

Determinants of demand for forest recreation: forest and population characteristics

Jens Abildtrup, Serge S. Garcia, Soren Boye S. B. Olsen, Anne Stenger

▶ To cite this version:

Jens Abildtrup, Serge S. Garcia, Soren Boye S. B. Olsen, Anne Stenger. Determinants of demand for forest recreation: forest and population characteristics. LEF Biennial Workshop - Forest Sector Modelling and Economics of Multifunctionality in Forest, Institut National de Recherche Agronomique (INRA). UMR Laboratoire d'Economie Forestière (0356)., May 2012, Nancy, France. 24 diapo. hal-01000880

HAL Id: hal-01000880 https://hal.science/hal-01000880

Submitted on 5 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Determinants of demand for forest recreation: Forest and population characteristics

Jens Abildtrup, INRA, UMR356 LEF, F-54000 Nancy, France Serge Garcia INRA, UMR356 LEF, F-54000 Nancy, France Soren Bøye Olsen, Copenhagen University, 1958 Frederiksberg C, Denmark Anne Stenger INRA, UMR356 LEF, F-54000 Nancy, France

LEF workshop May 31 – June 1, 2012, Nancy

Background

- Lorraine:
 - 37 % forest (F 25%)
 - Short travel distance (13 km)
 - High frequency use of forests (26 visits per year)

Number of times going to a recreation site annually Source: LEF 2010 survey

Overall objectives and approach

- Estimate the determinants of demand for forest recreation
 - Forest characteristics
 - Accounting for substitution and complementary sites spatial explicit
 - Socio-demographic characteristics of population
- Overall approach
 - Travel cost method based on revealed and stated travel behaviour
 - Data enrichment
 - Reduce problems of multicollinarity and forest attribute endogeneity

Methodological issues

- Large choice sets: >5000 forest units in Lorraine, ~ 125 different forests within 20 minutes by car
 - ⇒ Site selection model (Random utility model) and trip demand model ("linked model), Bockstael et al. 1988, Hausman et al. 1995 JPE
 - ⇒ Sampling in choice set, Feather et al. 1994 AJAE, Nerella and Bhat 2004 Trans. Res. B
 - \Rightarrow Identification of visited forests: Use of Google map
- Comparison of revealed and stated preferences
 - =>Error component mixed logit: Bhat et Castelar 2002 Trans. Res. B, Hensher 2008, Res in Transp. Econ;
- >30% walk or go by bicycle to forest => implications for travel_costs
 - \Rightarrow model transport mode choice explicitly, Bell and Strand 2003 Land Econ.

- 1. Methodology applied
- 2. Survey and data
- 3. Results
- 4. Discussion and perspectives

Methodology: The linked model (overview)

The linked model: e.g. Bockstael et al. 1987, Hausman et al. 1995 JPE

Stage 1: Site selection model – Random Utility Model (RUM)

Stage 2: Trip demand model – negative binominal model

The link between the two stages: Expected utility or consumer surplus of one trip

Methodology: Site selection

Combining RP and SP data. Utility by individual *n* visiting forest *j* in choice situation *t*

$$\beta_{n}^{sp} 'x_{j}^{sp} + \gamma_{n}^{sp} 'p_{njt}^{sp} + \mu_{h}^{sp} + \varepsilon_{nst}, \qquad j = h_{1}^{t}, h_{2}^{t}, 2, t = 1, ..., T^{sp};$$

$$U_{ntj} = \beta_{n}^{sp} 'x_{jt}^{sp} + \gamma_{n}^{sp} 'p_{njt}^{sp} + \alpha_{sq} + \mu_{sq}^{sp} + \varepsilon_{njt}, \qquad j = SQ; \quad t = 1, ..., T^{sp};$$

$$\beta_{n}^{rp} 'x_{j}^{rp} + \gamma_{n}^{rp} 'p_{njt}^{rp} + \varepsilon_{njt}, \qquad j = 1, ...CS^{rp}, \quad t = T^{sp} + 1$$

$$RP$$

 $\beta_n \gamma_{nm}$: parameters of the indirect utility function for individual *n* and mode *m* μ_h^{sp} : an error component μ_h^{sp} : N(0, $\sigma_{\mu_h^{sp}}$) for hypothetical forest in CE

 μ_{sq}^{sp} : an error component μ_{sq}^{sp} : N(0, $\sigma_{\mu_{k}^{sp}}$) for visited forest in CE

 α_{car} : constant utility related to choice of status quo (most visited forest during the last 12 months x_j : the forest attributes for forest j

 p_{njt} : Travel cost (distance between individ *n* and forest *j*)

 \mathcal{E}_{nim} : an unobserved error term

Methodology: Site and transport mode selection

The utility function for individual *n* for visiting forest *j* with transport mode *m*

 $V_{njm} = \beta_n 'x_j + \gamma_{nm} 'p_{njm} + (\alpha_{car} + \mu_n)d_{jm} + \varepsilon_{njm} \text{ for } j = 1,...J, \quad n = 1,...N, \text{ and } m = \{car, walk\}$ where $d_{jwalk} = 0$ and $d_{jcar} = 1$

