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  ABSTRACT 

  Genomic selection involves computing a prediction 
equation from the estimated effects of a large number of 
DNA markers based on a limited number of genotyped 
animals with phenotypes. The number of observations 
is much smaller than the number of independent vari-
ables, and the challenge is to find methods that per-
form well in this context. Partial least squares regres-
sion (PLS) and sparse PLS were used with a reference 
population of 3,940 genotyped and phenotyped French 
Holstein bulls and 39,738 polymorphic single nucleotide 
polymorphism markers. Partial least squares regression 
reduces the number of variables by projecting inde-
pendent variables onto latent structures. Sparse PLS 
combines variable selection and modeling in a one-step 
procedure. Correlations between observed phenotypes 
and phenotypes predicted by PLS and sparse PLS 
were similar, but sparse PLS highlighted some genome 
regions more clearly. Both PLS and sparse PLS were 
more accurate than pedigree-based BLUP and gener-
ally provided lower correlations between observed and 
predicted phenotypes than did genomic BLUP. Further-
more, PLS and sparse PLS required similar computing 
time to genomic BLUP for the study of 6 traits. 
  Key words:    partial least squares regression ,  sparse 
partial least squares ,  genomic selection ,  French dairy 
cattle 

INTRODUCTION

  Genomic selection relies on computing genomic es-
timated breeding values (GEBV) using high-density 
SNP marker data. Meuwissen et al. (2001) suggested a 
2-step approach to calculate GEBV. First, the effects 
of SNP are estimated to obtain a prediction equation 
using a reference population in which the animals are 

genotyped and phenotyped. Then, GEBV are predicted 
for the genotyped animals (without phenotypes) from 
this equation. 

  In the past few years, the accuracy of GEBV pro-
vided by genomic selection has been assessed using 
different methods in dairy cattle populations in the 
United States, New Zealand, Australia, the Nether-
lands, and France, among others. A simple BLUP, as 
described in Meuwissen et al. (2001) and known as 
genomic BLUP (GBLUP) in subsequent literature, 
was used as the reference method. The simple BLUP 
assumes that all SNP have an effect sampled from the 
same normal distribution. Hayes et al. (2009) treated 
Australian Holstein-Friesian bull data using a method 
derived from BayesA, which exploits the prior knowl-
edge that many SNP have small individual effects on 
the trait and only a few have moderate to large effects. 
The Bayesian method was shown to be slightly more 
reliable (+0.02 to +0.07 compared with the reliability 
of BLUP) for most traits. Using New Zealand dairy 
cattle, Harris et al. (2009) also compared the BLUP ap-
proach with Bayesian methods (BayesA and BayesB), 
in which some SNP may have zero effect (Meuwissen 
et al., 2001). Bayesian methods slightly improved re-
liability (2%), whereas the use of regression methods 
such as least angle regression (Efron et al., 2004) did 
not lead to any improvement. VanRaden et al. (2009) 
compared the reliability of GEBV in US and Canadian 
young bulls, using a method similar to GBLUP that fits 
the allelic effects of each SNP as random effects with a 
normal distribution with known variance (VanRaden, 
2008), and a similar method to BayesA with a heavier 
tail distribution for the SNP effects. As in the Austra-
lian and New Zealand results, the Bayesian approach 
slightly increased reliability (1% compared with the 
reliability of GBLUP). 

  Moser et al. (2009) compared 5 methods on dairy 
bull data including regression methods (least squares 
regression), shrinkage methods [Bayes regression 
(Bayes-R) similar to BayesA, and random regression 
BLUP  (RR-BLUP), comparable to GBLUP], sup-
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port vector machine learning methods (nonparametric 
support vector regression), and dimension reduction 
methods such as partial least squares (PLS) regression. 
The accuracy of Bayes-R, RR-BLUP, PLS, and sup-
port vector regression was very similar for the 2 traits 
studied by these authors. However, PLS and RR-BLUP 
required substantially less computation time than the 
Bayesian method.

Using simulated data, Coster et al. (2010) demon-
strated the superiority of PLS over Bayesian methods 
with regard to the stability of results according to the 
number of QTL or the distribution of QTL variance. 
They also showed that the computation time for the 
PLS method required to fit, cross validate, and evalu-
ate the models was less than that for the Bayesian 
method. However, the Bayesian method was more ac-
curate. Solberg et al. (2009) also used simulated data 
to compare PLS and principal component regression 
with BayesB. They obtained the same results: BayesB 
was more accurate than other methods but PLS and 
principal component regression were computationally 
faster and simpler.

