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 14 

Abstract. This paper presents a dynamic model of the kneading process based on artificial neural networks. 15 

This dynamic neuronal model allows predicting the bread dough temperature and the delivered power necessary 16 

to carry out mechanical work. This neuronal technique offers the advantage of very short computational times 17 

and the ability to describe nonlinear relationships, sometimes causal, explicit or implicit, between the input and 18 

output of a system. We used the recurrent neural networks to capture the dynamic of the process. The type and 19 

the number of inputs to the neural networks, as well as the nature of the learning set, the architecture and the 20 

parameter learning technique have been studied. The comparison of the results with experimental data shows the 21 

possibility to predict the temperature and the power delivered to the dough for various operating conditions. 22 

 23 
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1 Introduction 27 

 28 

The increasing complexity of systems used in food industry, in terms of functions and methods implemented, 29 

promotes the use of innovative tools for modelling processes (Norton & Sun, 2006; Bimbenet et al., 2007; 30 

Broyart & Trystram, 2002; Perrot et al., 1996; Ndiaye et al., 2005). This increasing complexity of the operation 31 

requires an increased accuracy of the description of the technology involved, in particular for the complex 32 

systems where instrumentation or analytical approach are difficult. This difficulty, which arises from the 33 

processes nonlinearities and of strong interactions between operating variables, is therefore added to the 34 

complexity of the analysis of physical phenomena.  35 

 36 

These difficulties are well illustrated in wheat flour dough kneading, the fundamental process in bread making, 37 

responsible in large part of the quality of the finished product. From two main components, water and flour, this 38 

process allows the preparation of homogeneous and viscoelastic dough (Bloksma, 1990; Roussel & Chiron, 39 

2003). The dough is subject to intense forces of extension and shear, depending on the geometry of the mixer 40 

bowl, stirrer and on the rotor speed as well as its rheological properties. After the phase of mixing for 41 

moisturizing the components, the protein network is obtained; the dough undergoes an important evolution 42 

which causes a modification of its elasticity and its viscosity. These changes reflect the modifications in the 43 

nature of hydrogen and disulfides bonds, and of the hydrophobic interactions which associate the various 44 

components. The dough properties can be profoundly changing because of the flours quality, the nature and the 45 

quantity of the technological auxiliaries added, and the water content in the recipe. The process causes an 46 

intensive contribution of mechanical work, essential for the dough quality (Tanaka & Bushuk, 1973). The 47 

mechanical energy provided by the stirrer, is partially converted by viscous dissipation into a thermal energy 48 

contribution to the dough. This energy, absorbed by the dough, is practically measured by temperature raise 49 

during kneading process (Contamine et al., 1995; Charun et al., 2000). Another part of the energy transmitted by 50 

the moving arm is dissipated towards the outside. The energy balance is difficult to set, mainly because of the 51 

discontinuity of the limit surface of the dough with environment. Besides the contribution of mechanical energy, 52 

the value of instantaneous specific power will also affect the dough characteristics. According to Hlynka (1962), 53 

consistency increases with the dough temperature and for equal consistency, the speed of dough development 54 

increases with the dough temperature. Bloksma and Nieman (1975) indicate that the dough stickiness decreases 55 

according to the temperature until 40 and 45 °C. These results illustrate the complex dependency of the 56 
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rheological behaviour of dough during kneading, between the process variables and, finally, the apparent 57 

contradiction the operator has to face, either engineer or baker. 58 

 59 

At present, the behaviour of the kneading operation depends on operators “know-how”, developed empirically, 60 

and for whom there is no pertinent sensor, but whose knowledge is necessary to control the kneading behaviour 61 

and the bread final quality. This lack of knowledge is basically due to ignorance of the underlying physical and 62 

chemical mechanisms. As an example, to make fermentation progress satisfactory, it is recognised necessary to 63 

have a final temperature of dough between 20 and 26°C. This basic temperature allows to determine the 64 

temperature of the water added to the flour, and so to acquire at the end of kneading dough with the expected 65 

temperature. It is an empirical method that allows obtaining constant results by means of a simple calculation 66 

