCA.
Then, the gene exclusion test consists in collecting those l2
indexes, which break the constraint V1G2 � V1G2

0 because for j
index of the p tested genes,

�V1G2�j � �V1G2
0�j ⇔ Nj

2 � N0
2. (30)

G1

1 + (1 1)
N1

1

N1
(1 1)

N2
1

N1
(1 1)

Np
1

N1
0 0

(1 1)
N1

1

N1

(1 1)
Np

1

N1

(1 1)
N1

1

N1
(1 1)

Np 1
1

N1
1 + (1 1)

Np
1

N1
0 0

0 0 1 0 0
0 0

0 0 0 0 1

V0 v1
0 ,..., vp

0 , 0 ,..., 0( )

V1 v1
0

1 + (1 1)
N1

1

N1
,...,  vp

0
1 + (1 1) p

1N
N1

, 0 ,..., 0

Fig. 3. The block-wise matrix G1, the vector V0 and V1.
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2N
2N

(1 2) 2
2N
2N

(1 2) p-l1
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2N

2N
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2N
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2N

2N

(1 2) 1
2N
2N
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2N
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2N
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2N

2N
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1
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2
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1
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Fig. 4. The block-wise matrix G2 and the vector V2, where � is .
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We assume further 0 � l2 � p (the model progresses) and
p � �i�1

2 li � r (it remains genes to be tested).

4.2 Algorithm With the Previous Notations, in a
Pseudolanguage

The algorithm as described in the previous section can be
associated with a stochastic matrices sequence (Gn) of Page-
Rank type according to the following iterative method:

Initialization. Choice of V0 probability row vector/@k �
�p � 1, r�, vk

0 � 0 and J0 � �1, p�.
Step 1: 1). Choice of 1 � [0, 1[.
2) CCA for {xi}i�J0

and computation of G1.
3) Computation of V1 � V0G1. @j � �1, r�, (V1)j � P(X1 � j).
4) Choice of the threshold level N0

1.
5) Exclusion test (V0G1)j � (V0G1

0)j for j describing J0.
6) Computation of l1 (number of excluded genes).

Œ If l1 � 0 increment N0
1 with 1 and return to step 5).

Œ Else � stop testing �
� If p � l1 � r, computation of J1.
� Else End.

J1 is the set of the p incoming genes into the CCA for the
next step. J1 is the union of the set of indexes corresponding to
the p � l1 preserved genes belonging to J0 and the set �p � 1,
p � l1� of indexes corresponding to the l1 incoming genes.

Step n (n � 2). 1) Choice of n � [0, 1[.
2) CCA for {xi}i�Jn�1

and computation of Gn.
3) Computation of Vn � Vn�1Gn � V0G1...Gn. @j � �1, r�,

(Vn)j � P(Xn � j).
4) Choice of the threshold level N0

n � N0
n�1.

5) Exclusion test (Vn�1Gn)j � (Vn�1Gn
0)j for j describing Jn�1.

6) Computation of ln (number of excluded genes).
Œ If ln � 0 increment N0

n with 1 and return to step 5).
Œ Else � stop testing �

� If p � �i�1
n li � r, computation of Jn.

� Else End.
Jn is the set of indexes of the p incoming genes into the CCA

for the next step. Jn is the union of the set of indexes corre-
sponding to the p � ln preserved genes belonging to Jn�1 and
the set �p � �i�1

n �1 li � 1, p � �i�1
n li� of indexes corre-

sponding to the ln incoming genes.
This algorithm is programmed in R language and is available

in the Supplementary Data 1.1 Just like in our R program, after
the last step one can force the introduction of eventually
remaining genes (strictly less than p). So, it gives one more
step.

4.3 Theoretical Results From the Method

For this section 4.3 only, we will retain the notation N to
denote the number of steps processed by the algorithm.

4.3.1 Finiteness of the algorithm. This algorithm ends after
N steps with clearly N � r � p � 1.

4.3.2 Stability result. The stability of high explicative levels
of persistent genes through several connected CCA models is
ensured by a demonstrated theorem (available on demand).

4.3.3 Lemma. As in section 4.1, we consider

Z � �x1, . . . , xr, y1, . . . , yq,� , (31)

where {x1,..., xr} represents the r genes to test and {y1,..., yq}
the q metabolites.

Under the constraints N0
1 � 1 and for every n � 1,

N0
n�1 � Min�M � �� ⁄

�M � N0
n� and �M threshold level at step n ) 1n � 0�� , (32)

then,

[0, 1[N¡
�

(Stor)
N

(�1, . . . , �N) � (G1, . . . , GN)
(33)

is an injective application, where Stor denotes the set of
stochastic matrices with r rows and r columns.