 $\beta_n \gamma_{nm}$: parameters of the indirect utility function for individual *n* and mode *m* μ_n : an error component: N(0, σ_μ)

 α_{car} : constant utility related to mode choice (car)

 x_i : the forest attributes for forest k

 p_{njm} : the travel cost for visiting forest *j* with mode *m* by individ *n* ε_{nim} : an unobserved error term

Methodology: The linked model

Assuming *ɛnk* is i.i.d. extreme value the expected maximum utility of one trip to a forest (the link):

$$V_n(\beta_n) = \ln \bigoplus_{m \neq j}^{J} V_{njm} + K = \text{ inclusive value + constant}$$

Assuming random parameters the expected value should be simulated using estimated parameter distributions:

Methodology: The linked model II

1. Trip demand model: negative binominal model Where the probability of *tn* visits in forest during 12 months is $\Pr(t_n | s_n, z_n, u_n) = \frac{e^{-\lambda_n u_n} (\lambda_n u_n)^{t_n}}{t_n!}$

Where
$$\lambda_n u_n = e^{\gamma s_n + z_n \delta + \varphi_n}$$

 s_n is the inclusive value in commune of respondent n

- z_n are variables describing the respondent and the local environment
- u_n is an unobserved error term e^{ϕ_n} which is assumed to be gamma distributed $\lambda_n = e^{\gamma s_n + \delta z_n}$

Using cluster (canton) robust error estimation

Data: The survey

- Web-based questionnaire send to random sample in Lorraine 2010:
 - Previous use of forests for recreation
 - Choice experiment on hypothetical use of forests
 - Characteristics of the respondent
 - Location identified by municipality (commune Small administrative unit)

Where is the forest located where you have gone most often during the last 12 months ? Click on the the forest on the map

Self-reporting:

I have found the forest	88.9%
I didn't find the forest because it was to difficult	6.5%
I have not found the forest because it was the map was not appropriate for locating the forest	4.6%

1 Vous pouvez maintenant fermer cette fenetre pour revenir au questionnaire

Choice set example

Choose the forest you would have gone to if the two alternative forest existed when you went to the forest the last year

Characteristics of the forests	The forest you visited most often the last year	Alternative 1	Alternative 2
Dominant tree species	Mixed tree species	Mixed tree species	Conifers
Trekking paths	One path	No paths	More paths
Recreational facilities Access to wetland Distance from your home	Parking No water 13 km	No Lake or river 5 km	Parking and picnic No water 20 km
I prefer(tick one):			

Attributes

Describe the forest you have visited most often the last 12

	months	
Tree species	Cochez une	possibilité
	Broadleaves	
	Conifers	
	Mixed species	
Trekking paths	Cochez une	possibilité
	No trekking paths	
	One trekking path	
	More than one trekking path	
Facilities	Cochez une	possibilité
	none	
	Parking	
	Picnic	
	Parking and picnic	
Water	Cochez une	possibilité

Data: Sample representativeness

818 usable responses (526 had visited forest and had identified visited forest)

2% response rate (as expected from this internet panel)

Overweight of

- Males
- Elderly males
- Middle-aged females
- High income

Results – common SP and RP parameters

		Random parame	eters SP	Derived stand	lard devia	ations of		
		and RP da	ata	paramete	r distribut	ions		
	Variable	Coefficient	P[Z >z]	Coefficient		P[Z >z]		
	Broadleaves	0.79 ***	0.000		0.49 ***	0.002		
	Mixed species	0.90 ***	0.000		0.86 ***	0.000		
1	One trekking path	0.55 ***	0.000		0.40 ***	0.009		
	More than one trekking road	0.72 ***	0.000		0.89 ***	0.000		
	Parking or picnic	0.21 **	0.016		0.57 ***	0.001	R	א כ
	Parking and picnic	0 15	0 112		*** 0 Q5	0 000	СГ	~ ۲
	Lake and/or river	0.10	0.113		0.05	0.000	21	
	Distance (km)	-0.13 ***	0.000		0.47 0 12 ***	0.000		
		-0.15	0.000		0.13	0.000		
	Private forest	-0.45 ***	0.012		0.01	0.979		
	Private and public forest	-0.21	0.110		0.17	0.415		
	Standard dev of altitude	0.00	0.976		0 00	0 888	R	P:
		0100			0100	01000		
·	Log(area)	0.66 ***	0.000		0.00	0.974		
	Probability of finding blueberries	0.47	0.597		0.35	0.791		
-/	ASC1 (Status quo alternative)	0.39 ***	0.000		0.91 ***	0.000		
	ASC2	0.00		L	2.0	0.000		