The PLS regression (Wold et al., 2001) appears to be 
an efficient method to deal with genomic selection data, 
both in its capacity to handle large data sets and its 
prediction ability. This approach is particularly suitable 
when the matrix of predictors has more variables than 
observations, and when multicollinearity exists among 
variables. The sparse PLS regression (sPLS, Lê Cao 
et al., 2008) is a recent approach that combines vari-
able selection and modeling in a one-step procedure. 
Dimension reduction methods and variable selection 
approaches may be an attractive way to deal with the 
increasing number of markers used in genomic selection 
in dairy cattle by limiting computing time (Coster et 
al., 2010). Furthermore, even though PLS has already 
been studied in a genomic evaluation context, the au-
thors used simulated data and did not compare PLS 
accuracy with current genomic selection methods such 
as BLUP and GBLUP (Solberg et al., 2009; Coster et 
al., 2010). Long et al. (2011) introduced sparsity in PLS 
and tested the predictive ability of sPLS versus prin-
cipal component regression and PLS methods but did 
not apply other current genomic selection methods on 
their real data. They showed that combining dimension 
reduction and variable selection for accurate prediction 
of genomic breeding values was promising.

The aim of the present study was to compare PLS 
and sPLS on a real data set with other methods cur-
rently used in the evaluation of dairy cattle such as 
pedigree-based BLUP and GBLUP. Both PLS and 
sPLS regressions were compared based on their predic-
tive abilities and then with pedigree-based BLUP and 
GBLUP results to evaluate their accuracy.

MATERIALS AND METHODS

Data

A data set of genotyped French Holstein bulls was 
split into a training data set and a validation data set 
using a cut-off birth date defined so that the valida-
tion set included the youngest 25% genotyped bulls. 
First, the prediction equation was estimated with the 
training data set, which comprised 2,976 genotyped 
and phenotyped Holstein bulls born before June 2002. 
Then, phenotypes were predicted for the bulls in the 
validation data set, which comprised 964 bulls (born 
between June 2002 and 2004).

Genotypes for 39,738 polymorphic SNP were used as 
independent variables. The selected SNP, provided by 
the Illumina Bovine SNP50 Beadchip (Illumina, San 
Diego, CA), had minor allele frequencies >3%. Mende-
lian segregation was checked. Missing genotypes were 
inferred from large family information with a low error 
rate using DualPHASE software (Druet and Georges, 
2009).

Six traits with different heritability were used as 
dependent variables: milk yield, fat yield, and protein 
yield (h2 = 0.3), fat content and protein content (h2 
= 0.5), and conception rate (h2 = 0.02; Boichard and 
Manfredi, 1994). The bulls’ phenotypes used in this 
study were daughter yield deviations (DYD, VanRaden 
and Wiggans, 1991; Mrode and Swanson, 2004) from a 
French national evaluation October 2009; that is, the 
average performance of the daughters of a sire, adjusted 
for fixed and nongenetic random effects and for the 
additive genetic value of their dam. For each DYD, a 
weighting was added in the form of the effective daugh-
ter contribution (EDC; VanRaden and Wiggans, 1991; 
Fikse and Banos, 2001). To be included in the analysis, 
each observation required an EDC >20.

The general statistical model in BLUP and GBLUP 
is

y = 1μ + Zg + e,

where y is a vector of phenotypes (DYD), μ is the 
mean, Z is a design matrix allocating observations to 
breeding values, g is a random vector of additive ge-
netic values, and e is a vector of random normal errors. 
In BLUP, Var g A( ) = σg

2, where A is the pedigree-based 
relationship matrix, and σg

2 is the additive genetic vari-
ance. In GBLUP, Var g( ) = Gσg2, and G is the genomic 
relationship matrix as defined by VanRaden (2008):
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where p is the number of loci considered, qj is the fre-
quency of an allele of the marker j, and W is a centered 
incidence matrix of SNP genotypes. The SNP marker 
effects are assumed to have a prior normal distribution 
and mixed model equations are used with the genomic 
relationship matrix (Cole et al., 2009; VanRaden et al., 
2009).

PLS. The PLS regression introduced by Wold (1966) 
is a data analysis method that generalizes and combines 
principal component analysis and multiple regression. 
The method was mainly developed for industrial appli-
cations (petroleum and food processing industries) and 
the social sciences. The PLS method was designed to 
deal with the “p  n problem”; that is, when the num-
ber of independent variables (p) is much larger than 
the number of observations (n). Partial least squares 
regression is very useful to predict dependent variables 
from a very large number of predictors that might be 
highly correlated.

In its general form, the PLS regression replaces the 
initial independent variable space (X) and the initial 
response variable space (Y) by smaller spaces that 
rely on a reduced number of variables named latent 
variables, which are included one by one in an iterative 
process. These factors will be the new variables of a 
usual linear regression. The main idea is to perform 
successive regressions by projections onto latent struc-
tures to reveal hidden or latent underlying biological 
effects (Wold et al., 2004; Lê Cao et al., 2008).