(Roussel & Chiron, 2003). To fill up these gaps, different studies were led on the process kneading (Chin & 67 

Campbell, 2005; Levavasseur et al., 2006; Mann et al., 2008) and its modelling (Binding et al., 2003) to describe 68 

the evolution of dough characteristics according to operating conditions. They illustrate the specificity of the 69 

technology of the kneading equipment and the used recipe. The extension of such works to all operations of 70 

bread-making process would allow defining tools for decision support and innovation, and to predict their impact 71 

on the properties sensory of the product (Rousu et al., 2003). Previous approach based on the incorporation of 72 

“know-how” (Ndiaye et al., 2009) permits a qualitative model which considers bread-making process as a chain 73 

of various discrete operations without taking into account the dynamics of each operation. Currently no 74 

mathematical model representing the power and temperature dynamics of the dough during kneading is 75 

available. Therefore, the development of a method for prediction and control of these two variables for a given 76 

formulation present a real interest for the operators. This work describes the methodology, based on automatic 77 

learning, to model one of the most complex operations in bread-making: the kneading process. 78 

 79 

In this context, we suggested a dynamic model based on artificial neural networks called "Model-Operation". 80 

Developments in recent years with nonlinear modelling approaches based on automatic learning, in particular 81 

artificial neural networks, justify our interest carried in these approaches (Dreyfus et al., 2002; Acunà, 1995; 82 

Fravolini, 2003; Hernandez-Perez, 2002; Olmos-Perez, 2003). Artificial Neural Networks (ANN) are a 83 

promising technique because of their parsimony and their flexibility towards the environment variations to be 84 

analysed, in other words their ability to adapt to novelty. Neural approach is well adapted for a complex and 85 

nonlinear process such as dough kneading in order to improve knowledge of the effect of kneading conditions on 86 
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temperature and instantaneous power evolutions, by assuming that these variables allow to describe the rheology 87 

and the dough quality at the end of the kneading process (Lamrini et al., 2009). The neural model introduces 88 

same advantages in term of cost, of time and of optimization, for the development of prediction and decision 89 

support tool computing the temperature by using the power dissipated during the kneading process. Considering 90 

control purposes, the ability to describe dough temperature evolution and power only from initial operating 91 

conditions is an important objective. In this study, based on the general architecture of system proposed (Lamrini 92 

et al., 2009), is the first one to apply the connexionist techniques for dynamic process modelling such as the 93 

kneading. In this purpose, a set of experimental data involving formulations variables and operating conditions 94 

was exploited to define the model. 95 

 96 

In a general way, the modelling techniques based on automatic learning allow to approach the modelling of 97 

physical phenomena which description is arduous. So, this widens the field of possible as far as modelling, but 98 

also to separate from a detailed physical description for known processes and to reduce the development time of 99 

a particular model. The scope of the paper covers an introduction; a description of database is given before 100 

introducing the methodology adopted to model the power dynamics and that of temperature of dough in the 101 

course of kneading. Finally, experimental results and model performance are presented and discussed. 102 

 103 

 104 

2 Materials and methods  105 

 106 

2.1 Data base composition  107 

 108 

We consider the kneading process as a system evolving in its environment and that we can interact with it. It is 109 

therefore important to distinguish the input variables allowing the system to evolve from the ones affecting the 110 

state of its output variables we are interested to predict. Then, it is important to determine the relationships 111 

between inputs and outputs and to know the nature and the modes of interaction with the environment. The 112 

outputs can be modified by the inputs action or due to the effect of disturbances from the environment. 113 

According to a systemic study, carried out on different stages of bread-making, a first presentation of the 114 

kneading process and its environment can be illustrated by Fig. 1. Through this structure and with various 115 
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operating conditions (amounts of ingredients, their temperature, air temperature, rotor speed, kneading duration, 116 

etc.), we proposed three models as follows:    117 

1. Operation-Model: used to predict the temperature dynamics ‘T (t)’ and that of power ‘P (t)’ delivered 118 

during the kneading process. 119 

2. Rheology-Model: used to predict the rheological and viscoelastic behaviour of the dough during the 120 

leavening process. The considered variables in this model are: dough porosity /or volume fraction ‘Fv 121 