PROOF. First of all, this is not so clear that � is an application,
because the determination of the stochastic matrices G1,..., GN

also depends on the genes exclusion method. As a result, this
determination depends on the calculation of the explicative
levels, which must be the same regardless of the algorithm
re-execution with the same initial vectors and constraints on
the N0

n sequence. For this purpose, it is sufficient that the CCA
gives the same eigenvectors for the eigensubspaces associated
with Bartlett-significant multiple eigenvalues. Among a vari-
ous number of iterative methods, one of them is chosen for the
determination of eigenvectors by CCA. This method generally
begins with initial randomly generated vectors (10, 24). For
any re-execution of a CCA, the choice of the initial vectors
must be the same. Then the number of steps and the exclusion
of genes at each step are the same for any 1, 2,... sequence.
So, clearly, the definition set of the application � is [0,1[N.

Moreover, if

��1, . . . , �N� � ��1
′ , . . . , �N

′ � (34)

and if i0 is the smallest index such that i0
� �i0,

′ then

����i0��i0
� ����i0

′ ��i0
(35)

because @i � �1, N�, i is obtained by subtracting any term
(which is not 1) of the main diagonal of Gi from an extra
diagonal term of the same column.

4.3.4 Self-avoiding walk. The stochastic matrices (Gn) are
the result of a non-Markov process. In fact, the equality

P�Xm�1 � zm�1�X0:m � z0:m� � P�Xm�1 � zm�1�Xm � zm� ,
(36)

with m � �0, N � 1� and P(X0:m � z0:m) � 0, is not generally
ensured. We have, due to the exclusions of genes, a random
self-avoiding walk. Indeed, the particularity of the process is
that each step results in the definitive exclusion of some genes.

4.3.5 PageRank matrices properties. Each matrix Gn, n �
�1, N� is stochastic by construction and possibly reducible be-
cause, with indexes permutation, we can usually put it in the form
(B
A

C
0 ) with A and C square matrices of nonzero dimension. Thus,

if Gn is reducible, Gn is nonergodic. Then, G � G1...GN is still
stochastic, possibly reducible, and so nonergodic in this case.

4.3.6 Markov chains, local extended models, and structure
matrix. Now we use the stochastic matrix G � G1...GN. If G
is considered as a matrix associated with a constant transition
kernel �(.,.) on every step, we thus define a homogeneous
Markov chain. It has been shown in section 4.3.5 that G is1 The online version of this article has supplemental material.
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generally reducible therefore nonergodic. If we restrict the
kernel to the set Ess of essential points, we obtain a partition of
Ess into equivalence classes C1,..., Ct for the relation R said
“communication relation.”

For (p,q) � �1, r� � �1, r�, R is defined by

�pRq� ⇔ �∃�n1, n2� � � � � ⁄ Gp,q
n1 � 0 and Gq,p

n2 � 0� , (37)

where p and q are the indexes of genes xp and xq, Gi,j
n formally

representing the term of the row i and the column j inside G to
the power n (see Ref. 1).

We call an LEM the set of genes whose indexes belong to
the same communication class. According to the Kolmogorov-
Doeblin theorem (28), for a given initial distribution �0 on �1, r�
set of genes indexes, each trajectory of the Markov chain

reaches (because our kernel � has only a finite number of
states) an essential point. Then the trajectory stays in a com-
munication class of this point. The transition kernels obtained
by restriction of the kernel to classes C1,..., Ct are always
irreducible. �m formally represents the iterated kernel with the
associated matrix Gm. If for i � �1, t�, �|ci is periodic of period
di, the relation S defined for (p,q) � ci � ci by

�pSq� ⇔ �∃n � � ⁄ vndi�p, q� � 0� , (38)

is an equivalence relation. This relation owns di equivalence
classes D1,..., Ddi