Using the same notation as in Lê Cao et al. (2008), 
the PLS regression looks for a decomposition of cen-
tered data matrices X and Y in terms of component 
scores, called latent variables: (ξ1,…, ξh,…, ξH) and 
(ω1,…, ωh,…, ωH), which are linear combinations of 
the columns of X and Y respectively, and associated 
loading vectors: (u1,…, uh,…, uH) and (v1,…, vh,…, 
vH), where H is the number of latent variables retained 
in the final model. However, the regression coefficients 
that define these components are not linear, as they 
are solved via successive local regressions on the latent 
variables. The loading vectors are estimated to solve 
the following optimization problem:

 max cov , ,
,u v 1 h h

h h
X u Yv

= = −( )
1 1 h  

where Xh−1 is the residual X matrix in the regression 
of Y on (ξ1,…, ξh−1) for each dimension h = 1, …, H, 
and the associated latent variables are denoted ξh = 
Xh−1 uh and ωh = Yvh.

As in principal component analysis, the loading vec-
tors and the latent variables are directly interpretable. 
The loading vectors uh and vh indicate how the xj and 
yi variables explain the relationship between X and 
Y. The latent variables contain information regarding 
similarities or dissimilarities between individuals (Wold 
et al., 2004).

sPLS. The sPLS regression (Lê Cao et al., 2008) 
aims at combining variable selection and modeling in 
a one-step procedure. It was first proposed to handle 
transcriptomic data and was adapted for genomic data 
in this study. To understand the sPLS approach, it 
is helpful to describe first the principle of the PLS-
singular value decomposition (Lorber et al., 1987) that 
solves PLS problems efficiently by decomposing the 
X Y matrix into singular values and vectors.

For a real matrix M (p × q) of rank r, the singular 
value decomposition of M can be obtained as follows:

M = ΓΔΘ

where Γ (p × r) and Θ (q × r) are orthonormal and 
Δ (r × r) is a diagonal matrix with singular values δk 
(k = 1…r).

The loading vectors u1 and v1 of X and Y, respec-
tively, correspond to the first singular vectors γ1 and θ1 
if M = XY. Then, for h = 2, …, H, Mh is directly 
deflated by its rank-one approximation, as explained in 
Lê Cao et al. (2008): M M u vh h h h  1= −− δh

′ .
Sparsity of the loading vectors is introduced itera-

tively by penalizing both uh and vh with a soft-thresh-
olding penalization, as for sparse principal component 
analysis (Shen and Huang, 2008). The optimization 
problem becomes

 min ,
u,v
M uv u v− + ( )+ ( )F g g′

λ λ
2

1 2
 

where g x sign x xλ λ
1 1( ) = ( ) −( )| |  

+
 is the soft-threshold-

ing penalty function.
When no sparsity is required, the same results are 

obtained as in classical PLS. The details of this algo-
rithm are presented in Lê Cao et al. (2008). Although 
PLS and sPLS can perform multi-trait analyses, each 
trait in this study was considered independently with 
X the matrix of SNP and y the vector of phenotypes 
of one trait. In this case, the sPLS used here is similar 
to the sPLS introduced by Chun and Keles (2010) and 
used by Long et al. (2011), in a genomic selection con-
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text. When one trait is studied, PLS and sPLS are easy 
to implement and not time consuming because they 
are based on successive regressions and do not require 
matrix inversion.

Parameter Tuning

In both PLS and sPLS, the optimal number H of 
dimensions has to be determined. The parameter H 
can be tuned by cross-validation as in the original PLS 
and as proposed by Chun and Keles (2010). Coster et 
al. (2010) also proposed to use cross-validation to find 
the number of dimensions that minimized the predic-
tion error. In this study, the root mean squared error 
of prediction (RMSEP) was minimized with 10-fold 
cross-validation in the training data set and for each 
given dimension h (Mevik and Cederkvist, 2004):

 RMSEP k k
k

= −( )
=
∑1

10 1

10
ˆ ,y y  

where ̂yk is the vector of predicted values for the sample 
k. Solberg et al. (2009) suggested keeping the number 
of dimensions leading to the highest correlation between 
predicted values and observed values in the validation 
data set. This approach was also tested in this study 
and the results of the 2 ways used to fix H are discussed 
in the Results and Discussion section.

In sPLS regression, in addition to H (that was se-
lected as above), the number of variables selected in 
each dimension of the model has to be fixed. Long et al. 
(2011) tested different values of H and different values 
of the number of variables selected in each dimension, 
based on results of their PCR study, to maximize the 
cross-validation correlation. In our study, we chose to 
minimize the RMSEP with 10-fold cross-validation in 
the training data set, for the previously fixed number of 
dimensions H. In practice, for each trait, several sPLS 
were performed depending on the number of selected 
SNP in each latent variable or dimension (assumed to 
be constant), as a percentage of the number of SNP 
in the whole data set. By construction, the same SNP 
could be selected in several dimensions. Ten sPLS 
regressions (keeping 0.2 to 10% of all SNP for each 
dimension considered) and the PLS regression were 
tested using dimensions 1 to 100.