(t)’, dough stability ‘H / L (t)’ defined by Shehzad et al. (2010) and dough elasticity ‘E '(Tlev)’ (T lev is 122 

the dough temperature during leavening process). 123 

3. Quality-Model: used to predict automatically, at the end of the process, the sensory variables of dough 124 

such as, smoothness, stickiness, elasticity, extensibility, stability, and identify the three dough states 125 

(normal, excessive and insufficient) by means of fuzzy classification. The validation results of the two 126 

models “Rheology-Model” and “Quality-Model”, introduced by (Lamrini et al., 2009),will not be 127 

discussed in this paper.  128 

 129 

The work in this paper is only dedicated to the operation model. The structure of this "Operation-Model" has 130 

been proposed starting from the collected data on the bread dough kneading through the literature, 131 

experimentations and technological expertise (Fig. 2). The Operation model is designed to predict the two 132 

‘Variables-Operation’: the power P(t) and the dough temperature T(t) at time ‘t +1’. The following operating 133 

variables are used as inputs of model: the ingredients mass 'M', the rotation speed 'Vr', the water temperature 'Te' 134 

and the flour temperature ‘Tf’. According to the expert knowledge, the environment temperature has little 135 

influence on the temperature evolution of the dough, especially in a classical range of operation (15-25 °C), 136 

which justifies that it is not present as an input of neural Operation-Model. To take into account the dynamics of 137 

the two outputs, we used the recurrent neural networks. 138 

 139 

 140 

Fig. 1. Representative Diagram of the kneading process and its environment 141 

 142 

 143 

Fig. 2. Operation model structure adopted to predict the temperature dynamics of the bread dough and those of 144 

power delivered during kneading process.  145 
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For the modelling stage, we established, during the dough kneading, a database of 36 power and temperature 146 

kinetics (Fig. 3, Fig. 4 and Fig. 5). A spiral mixer (DIOSNA GmbH, Osnabrück, Germany) was used according 147 

to a procedure detailed by Chiron et al. (2008), the data are collected for different conditions of rotation speed 148 

[81-329 rpm], ingredients temperature [5-25 °C] and mixture weight [3-10.5 kg]. The flour used is a type 55, 149 

containing neither enzyme nor additive. The flour mass used varied between 1.8 and 6.3 kg, and moisture was 150 

kept constant (water added = 62% of flour mass). Kneading is carried in two stages: a mixing stage, for 4 min 151 

and with a speed of 100 rpm, to moisturize the components and obtain a smooth dough, followed by a kneading 152 

stage which varies according to an experimental design fixed by the expert in order to explore the operating 153 

possibilities of these mixers and, possibly, determine the combination of these variables allowing to separate the 154 

temperature and energy variables. Fig. 3 shows the domain of experimentation and so the model definition. The 155 

raw data of signals measured every 3 s (temperature and power) have been smoothed by mean of moving 156 

average on 10 measurements. Data collection was carried in such a way that the data sets intended for learning 157 

are representative of those intended for validation phase and of the entire operating range of the mixer.  158 

 159 

 160 

Fig. 3. Experimental conditions variations according to definition domain.   161 

 162 

 163 

Fig. 4. A streaming example from database of powers and temperatures measurements.  164 

 Measured (up) and smoothed (down) for six different operating conditions. 165 

 166 

 167 

Fig. 5. Temperature evolution during kneading process (mixing + texturing) according to an experiment given. 168 