stable with respect to �di, where for j � �1,di�,
�di |Dj is an irreducible aperiodic kernel that admits a limit distri-
bution ��. This �� is independent from initial distributions �0
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Fig. 5. Weighted Markovian graph of the major local extended model (LEM) issued from the canonical correlation analysis (CCA)-based heuristic algorithm.
The stochastic matrix G including the genes association probabilities was computed. G elevated to a certain power is a diagonal block-wise matrix of which the
diagonal submatrices are corresponding to genes of the same LEM. The sequence of the successive powers of G was iterated in order converge each column
of the submatrices to a nearly constant vector as expected in the Markovian theory (see R program). It was sufficient to compute G10. Then, we can exclude
nonessential and nonsignificant genes from the LEM. Here are shown the 11 selected genes (among 27) with a column mean P verifying P � = (= is the
threshold of PageRank noise). They are presented inside circles and are labeled with their own probability extracted from G10 (*). Those probabilities represent
the importance of the gene in the LEM. Probabilities on the connective arrows (dotted lines) are issued from the matrix G. For simplicity extra connections with
nonessential or nonsignificant genes are not represented.
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whose supports are included in Dj (see Ref. 1). �� then defines a
probability vector invariant under this kernel matrix.

Finally, for each i � �1, t� we obtain an LEM composed of
the set of genes whose indexes appear in ci.

�|ci
is an irreducible kernel whose matrix thus admits a

probability vector �i invariant giving the influence of each
gene in this LEM. If ci is aperiodic, �i is the limit distribution.
The set of LEMs determines blocks of related genes that define
a structure matrix, while other methods (GCCA, RGCCA)
have difficulties to provide the rationale for its determination.

5 NUMERICAL RESULTS FROM CASE STUDIES

The algorithm was applied to the three datasets (NutriBov,
NutriMous, and LiverTox). One is particularly detailed here:
the NutriBov study.

5.1 Computing the G matrix and Gene Selection in the
NutriBov Study: the Mathematical Interpretation

The algorithm was processed on the NutriBov study with
CCA models including six genes (p) and six metabolites (q) at
each iteration step. We obtained a diagonal block-wise matrix
G that presented 27 square blocks (submatrices), each defining
an LEM as described in 4.3.6.

In our example, it was sufficient to compute G10 in order to
converge each column of each submatrix to a nearly constant
column vector (deviation from the mean value less than or
equal to 10�3). Each row of a submatrix exponentially con-
verges to an invariant probability vector ��. p= is the number
of genes included in an LEM, = � 1/p= will be called the
threshold of PageRank noise.

Then, a gene is selected in an LEM if it presents a corre-
sponding column mean P verifying P � =. Here, the subma-
trices of G are ergodic because the corresponding submatrices

of G10 have all their terms strictly greater than zero. If these
submatrices are irreducible but eventually nonergodic, the
previous selection criteria uses a Cesaro average convergence
(term to term for a sequence of matrices) here applied to the
sequence of powers of the matrix G (9).

We avoided local models presenting only six genes, which
meant that all the genes where excluded at the next step of the
iteration process. A total of 93 genes out of 293 were selected
in G10 within the 27 LEMs.

5.2 Algorithm Highlights Genes of Interest, Example With
One LEM: from Mathematics to Biology

Among the 27 LEMs computed by the LEM method on the
NutriBov study, we will comment in this section on the model
including the highest number of genes.

Twenty-seven genes were associated in this single interest-
ing LEM in the matrix G. We selected 11 genes when com-
puting G10 because they were involved with probabilities P �
1/27 (�0.037). The probabilities of genes association for this
model are then summarized in a weighted Markovian graph
(see Fig. 5) dedicated to the genes selected. Note that this kind
of graph could be computed for any other of the 27 LEMs to
highlight the process of gene selection.

The functions highlighted in the genes selected by the LEM
method were highly coherent as the biological processes gath-
ered them: mainly cytoskeleton coherence, dynamic and orga-
nization, and immunity. Moreover, the LEM method high-
lighted PLAC8 (Placenta-specific 8) in the oviduct, a gene
that regulates embryo-maternal interactions. Higher expres-
sion of PLAC8 in bovine blastocysts (day 7 embryo post-
fertilization previously in interface with the oviduct) was
reported to be a good marker of pregnancy success (8). This
result is of biological interest and is specific to the use of the

Table 2. Comparison of biological results

LEM vs. Other Methods

Cellular Location Networks

Total Extracell Plasma Membrane Cytoplasm Nucleus Directlinks Only (score �20)

NutriBov

IPA ready
RCCA 151 6 6 33 19 3
LEM 93 4 9 26 13 3
shared 50 2 4 14 8 2
RCCA spe 101 4 6 28 16 4
LEM spe 43 2 6 11 6 2

NutriMous

IPA ready
RCCA 28 4 3 18 2 1
LEM 29 5 4 14 4 2
Shared 11 0 2 8 1 1
RCCA spe 17 4 1 11 1 1
LEM spe 18 5 2 7 3 1

LiverTox

IPA analysis ready
sPLS 500 29 57 184 124 9
LEM 810 58 84 312 204 14
shared 229 10 21 86 53 8
sPLS spe 271 18 33 95 70 8
LEM spe 581 42 60 216 144 8

IPA, Ingenuity Pathway Analysis; LEM, local extended model; spe, specific to the method. Boldface indicates what is LEM specific and what is shared with
RCCA and/or sPLS methods.
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LEM method, as it did not appear in previous analyses by
RCCA (31).