Importance of SNP Effects

To enable better interpretation of the models, coef-
ficients that represent the power of xj to explain y has 
to be defined. The “variable importance in projection” 
(VIP) coefficients measure the contribution of xj to 

the construction of y through latent variables ξh, (h = 
1,…, H) and is defined by
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The sum of squares of the VIP coefficients of all the 
SNP in one dimension of the PLS models is equal to 
the number of independent variables. Thus, the VIP 
coefficient of a SNP is related to the number of SNP 
that have a nonzero effect in the model.

The contribution of xj to the construction of ξh is 
measured by its weight ωhj, provided by PLS or sPLS. 
Although the weight ωhj of xj is interpretable, it does not 
account for the contribution of the latent variable ξh. 
The VIP coefficients are able to classify the variables 
xj according to their weight in each latent variable and 
the weight of each latent variable in the construction 
of y. So they could be considered as an evaluation of 
the effects of SNP on the prediction of y. Both PLS 
and sPLS were performed using the R package named 
“mixOmics” (Lê Cao et al., 2009).

Comparison of Methods and EDC

Prediction Equation. In this study, we compared 2 
currently used methods for the evaluation of dairy 
cattle, BLUP and GBLUP, with PLS and sPLS regres-
sions. The application of the different methods followed 
the same pattern, regardless of the method. The predic-
tion equation was estimated using the training data set. 
The y phenotypes were DYD. One EDC was associated 
with each DYD, reflecting its uncertainty. This gener-
ates heterogeneity of variances, so that the ith DYD 
has a (pseudo-residual) variance σe iEDC2  (VanRaden 
and Wiggans, 1991). An equivalent model was con-
structed in all cases (BLUP, GBLUP, PLS, and sPLS), 
multiplying yi and the ith row of the incidence matrix 
by the square root of the EDC to obtain homogeneous 
variances.

Accuracy of the Methods. Two criteria were used 
to test the accuracy of the different methods and to 
compare their predictive ability: the correlation (ρ) 
between observed and predicted values and the regres-
sion slope (b) of observed to predicted values (a value 
of 1 is expected; Henderson, 1963). The bulls in the 
validation data set were predicted by the prediction 
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equations provided by the different methods. Bulls in 
the validation set were progeny tested, so that observed 
DYD and associated EDC were also available for this 
population. These weights were taken into account in 
the calculation of the correlation, using

 ρxy
i i w i w
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i i w i i w
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and wi are the weights (EDC) for each observation. In 
the regression of observed DYD onto predicted DYD, 
EDC were introduced in the same way as for the pro-
duction of prediction equations.

The Hotelling-Williams procedure was used to test 
for differences between the correlations obtained from 
the different methods. It tests the null hypothesis of 
equality between 2 dependent correlations that share 
a variable (Steiger, 1980; VanSickle, 2003). Under the 
null hypothesis, the statistical test is distributed as t 
with n − 3 degrees of freedom. All the correlations 
discussed in this study were compared with one another 
using the Hotelling-Williams test with a 5% threshold.

RESULTS AND DISCUSSION

Parameter Tuning

Figure 1 presents RMSEP obtained by cross-valida-
tion in the training data set by PLS, according to the 
number of dimensions. For milk yield, fat yield, protein 
yield, and protein content, the pattern of the different 
curves became very stable after only 10 dimensions. 
For fat content and conception rate, RMSEP stabilized 
after about 30 dimensions. The minimum RMSEP was 
reached after around 20 dimensions for milk yield, 
protein yield, fat content, and conception rate and 
after around 30 dimensions for fat yield and protein 
content. However, the differences in RMSEP between 
2 values for the number of dimensions were very small 
(the minimum of the curves was not accentuated), so 
cross-validation did not appear to be the best criterion 
to choose the number of dimensions. The same con-
clusions were reached using the sparse PLS approach, 
so the number of dimensions that led to the highest 
correlation between phenotypes and predicted values 

in the validation data set was kept. This was also done 
for practical reasons. In fact, creating pseudo-training 
and pseudo-validation data sets within the training 
population to calibrate H was difficult, especially if a 
time structure (old vs. young) had to be used. Partial 
least squares regression was tested up to dimension 
100 but the correlations obtained after more than 50 
dimensions no longer increased for most traits. Figure 
2 shows the correlations between observed phenotypes 
and predicted values in the validation data set obtained 
by PLS as a function of the number of latent vari-
ables built for each trait. The pattern of the different 
curves was the same whatever the trait: the correlation 
continued to increase with the number of dimensions 
until a plateau was reached at around dimension 30 for 
conception rate, 40 for milk yield, fat yield, and protein 
yield, and 80 for fat content and protein content. The 
number of dimensions in the final model was fixed at 
these minimum values to avoid overfitting the data 
(Abdi, 2010). As can be seen in Figure 2, the number 
of dimensions is not critical, and therefore the choice of 
H using the validation data set did not overestimate the 
predictive ability of PLS.