 169 

 170 

The observation of experimental data showed maximum values of temperature (T> 25 ° C) and power until 1200 171 

watts. The power evolution suggests that the dough consistency increases, reaches a maximum before decreasing 172 

gradually (Fig. 4, curves ∇ and +). This phenomenon corresponds to over-kneading, and is frequently associated 173 

with the appearance of a strong stickiness that can be disadvantageous for the dough handling. Moreover, for 174 

identical conditions of kneading process, increasing the speed of kneading is accompanied by an increase of 175 
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shear forces within the dough. For example, Kilborn and Tipples (1972) observed the existence of a minimum 176 

threshold of power below which the bread volume decreases strongly in the CBP process (Chorleywood Bread 177 

Process), and obtained an optimal development of dough for a minimum energy contribution equal to 40 kJ.kg-1 178 

of dough. Moreover, according to these authors, a kneading with constant power implying a varying speed 179 

would significantly reduce the time of dough development. In this work, the analysis of various data used for 180 

modelling, shows that the power variable has a significant influence since the higher powers promote the 181 

emergence of higher values of temperature. This justifies our decision to introduce the power as an input variable 182 

to describe correctly the evolution of the dough temperature during kneading process. 183 

 184 

The second part of this work will consider the identification of model parameters. For this, experimental data 185 

were separated into two sets: a data set constituting the learning basis upon which the weights assigned to neural 186 

network connections are determined, and a data set to validate the model but not used during the learning phase. 187 

Twenty kinetics (about 56% of initial database) were used to define the Operation model. The remainder (sixteen 188 

kinetic), is used as independent validation set. 189 

 190 

 191 

3 Artificial Neural Networks and expert knowledge insertion 192 

 193 

In our modelling problem, according to the kneading variables, we used the Recurrent Neural Networks (RNR) 194 

as dynamical system. This type of networks forms a class of networks where the output of same neurons is used 195 

as input to other neurons located upstream in comparison to propagation direction of the information. So that a 196 

system is causal, it must be associated any connection with a delay: a recurrent neural network is a dynamics 197 

(Dreyfus et al., 2002, Dreyfus & Ploix, 1998), governed by differential equations. As most applications are 198 

carried by computer programs, we stand in the context of discrete-time systems, where differential equations are 199 

replaced by difference equations. A feedback neural network of discrete-time is therefore governed by one or 200 

more non-linear difference equations, resulting from the composition of functions carried by each neuron and 201 

delays associated with each connection. The canonical form of equations governing a recurrent neural network is 202 

following:  203 

 204 
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 205 

Where φ  and ψ  are nonlinear functions implemented by a neural network forward, and k  designates the 206 

discrete time. Fig. 6 (Personnaz & Rivals., 2003) shows the canonical form of a RNN. Any neural network can 207 

be put in this canonical form, so completely automatic. 208 

 209 

 210 

Fig. 6. General structure of a Recurrent Neural Network.  211 

 212 

 213 

3.1 Taking into account knowledge in neural modelling   214 

 215 

The works conducted to model the kneading process (that is: the prediction of the temperature evolution during 216 

kneading operation) follow a systematic study based on expert knowledge and physical analysis of phenomena 217 

occurring during kneading process (Roussel & Chiron, 2002, Chiron et al., 2008). In fact, we utilized this study 218 

to constitute a data set for the learning phase, as well as information on the choice of inputs and outputs model. It 219 

was established that the dough temperature and power are influenced by different variables (Fig. 1), and can be 220 

described by a dynamic model, with four operating variables. The evolution of the process allows to introduce 221 

the power into the neural network as a second state variable representing the thermal source which affects much 222 

on the one hand the dough overheating and on the other hand, its texture at end kneading. The idea is that, since 223 

a neural network will seek to minimize the cost function, we can build a network for minimizing this function by 224 

associating its variables to variables of the modelling problem. For this, the systematic approach by neural 225 

networks consists to solve successively the three sub-problems: 1) find a network topology that connections are 226 

interpreted as functions carrying the knowledge sought for problem resolution in output system, 2) build a cost 227 

function of the problem whose minimum is the best solution, i.e. the convergence conditions must be verified, 3) 228 

and deduce the weights of the connections between neurons and input applied to each neuron from the cost 229 

function found.  230 

 231 

3.2 Optimization tools: Learning phase 232 

 233 
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Most learning algorithms of artificial neural networks are optimization algorithms that seek to minimize, by 234 

means of nonlinear optimization methods, a cost function which is a measure of the difference between the reel 235 

responses of the network and its estimated responses. This optimization is carried iteratively, by changing the 236 

weights according to the gradient of the cost function. The gradient is estimated by back-propagation method. 237 