5.3 Biological Results on the Other Studies: NutriMous and
LiverTox

Applied to the NutriMous study, the algorithm highlighted
correlations between all hepatic fatty acids and 29 genes (out of
120). Applied to the LiverTox dataset, the algorithm high-
lighted correlations between all clinical measurements and
1,015 genes (out of 3,116). As for the NutriBov study, the
algorithm identified genes (correlated to physiological or clin-
ical measurements) that were also identified by RCCA or sPLS
analyses (Table 2). Moreover, the LEM method also identified
new genes that were “algorithm-specific.” Fortunately, the
cellular distribution of all these genes (shared or specific) was
fairly similar whatever the method (RCCA, sPLS, or LEM
method), suggesting that these computations highlighted dif-
ferent gene correlations inside common pathways. To validate
this, we looked at the LiverTox dataset using the Ingenuity

Pathway Analysis software (Ingenuity Systems, http://www.
ingenuity.com) and confirmed that genes specifically or com-
monly identified with sPLS or with the algorithm (LEM meth-
od): 1) belonged to similar gene networks such as “cell mor-
phology” (see Fig. 6) and 2) helped drawing extended gene
networks (Fig. 7 and Fig. 8).

5.4 Global Overview of LEM Method Results Compared
With RCCA or sPLS: Advantages and Limits

Benchmarking and time computations. We performed a bench-
marking of the three methods on the different datasets using an
Intel Core i7-2760QM central processing unit (CPU, 2.4 GHz,
4 cores, and 8 processors), according to R version 2.15.3
(2013-03-04, R Foundation for Statistical Computing), to as-
sess their respective performances during realistic simulations
on real biological datasets (Table 3). We principally focused
on “user time” and “system time,” as the user time is the
CPU time charged for the execution of user instructions of
the calling process, and the system time is the CPU time

sPLS-specific
algo-specific

algo-sPLS-shared

Fig. 6. We compared biological networks generated with the genes identified as algorithm-specific, sparse partial least squares (sPLS)-specific, or shared, while
studying the LiverTox datasets. Similar functions appear in each gene list, though not always with the same rank [or Ingenuity Pathway Analysis (IPA) score].
Gene IDs are those recognized by the IPA software. Displayed networks correspond to those listed in Table 2.
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charged for execution by the system on behalf of the calling
process. We observed a huge difference between regularized
methods such as RCCA and nonegularized ones (e.g., LEM
method and sPLS). Indeed, both user time and system time
were particularly low with LEM or sPLS on moderated size
datasets such as NutriBov or NutriMous (maximum 4.626
s), while RCCA needed 26.06 or 23.12 min to complete the
process.

Interestingly, the largest dataset, LiverTox, diverged the
computation times. The LEM method only took 2.16 h to
complete the analysis on the 3,116 genes � 10 clinical
measurements � 64 individuals. Comparatively, the search

of regularization parameters for RCCA never converges in our
conditions on those data, and we estimated the user time ��
11.57 days. Finally, the sPLS only took 1.549 s to estimate
the correlations, supporting the fact that sPLS is a direct
calculation method (converges to a classical CCA) but is
still unable to estimate the coefficients to affect to the
structure matrix.

Degree of gene selection. The LEM method was a quite
selective method with recommended selection parameters (sec-
tion 3.2) in the Nutribov study as it highlighted 93 nonredun-
dant genes (out of 293) vs. 151 genes in the classical model of
RCCA (r � 0.6). As the algorithm was built to provide a

Fig. 7. We compared gene networks related to “cell morphology,” involving both algorithm-specific genes and genes in common between sPLS and algorithm
analyses. These networks come from the LiverTox datasets and appear complementary. Gene IDs are those recognized by the IPA software. Displayed networks
correspond to those from Fig. 6, namely: algo-specific/network 1 vs. algo-sPLS-shared/network 8.
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selection within the transcriptomic dataset, we hope to bring by
this exploitation of multiple local models a restrictive set of
genes highly related to the whole metabolic context. Those
results reach the purpose of biologists who need to find small
sets of genes that could be further validated (RT-qPCR) or used
as markers in candidate-gene approaches. The levels of gene
selection were more similar on the LiverTox and the Nutri-
Mous dataset (respectively, 1,015: LEM method vs. 1,032:
sPLS and 29: LEM method vs. 27: RCCA).