Sparse PLS required 2 parameters: the number of 
latent variables (H) and the proportion of SNP selected 
in each dimension. The same criterion as in PLS was 
used to fix the number of dimensions kept in the sparse 
PLS models. The pattern was the same as in PLS 
(results not shown): a plateau was reached at around 
dimension 25 for conception rate, 40 for milk, fat, and 
protein yields, and 50 for fat and protein contents.

The proportion of SNP selected by sPLS was tuned 
by cross-validation within the training data set. Table 
1 shows the RMSEP provided by PLS and the different 
sPLS (according to the proportion of SNP selected in 
each dimension) for each trait and for the previously 
fixed number of dimensions. The selected proportion 
of SNP for sPLS was the one that minimized RMSEP 
(Table 1, in bold, based on 3 decimal places). The 
minimum RMSEP obtained from sPLS was close to 
that obtained from PLS. For example, for fat yield, 
the RMSEP obtained with sPLS with 2% of the total 
number of SNP for each dimension was the smallest 
(0.18) and was the same as the error of prediction ob-
tained with PLS. The heritability of the trait played a 
role in the magnitude of the RMSEP: traits with the 
same heritability led to similar prediction errors. Milk, 
fat, and protein yield (h2 = 0.3) obtained an RMSEP of 
around 0.15. Fat and protein content (h2 = 0.5) gave an 
RMSEP of 0.56. Conception rate had the highest error 
(0.79) but this result was the same as the error with the 
PLS model (0.78). As DYD were pseudo-phenotypes 
calculated from the performance of the bull’s daugh-
ters, low heritability traits were difficult to predict.
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Table 2 shows the accuracy of PLS and sPLS regres-
sions for the different traits, with the number of SNP 
in sPLS that led to the minimum RMSEP, and the 
number of dimensions that led to the maximum cor-
relation. The PLS regression gave significantly higher 
correlations whatever the trait with an average increase 
of 0.04 compared with sparse PLS. The best correla-
tions were obtained for fat and protein content (0.70 
and 0.71 in PLS, 0.66 and 0.65 in sPLS, respectively). 
Using the Hotelling-Williams test with a 5% threshold, 
production traits with a higher heritability, such as 
milk, fat, and protein yield (h2 = 0.3), and fat and pro-
tein content (h2 = 0.5) were predicted more accurately 
(from 0.53 in PLS and 0.48 in sPLS for milk yield to 
0.71 in PLS for protein content and 0.66 in sPLS for 
fat content) than traits with lower heritability, such as 
conception rate (h2 = 0.02) with an accuracy of 0.33 
in PLS and 0.29 in sPLS. Thus, accuracy of prediction 
and heritability of the trait are closely related. Moser et 
al. (2010) processed data from 2,144 Holstein-Friesian 
bulls and compared accuracy between traits of different 
heritability. Production traits such as protein content, 
fat content, and milk yield, which have high heritability 

(0.56, 0.52, and 0.28, respectively), achieved higher ac-
curacy than survival (h2 = 0.03), which showed similar 
heritability to conception rate in the present study. 
For conception rate, a larger reference population is 
required to achieve the same level of accuracy as for 
production traits (Hayes et al., 2009). However, unlike 
the data sets used by Hayes et al. (2009), which con-
tained only 332 Australian Holstein bulls for fertility 
and 798 for the other traits, the data sets of this study 
for conception rate used a similar number of bulls with 
as many daughters to evaluate DYD as the number of 
bulls and daughters used for production traits. There-
fore, for conception rate, the power of the analysis was 
not reduced by a smaller data set but by low heritabil-
ity. Regarding the regression slope b, both PLS and 
sPLS gave values below 1, with PLS values closer to 1 
(from 0.60 for conception rate to 0.83 for protein con-
tent) than those for sPLS (from 0.53 for milk yield to 
0.76 for protein content). Furthermore, the relationship 
between the heritability of the trait and slope was less 
clear than between heritability and the correlation. For 
example, the sparse PLS slopes for milk yield (b = 0.53) 
and for conception rate (b = 0.54) were similar but milk 
yield is a trait with a moderate heritability (h2 = 0.3), 
whereas conception rate is a low heritability trait (h2 

Figure 1. Root mean square error of prediction (RMSEP) for the 6 traits studied plotted against the number of dimensions for partial least 
squares regression.
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= 0.02). Two traits with 2 different heritabilities would 
lead to 2 different correlations but not necessarily to 2 
different regression slopes.