The back-propagation method has been successfully applied to a wide variety of problems such as, for example, 238 

leavening optimization in bread-making (Fravolini, 2003), modelling of thermophilic lactic acid starters 239 

production (Acunà, 1995), and determination of the roasting degree of coffee in real-time (Hernandez-Perez, 240 

2002). The weights are randomly initialized before training, and then iteratively modified until a satisfactory 241 

compromise between approximation accuracy on the training set and the approximation accuracy on a validation 242 

set. The learning of neural networks is not particularly slow: there are algorithms for nonlinear optimization 243 

extremely fast (Press et al., 1992), which can carry industrial developments with simple computers. Learning of 244 

neural networks with feedback connections (to build dynamic models) is very similar to the one of feed-forward 245 

networks. 246 

 247 

In this work, the choice of the architecture (number of hidden layers, hidden neurons, and activation function) of 248 

the Operation-Model neural network is justified by the universal approximation and parsimonious ANN 249 

properties. The number of neurons in the hidden layer was optimized with the Bayesian regularization method 250 

(Mackay, 1992) in combination with the Levenberg-Marquardt algorithm allowing weak weights to be penalized 251 

(the connections with weak weight are eliminated). In this framework, the weights and biases of the network are 252 

assumed to be random variables with specified distributions. The advantage of this algorithm is that it provides a 253 

measure of the number of parameters (weights and biases) effectively used by the network. The regularization 254 

parameters are related to the unknown variances associated with these distributions. We can then estimate these 255 

parameters using statistical techniques. This approach consists of minimizing the cost function )(wC , defined in 256 

(2), using training and modifying this objective function to: 257 

 258 

)()()(' wwCwC Ω+= α       (1) 

 259 

Where:  260 

 261 
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n  is the number of network weights, )(wC  is the sum of squared errors between pred
iy  neural outputs and 262 

mes
iy  real outputs. α  is a parameter that determines the importance of the two terms in the new performance 263 

function )(' wC . Using this, performance functions will cause the network to have smaller weights and biases, 264 

and this will force the network response to be smoother and less likely to over-fit. This method has the advantage 265 

of being simple to implement, since the gradient of C′  can be easily calculated from the gradient of C  and the 266 

network weights. It is sufficient to add the quantity wα  to the gradient vector C∇  calculated by the 267 

backpropagation algorithm: 268 

 269 

wCC α+∇=∇ '  (3) 

 270 

The Levenberg-Marquardt algorithm was designed to approach the second order speed of training without 271 

computing the Hessian matrix. When the cost function is the sum of squared errors, the Hessian matrix can be 272 

approximated by: 273 

 274 

)(2
kk wCH ∇=  (4) 

 275 

The update is performed using the following equation:  276 

 277 

[ ] IHRwithwCRww kkkktkk +=∇−= −
+ )(1

)(1 η  (5) 

 278 

When the learning parameter 0)( =tη , this is the Newton Method: 279 

 

⇒ )(1
1 kkkk wCHww ∇−= −

+  
(6) 

 280 

When )(tη  is large, this is the gradient method: 281 
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 282 

The learning parameter )(tη  allows to adapt the algorithm to cost function form and to carry a good compromise 283 

between the Newton method ( 0)( =tη ), which converges very rapidly towards a minimum, and the simple 284 

gradient method ( ff)(tη ), effective far from minima. 285 

The learning neural model is normally carried as follows: 286 

1) Initialization of network parameters; 287 

2) Propagation through the network temporally unfolded; 288 

3) Computing the gradient of the cost function (taking into account the weight shared); 289 