Mathematical advantages and limits. The LEM method
doesn’t need a regularization procedure for high dimensional

datasets, aims to maximize the correlations between the genes
and the metabolic/clinical measurements, proposes a method
for the determination of structure matrices, and is fast while
computing in R (25). Moreover, the stability of the method was
mathematically demonstrated. However, this method remains a
heuristic, i.e., an exploratory method, but proposes new con-
cepts for the search of correlations between two biological
datasets (see section 4.3). On the other hand, this method does
not detail much about which metabolites/clinical measure-
ments contribute the most to the correlations with the genes for
each CCA model.

Fig. 8. We compared gene networks related to “cell morphology,” involving both sPLS-specific genes and genes in common between sPLS and algorithm
analyses. These networks come from the LiverTox datasets and appear complementary. Gene IDs are those recognized by IPA software. Displayed networks
correspond to those from Fig. 6, namely: sPLS-specific/network 3 vs. algo-sPLS-shared/network 8.

Table 3. Comparison of computing times

NutriBov NutriMous LiverTox

User Time, s System Time, s User Time, s System Time, s User Time, s System Time, s

sPLS 0.092 0.003 0.057 0.003 1.549 0.026
RCCA 1,563.656 (26.06 min) 39.528 1,387.179 17.316 ��106 (�� 11.57 days) �� 5 � 103

LEM method 4.626 0.040 1.250 0.007 7,785.15 (2.16 h) 164.48

626 ALGORITHM FOR GENE SELECTION

Physiol Genomics • doi:10.1152/physiolgenomics.00139.2012 • www.physiolgenomics.org

 at IN
R

A
 Institut N

ational de la R
echerche A

gronom
ique on July 31, 2013

http://physiolgenom
ics.physiology.org/

D
ow

nloaded from
 

http://physiolgenomics.physiology.org/


Biological advantages and limits. As a result of their math-
ematical differences, these methods do not reveal exactly the
same genes or networks as being correlated to metabolites.
These methods could be used independently or complementa-
rily. The complementarities of statistical tools for biological
analysis should be considered as a suitable methodology to
shed light on more aspects of gene regulations than only one
would as proposed in section 5.3.

Figure 9 proposes a summary of advantages and limits pro-
posed by the LEM method.

CONCLUSIONS

Here, we built a heuristic CCA-based algorithm able to
make a gene selection within transcriptomic datasets. Genes
are selected through metabolic parameters used to define a
phenotype of interest. For each CCA model across the iteration
process, we computed the explicative level of each gene: a
parameter assessing the degree of correlation between a gene
and the whole metabolic parameters. We optimized the strat-
egy of research of local models by retaining the genes on the
basis of their good explicative levels. This method is equiva-
lent to a self-avoiding walk process that gives a stochastic
diagonal block-wise matrix G representing the association
probability between genes. We considered that this association
between genes is fixed, and we had a homogeneous Markov
process, which establishes a partition of related genes, gathered
in LEM. G was then elevated to a certain power to converge
the probabilities to select genes by eliminating nonsignificant
or nonessential genes.

The algorithm was simulated on three datasets of different
complexities. The comparison with the established models
(RCCA, sPLS) revealed many common genes, which makes us
confident in our approach. Moreover, the LEM method helped
in the search of new and/or complementary genes networks and
was very competitive on high dimensional datasets.

Finally, the metabolites that appear in the selected datasets
correspond to blood metabolites, including hormones, or to
hepatic fatty acids. However, they could virtually be of any
origin since the LEM method does not preclude of the biolog-
ical variables that are analyzed concomitantly to gene expres-
sion changes. The LEM could thus apply to any such variable
such as animals, plants, or bacteria, in vivo or in vitro biolog-
ical systems, at the cellular or subcellular level (mitochondria
for example), as long as these variables are measurable, even at
a single cell level (22). On the basis of recent studies, when
these “nongenic” variables happen to be metabolites, they
could be those of interest for animal or vegetal physiology (6,
30), disease (14), or development but also animal or vegetal
stem cell fate (20, 26, 33).
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Fig. 9. Summary of the biological questions and the advantages and limits of the LEM method, the sPLS, and the regularized CCA (RCCA).
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