Sparse PLS gave significantly less accurate predic-
tions than PLS. However, sPLS performed a variable 
selection by allowing the number of variables in the final 
model to be reduced by 50% (Table 2). The number of 
selected SNP was reduced to 9,832 for fat content. One 
explanation could be the presence of DGAT1 (Grisart et 
al., 2004), a gene on bovine chromosome 14 that leads 
to a mutation that has a major effect on fat content in 
milk in Holstein dairy cattle. Therefore, a small number 
of SNP, of which many were located around this QTL, 

was sufficient to obtain accurate predictions. However, 
the number of selected SNP could have been smaller, 
but the large number of latent components (50) used 
in the model led to a high number of selected SNP, 
irrespective of the presence of a large QTL.

Indeed, the number of SNP in the final model was 
directly related to the percentage of SNP kept for each 
latent variable and to the number of latent variables. 
The large number of SNP selected for protein yield was 
the consequence of the large proportion of SNP (10%) 
selected for each of the 38 latent variables. Fifty latent 
variables were used for fat content but the number of 
SNP was reduced because the sPLS that led to the 

Figure 2. Correlation between observed and predicted daughter yield deviations for the 6 traits studied plotted against the number of dimen-
sions for partial least squares regression.

Table 1. Root mean square error of prediction (RMSEP) in partial least squares (PLS) and each sparse PLS tested as a function of the 
percentage of SNP selected in each latent variable [minimum RMSEP (3 decimal places) in bold] 

Variable

Sparse PLS (% of the SNP data set selected) PLS

0.2 0.4 0.6 0.8 1 2 3 4 5 10 100

Milk yield 0.17 0.16 0.17 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15
Fat yield 0.18 0.20 0.19 0.18 0.21 0.18 0.18 0.19 0.18 0.18 0.18
Protein yield 0.14 0.15 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13
Fat content 0.60 0.67 0.58 0.56 0.57 0.58 0.57 0.59 0.63 0.60 0.57
Protein content 0.64 0.62 0.59 0.60 0.58 0.57 0.56 0.59 0.56 0.56 0.58
Conception rate 0.94 0.83 0.81 0.83 0.86 0.81 0.87 0.79 0.83 0.82 0.78
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minimum RMSEP kept only 0.8% of SNP at each di-
mension. Finally, for both milk yield and conception 
rate, 4% of SNP on each dimension were required and 
similar numbers of SNP were kept (22,948 and 20,150, 
respectively) but with a much larger number of latent 
variables for milk yield (44 vs. 27 for conception rate) 
because the same SNP can be selected for several latent 
variables.

The number of latent variables required by PLS and 
sPLS was very high (between 27 and 83 dimensions 
depending on the trait). Long et al. (2011) evaluated 
PLS, sPLS developed by Chun and Keles (2010), and 
principal component regression in Holstein bulls. They 
showed that to predict milk yield in Holsteins by PLS, 
only 15 latent components were sufficient to obtain 
the largest predictive correlation, suggesting a strong 
predictive power of the latent variables. The lack of 
predictive power of the additional latent components 
in the present study seems to be due to the presence 
of highly EDC-weighted bulls in the training data set, 
which had a major effect on the distribution of the 
phenotypes.

The distribution of the phenotypes in the training 
data set was normal, but applying EDC disturbed the 
normal distribution of the phenotypes (results not 
shown). Furthermore, the correlation between observed 
DYD and observed weighted DYD was surprisingly 
small: about 0.20 for milk, fat, and protein yield, about 
0.45 for fat and protein content, and about 0.35 for con-
ception rate. Consequently, we investigated the effect of 
the use of EDC on the training population.

Figure 3 shows the distribution of EDC in the train-
ing data set for the 6 traits studied. The computation 
of EDC relies on the number of daughters per bull 
and trait parameters (heritability and repeatability). 
The EDC were the same for milk yield, fat yield, and 

protein yield and fat content and protein content. In 
order for the information content in conception rate 
to be consistent with that of production traits, a large 
number of daughters per bull was assumed both for 
production traits and conception rate. The graphs show 
that some bulls differed from others in their very high 
EDC. These bulls were generally older than the other 
bulls in the training population and did not obtain 
stronger DYD. The significant difference in weights 
between bulls resulted in a bias and had a major ef-
fect on the number of latent components introduced in 
the PLS and sPLS models. To test this hypothesis, the 
same study was performed without considering EDC 
either in the weighting of DYD or in the calculation of 
accuracy and of the regression slope.