4) Update the parameters network, then return to step 2 for another iteration. 290 

 291 

3.3 Determination of the model performances 292 

 293 

The performances of the optimal model chosen are presented in Section IV. They will be estimated using a 294 

number of indicators presented in this section. In the literature, there are usually two groups of performance 295 

indicators that can be used to assess the quality of models (Willmott et al., 1985). A first group represents the 296 

overall agreement between observed and predicted values. The second group represents the quality of modelling, 297 

in terms of excess thresholds prediction (Dutot et al., 2007). In this work, we used indicators of the first group: 298 

the absolute mean bias (AMB) and square root of mean squared error (SMSE), as defined below: 299 

 300 
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 301 

With mes
iy  and pred

iy  are measured and predicted values by the model, respectively. Note that a positive value 302 

of mean bias indicates a trend of model to over-estimate, and a negative value indicates the trend to under-303 

estimate. An additional indicator called d  (Willmott et al., 1985), reflects the degree to which the observed 304 

variable is correctly estimated by the simulated variable.  305 
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 306 

This indicator is not a measure of correlation in the formal sense, but rather a measure of the degree (based on a 307 

set averaged) predictions without error. It varies between 0 and 1. A value of 1 indicates perfect agreement 308 

between measurement and model, while the value 0 indicates total disagreement. 309 

 310 

 311 

4 Results and discussion 312 

 313 

4.1 Results of prediction 314 

 315 

The use of neural prediction involves the choice of input parameters but also the optimization of the architecture 316 

of the neural network itself. The optimization of both the type of nonlinear function and the neural network 317 

architecture (number of neurons in the hidden layer) was made after numerous empirical testing. According to 318 

Lepage et Solaiman (2003), for a neural network with one hidden layer, the recommended number of neurons 319 

approximately equals 1)2( ++MN , where N is the number of input parameters and M is the number of 320 

neurons in the output layer. In our case, we initially used a multilayer perceptron with 6 inputs (Tr, M, Te, Tf, P 321 

(t), T (t)), 6 sigmoid (to generate a degree of non-linearity between the neurone’s input and output) in the hidden 322 

layer and, in output, the two state variables P(t +1) and T (t +1). So there are 56 connections/or weight at the 323 

beginning of learning. The final qualified network employs approximately 37% of the effective parameters, with 324 

a percentage error of 4.5% on the training set. All operations carried through different network links, summarizes 325 

the energy exchange between the inputs and outputs of the system. Fig. 7 presents the optimal architecture 326 

adopted for power and temperature prediction. Fig. 8 to Fig. 10 provide a visual overview of model performance 327 

for each validated kinetic. For all curves involved that of validation phase, we adopted in this report the 328 

following convention of symbols: the curve with marks (shown on each point) represents the power and the 329 

temperature measured belonging to the validation database, the continuous line curve representing the variables 330 
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predicted by the model, and in dashed lines the confidence interval at 95% of data predicted. Fig. 10 presents a 331 

simulation result for 4 kinetic of temperature and power variables on various conditions.   332 

 333 

 334 

Fig. 7. Operation-Model architecture. 335 

 336 

 337 

Fig. 8 presents the results for the power prediction. On Fig. 8a it is clear that the prediction is good and the 338 

model reaches to reproduce correctly the dynamic variability. The different curves show a good dynamic 339 

behaviour of the network; the envelopes are properly fulfilled. Looking at the correlation curves, this overall 340 

good behaviour is confirmed, but it appears in some situation that the input variables which are not taken into 341 

account, and probably other variables, have a significant effect. It is the same with temperature prediction (Fig. 342 

9a-b). Nevertheless, it is evident the good correspondence for temperature and power between measure and 343 

model. For power, the network response is a bit out of step with the real output. Consequently, the network will 344 

generalize well to new data. The neural Operation-Model has a global prediction rate (on the two variables) close 345 

to 91%. The various performance indicators and correlation coefficients between the outputs predicted and real 346 

outputs are presented in Table 1.  347 

 348 

 349 

Fig. 8a. Powers measured and predicted by means of Operation-Model on validation phase. 350 