McFadden Pseudo R-squared

*: p<0.1, M=5260 No mber por 0:00 dices = 526*7=3682

0.72

Results: SP and RP

Variable	Coeffici	ent	P[Z >z]	Coefficient		P[Z >z]
		SP data	ι		RP data	
Broadleaves	0.78	***	0.0000	0.45		0.3366
Mixed species One trekking path	1.01 0.39	*** ***	0.0000 0.0000	0.60 0.53	***	0.1421 0.0038
More than one trekking road	0.61	***	0.0000	0.33		0.1774
Parking or picnic	0.11		0.1831	0.68	***	0.0099
Parking and picnic Lake and/or river	0.077 0.64	***	0.3806 0.0000	0.78 0.38	*** **	0.0069 0.0348
Distance (km)	-0.044	***	0.0000	-0.38	***	0.0000
Private forest				-0.59	**	0.0189
Private and public forest				-0.27		0.1450
Standard dev. of altitude				-0.0087		0.1204
Log(area)				0.82	***	0.0000
Probability of finding blueberries *: p<0.1, **: p<0.05, ***: p<0.01	0 /58	***	0.000	1.71		0.2144

Comparison of marginal WTP (Unit=km)

Variable	Dataset-specifi	c parameters	Common parameters	
	WTP <mark>SP</mark> data	WTP <mark>RP</mark> data	WTP RP & SP data	N N
Broadleaves	19.47	1.24	7.79	
Mixed species	24.22	1.8	8.65	
One trekking path	9.81	1.71	6.18	
More than one trekking road	15.33	1.11	6.99	
Parking or picnic	2.68	2.32	1.95	rr a
Parking and picnic	2.80	2.6	1.68	SP
Lake and/or river	14.80	1.26	6.24	
Distance (km)	-	-	-	
Private forest		-1.93	-4.43)
Private and public forest		-0.77	-2.23)
Standard dev. of altitude		-0.03	0.00	
Log(area)		2.60	6.78	RP
Probability of finding blueberries		2.97	6.35	
ASC1 (Status quo alternative)	1.50		5.49	
ASC2				

NB: Bold numbers: where marginal utility is significant - significance of the marginal WTP has not been tested explicitly

Results: RP data, Transport mode choice

Variable	Coefficient		P[Z >z]
Broadleaves	0.29		0.573
Mixed species	0.42	***	0.389
One trekking path	0.71		0.094
More than one trekking road	0.077	***	0.771
Trekker*one trekking path	2.1		0.003
Trekker*more trekking paths	0.83	***	0.454
Parking	0.92		0.001
Lake and/or river	0.038	***	0.839
Travel cost car (car cost and time cost)	-0.47		0.000
Travel cost walking (alternative time cost)	-0.10	***	0.000
Private forest	-0.87	***	0.003
Private and public forest	-0.48	**	0.015
Standard dev. of altitude	-0.001	***	0.934
Log(area)	0.80		0.000
Number of attractions	0.026	***	0.542
ASC for car mode	-3.0		0.000
McFadden Pseudo R-squared N=526 Number of choices=526	0.56		

Trip model – number of visits in forest

Variable	Coefficient	P[Z >z]
Constant	1.63***	0.007
Inclusive value	0.09***	0.009
Population density	-0.019	0.361
Share of urban green space in the town	-0.29	0.893
Income	-0.034**	0.048
Female	-0.48***	0.000
Hunter	0.86***	0.000
Forest owner	0.45***	0.001
Higher education Lives in an apartment Often buying organic products Member of a trekking club Lives with a partner	0.14 -0.21*** 0.20*** 0.55*** -0.24**	0.189 0.052 0.000 0.001 0.013
Alpha (over dispersion) N	1.40 *** 818	0.000

Trip model – number of visits in urban parks

Variable	Coefficient	P[Z >z]
Constant	0.24	0.814
Inclusive value Income	-0.048 0.13**	0.450 0.000
Female	0.075	0.609
Hunter Forest owner	-0.10 -0.85***	0.786 0.006
Higher education Lives in an apartment Often buying organic products	0.024 0.52*** 0.11***	0.861 0.000 0.054
Member of a trekking club	0.39	0.239
Lives with a partner Population density	0.24 0.27***	0.154 0.000
Share of urban green space in the town	0.57	0.828
Alpha (over dispersion) N	3.1 *** 818	0.000

Trip model – number of visits in urban parks

Variable	Coefficient	P[Z >z]
Constant	-0.25	0.455
Share of forest in municipality	-0.82**	0.024
Income	0.12***	0.000
Female	0.11	0.480
Hunter	-0.076	0.820
Forest owner	-0.80**	0.012
Higher education	0.083	0.572
Lives in an apartment	0.56***	0.000
Often buying organic products	0.12**	0.033
Member of a trekking club	0.43	0.159
Lives with a partner	0.27	0.103
Population density	0.22***	0.000
Share of urban green space in the town	0.14	0.955
Alpha (over dispersion) N	3.1 *** 818	0.000

Discussion and perspectives

- People (our sample) can identify a visited forest on a (Google) map
- Results based on stated and revealed preferences data differ in our case
 - What data to use for policy analysis?
- Possible to cope with transport mode choice explicitly in a RPL model