Table 3 shows the accuracy of PLS and sPLS regres-
sions with respect to the different traits without EDC. 
For production traits, with PLS, the correlations were 
very similar to the results of PLS with EDC (Table 2). 
With sPLS, accuracy was significantly better in the 
study without EDC (fat yield ρ = 0.59 and protein con-
tent ρ = 0.72, for example) than in the study including 
EDC (fat yield ρ = 0.54 and protein content ρ = 0.65). 
For conception rate, using EDC reduced significantly 
the accuracy of both PLS and sPLS. Sparse PLS and 
PLS gave no significantly different correlations without 
EDC, whereas sPLS was shown to be significantly less 
accurate than PLS with EDC. The regression slopes 
were differently affected by the use or nonuse of EDC, 
with regression slopes lower than or close to those in the 
previous study with PLS, and regression slopes greater 
than or equal to those in the previous study with sPLS. 
Irrespective of the trait, the number of dimensions was 
considerably reduced with both methods, which led to 
a stronger variable selection in sPLS and a restricted 
number of SNP in the prediction equation. Only 10 or 
fewer latent variables were needed to obtain the best 
correlations for fat yield, protein yield, and conception 
rate with both PLS and sPLS. These results are in 

Table 2. Effective daughter contribution-weighted correlations (ρ) and regression slopes (b) provided by 
partial least squares regression (PLS) and sparse PLS (sPLS) 

Item
Milk  
yield

Fat  
yield

Protein  
yield

Fat  
content

Protein  
content

Conception  
rate

PLS
 ρ 0.53 0.58 0.55 0.70 0.71 0.33
 b 0.65 0.83 0.67 0.80 0.83 0.60
 Dim1 42 37 36 83 75 29
sPLS
 ρ 0.48 0.54 0.51 0.66 0.65 0.29
 b 0.53 0.70 0.60 0.69 0.76 0.54
 Dim 44 43 38 50 51 27
 No. of SNP2 22,948 16,296 32,578 9,832 26,034 20,150
1Number of latent variables or dimensions included in the final model.
2Number of SNP selected by sPLS.



2128 COLOMBANI ET AL.

Journal of Dairy Science Vol. 95 No. 4, 2012

agreement with the number of dimensions obtained 
by Long et al. (2011). For protein yield and protein 
content, the number of SNP remained high because the 
sPLS, with the minimum RMSEP by cross-validation, 
kept 10% and 5% of the SNP in each dimension. There-
fore, introducing EDC did not have a major effect on 
the predictive ability of PLS but did affect the number 
of latent variables of the model. With PLS methods, it 
is probably wiser to have a more homogeneous distri-
bution of the weights to favor the dimension-reducing 
ability of the PLS variants and hence to reduce compu-

tation time. In the remainder of the study, EDC were 
not included.

Both PLS and sPLS seemed to fit well in the context 
of genomic selection, but sPLS led to slightly smaller 
correlations than PLS but with no significant differ-
ences when EDC were not considered. However, sPLS 
favored a variable selection that can highlight the most 
important SNP, if required. A secondary aim of the 
present study was to underline the explanatory power 
of PLS regarding biological processes. However, to in-
terpret the model in a biological context, coefficients 
that represent the explanatory power of the variables 
in the construction of the response variable are needed.

Figure 4 shows the VIP coefficient computed for each 
variable according to the position of the SNP on the 
genome. All the SNP variables are shown in the graph. 
A large number of VIP coefficients were set to zero in 
sPLS, whereas all the coefficients differed from zero in 
PLS. Therefore, sPLS was able to select variables based 
on VIP coefficients. The scale of the y-axis was the 
same for all the traits except fat content, which had the 
highest VIP coefficients.

Excluding the use of EDC, the variable selection per-
formed by sPLS highlighted areas of interest. For fat 
yield, some SNP on chromosomes 2 and 5 were already 
highlighted by PLS but were clearly weighted up in 
sPLS (VIP coefficients of around 2.2 and 2.5 in PLS 
and of 12 and 16 in sparse PLS, respectively). For fat 
content, the SNP located at the beginning of chromo-
some 14 were highlighted by both methods. This loca-
tion corresponds to a region of the genome that hosts 
the QTL DGAT1 (Grisart et al., 2004). Furthermore, 
chromosomes 5 and 20 were more clearly revealed by 
sPLS than by PLS. The same comments can be made 
for most traits. The differences between PLS and sPLS 
were obvious for all traits with higher VIP coefficients 
in sPLS due to the reduced number of SNP considered. 
Conception rate showed many regions of interest with 
both methods. The aim of this study was to highlight 
differences and similarities between PLS and sPLS. We 
are not yet able to affirm that the different genome 
areas localized by PLS or sPLS correspond to QTL 
locations. This is currently under study (Colombani et 
al., 2011).