 351 

 352 

Fig. 8b. Correlations between power measured and that predicted by means of Operation-Model on validation 353 

phase.  354 

 355 

 356 

Fig. 9a. Temperatures measured and predicted by means of Operation-Model on validation phase. 357 

 358 

 359 
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Fig. 9b. Correlations between temperature measured and that predicted by means of Operation-Model on 360 

validation phase.  361 

 362 

 363 

Fig. 10. A streaming example from simulation result of temperature and power variables (on 4 data series) in 364 

various conditions.  365 

 366 

 367 

Table 1. Indicators of performance on validation data set for power and temperature variables.  368 

 369 

 370 

Fig. 10 illustrates how the model is working and presents some pure simulation from input variable shown on the 371 

figure. Although performances, in terms of AMB and SMSE, are best for temperature, the index d  indicates a 372 

better attractiveness for two variables. This coefficient is between 0.28 and 0.8 for power and 0.99 for 373 

temperature. Apart from the kinetic 14 ( 37.0,28.0 2 == Rd ), which is far from the desired performances, the 374 

model well reproduces the dynamics variability of the two recorded outputs. The nonlinearity between the two 375 

state variables is still well taken into account by the model, since the general trend of power profiles is respected 376 

on the whole, if we discard the data stemming from the kinetics 14, the two coefficients d  and 2R  increase 377 

respectively from 0.27 to 0.82 and 0.37 to 0.76. 378 

 379 

A residues analysis measure-model showed in Fig. 11 highlights the fact that the Operation-Model presents the 380 

best prediction performance for temperature and power. The information part, provided by each connection of 381 

the neural network on real observations, is also higher. For temperature variable, the model explains 99% of 382 

variance and has near-nil dispersion around the ideal line. For the power variable, the model has a visible 383 

dispersion, but low compared to all data set. The SMSE of the model at this level is 9.85 to 52.7 but the 384 

variation of almost all residues is systematically lower at 1.97 standard deviation, in other words, the deviation is 385 

very small and is bounded by the interval [-2, 2].  386 

 387 

 388 

Fig. 11. Standardised Residual according to predicted values of power and temperature variables.  389 
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 390 

 391 

4.2 Analysis of relative importance of input variables  392 

 393 

The importance of each variable must be determined so as to confirm the influence of parameters selected in 394 

neural network input on the temperature and power evolutions. However, the function implemented by the ANN 395 

is complex. The analysis of the contribution of each variable is extremely difficult. Indeed, from the input 396 

variables, the network is able to predict the output parameter, but the inner mechanisms of network are 397 

completely ignored. The interpretation of an ANN is not so evident as the one of simple linear regression 398 

models. Thus, various methods have been implemented to characterize the ANN "black-box". These methods, of 399 

quantitative nature, which allow analyzing the contribution of input variables on the ANN prediction. Olden et 400 

al. (2004) assessed the pertinence of each method to estimate the contribution of variables as far as ANN and 9 401 

methods described in the literature were tested. The results show that one of them, called "connections weights 402 

approach", is often the most accurate and reliable. We have therefore decided to use this approach in order to 403 

examine the contribution of predictor variables on the two model outputs. The connections weights approach 404 

uses the weights of input-hidden connections and hidden-output connections of an ANN. According to (Olden et 405 

al., 2004), it provides the best methodology for precise identification of the importance parameters of model. 406 

This approach allows therefore to successfully identify the real importance of all variables of neural network. It 407 

computes the result of the ‘input-hidden’ and ‘hidden-output’ connexions for each input neuron and output 408 

neuron, and recaps the sum of results through all hidden neurons. The relative contribution of independent 409 

variables on the network prediction depends on the magnitude of the numerical value obtained for each of the 410 

variables considered. An input variable with strong weights connections represents high-intensity on signal 411 

transfer. In other words, it has a strong contribution on the network prediction in comparison to other variables 412 

characterized by smaller weight connections. The computation procedure consists in multiplying the value of the 413 

weights connection of ‘hidden-output’ neurons, for each hidden neuron, by value of the weights connection of 414 