The aim of this study was to compare PLS variants 
with currently used methods in the evaluation of dairy 
cattle. Table 4 shows the correlation between observed 
and estimated DYD for all the traits, with 3 methods 

Figure 3. Distribution of effective daughter contribution (EDC) in 
the training data set.
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Figure 4. Variable importance in projection (VIP) coefficients from partial least squares regression (PLS) and sparse PLS for the 6 traits 
without effective daughter contribution (EDC).
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of genomic selection: PLS, sPLS, and GBLUP, com-
pared with pedigree-based BLUP. On average, the 
correlations obtained by genomic selection methods 
were significantly higher than with pedigree-based 
BLUP for the 5 production traits concerned (0.426 for 
pedigree-based BLUP and 0.614, 0.612, and 0.630 for 
PLS, sPLS, and GBLUP, respectively). The differences 
between pedigree-based BLUP and genomic selection 
methods were not as clear for the conception rate trait, 
with a correlation of 0.28 for BLUP and 0.21 and 0.35 
for sPLS and GBLUP. For conception rate, the BLUP 
correlation and the PLS correlation were not signifi-
cantly different. Genomic BLUP (from 0.35 to 0.73), 
PLS (from 0.25 to 0.71), and sPLS (from 0.21 to 0.72) 
gave similar results for all traits concerned except for 
milk yield and conception rate, for which GBLUP gave 
significantly better results.

As expected, the genomic selection methods tested 
in this study were more efficient than pedigree-based 
BLUP. Genomic BLUP was accurate for use with 
French Holstein data with significantly higher accuracy 
for some traits. However, PLS and sPLS methods were 
comparable to GBLUP if we considered one trait at 
a time. Regarding computing time, GBLUP requires 
one inversion of the genomic relationship matrix for all 
traits, which took about 1 h. Then, once the genomic 
relationship matrix was inverted, computation was a 
matter of seconds. For each trait, PLS took about 10 

min and sPLS took less than 10 min, depending on the 
number of SNP selected. The disadvantage of PLS and 
sPLS with respect to GBLUP for some traits could be 
overcome by building a multi-trait model.

CONCLUSIONS

Sparse PLS regression was compared with PLS and 
with 2 currently used methods in the evaluation of 
dairy cattle: pedigree-based BLUP and GBLUP. The 
results demonstrated that PLS variants were more effi-
cient than pedigree-based BLUP but less accurate than 
GBLUP for 2 out of 5 traits. Furthermore, GBLUP 
provided a clear biologic interpretation by the use of a 
genomic relationship matrix that PLS and sPLS may 
lack, and PLS and sPLS do not provide reliabilities 
of GEBV, in contrast to GBLUP. Sparse PLS enabled 
easier identification of relevant variables than PLS, 
which are possibly associated with QTL regions. Cur-
rently, more and more markers are being genotyped, 
forcing the handling of increasing quantities of data 
and consequently a critical need exists for methods that 
perform well in this context. Sparse PLS could be used 
as a preliminary step in genomic selection to reduce 
the number of SNP used in the prediction equations 
provided by other genomic selection methods, such as 
Bayesian methods. Most importantly, the sPLS algo-
rithm is fast to compute even with a large reference 

Table 4. Correlations between observed daughter yield deviations (DYD) and predicted DYD provided by 
partial least squares regression (PLS), sparse PLS (sPLS), pedigree-based BLUP (BLUP), and genomic BLUP 
(GBLUP) 

Item
Milk  
yield

Fat  
yield

Protein  
yield

Fat  
content

Protein  
content

Conception  
rate

BLUP 0.38 0.40 0.44 0.44 0.47 0.28
PLS 0.52 0.58 0.55 0.71 0.71 0.25
sPLS 0.50 0.59 0.53 0.72 0.72 0.21
GBLUP 0.56 0.59 0.55 0.72 0.73 0.35

Table 3. Correlations (ρ) and regression slopes (b) provided by partial least squares regression (PLS) and 
sparse PLS (sPLS) without effective daughter contribution 

Item
Milk  
yield

Fat  
yield

Protein  
yield

Fat  
content

Protein  
content

Conception  
rate

PLS
 ρ 0.52 0.58 0.55 0.71 0.71 0.25
 b 0.60 0.77 0.64 0.80 0.82 0.62
 Dim1 20 9 10 23 26 3
sPLS
 ρ 0.50 0.59 0.53 0.72 0.72 0.21
 b 0.56 0.76 0.59 0.81 0.77 0.49
 Dim 14 10 10 11 23 3
 No. of SNP2 17,408 6,779 26,458 2,870 27,191 4,592
1Number of latent variables or dimensions included in the final model.
2Number of SNP selected by sPLS.



Journal of Dairy Science Vol. 95 No. 4, 2012

PARTIAL LEAST SQUARES (PLS) AND SPARSE PLS REGRESSIONS IN GENOMIC SELECTION 2131

population and a large number of explanatory variables 
in a one-trait evaluation.
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