‘input-hidden’ layer. The sum of previous products, for each input neuron, is then performed. In this work, the 415 

same architecture adopted has been tested with only two inputs M and Vr, and then with the flour temperature as 416 

a third input variable. By performing the process described above for each input neuron, we identify its 417 

contribution to the output. In Fig. 12 we report the product carried and the sum gives. The various indices and 418 

indicators performance are illustrated in Table. 2 and Table. 3.  419 
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 420 

 421 

Fig. 12. Variables effect on the two outputs T(t+1) and P(t+1) according to connections weights approach. 422 

 423 

 424 

For two architectures (Fig. 12a and Fig. 12c), the two operating variables, mixture mass and rotor speed, have a 425 

greater influence than the other two variables Tf and Te. We noted also the same for the two state variables, 426 

temperature T(t) and power P(t). The power and rotor speed inform the model on the stress intensity carried 427 

during kneading process. Since the temperature of the flour and that of water affect significantly the dough 428 

behaviour in terms of its overheating at the end kneading, we can verify by this method that the Operation Model 429 

with four independent inputs (Fig. 12c) is best adapted to model the power and temperature dynamics. The 430 

results of various performance indicators presented in the tables below (here without the kinetic 14) are almost 431 

identical for the three configurations. However, the coefficients margin d  and 2R , on validation for the power 432 

variable, change if we keep kinetic 14. 433 

 434 

Although at the systemic study performed about kneading process, the 4 variables were selected as key-435 

information, proof that their influence on the two outputs is not useless in the absolute, with the data set 436 

considered for this modelling problem. Therefore, the results of this analysis indicate that, in the context of 437 

network optimization, it is possible to keep these variables (including the least influents, in our case ‘Ta’) 438 

without disrupting significantly the results of neural modelling. 439 

 440 

 441 

Table. 2. Validation results for tree architectures tested.  442 

 443 

 444 

Table.3. Indicators performance on validation for tree architectures tested.  445 

 446 

 447 

5 Conclusion 448 

 449 
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In this paper, we clearly proved through the validation results of Operation-Model that the kneading process is 450 

relatively nonlinear with respect to temperature and power variations. We were able to predict the dynamics of 451 

these two variables from four operating variables: the mixture mass, the rotor speed, the flour temperature, and 452 

water temperature, and the return of motional. For this purpose, we used a data set covering the variations space 453 

relative to ingredients mixing and operating conditions of kneading. The experimental results showed the 454 

effectiveness and reliability of the neural approach for this type of complex operation. Model performance 455 

depends on the quality and quantity of data available for learning. The neural model has a prediction rate close to 456 

91%. Like any dynamic modelling approach, the use of artificial neural networks requires that the available data 457 

are sufficiently numerous and representative. From the perspective of development time, it is clear that the 458 

neural approach is advantageous compared to other techniques, where the deployment of other data requires the 459 

built of a new model that will be much easier to carry by learning. The model variables remain the same (in a 460 

first approximation and unless major evolution of technique), so that learning of a new neural model boils down 461 

to elaborate a representative database, and to implement an usual learning algorithms, by varying the model 462 

complexity by the number of hidden neurons. It is always desirable and often possible to use for network design, 463 

the mathematical knowledge or physical laws, which are available for the phenomenon to model: neural 464 

networks are not necessarily "black boxes". As a first perspective of this work, we plan to expand this type of 465 

dynamic modelling approach to predict the rheology and sensory proprieties of bread dough at the end kneading 466 

process. The final aim is to aggregate and deal all information streaming from these different operations 467 

(fermentation or proofing…, and baking) and to detect defects and faults as soon as possible, so as to understand 468 

the mechanisms that influence the quality of the final product.  469 

 470 
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Table.1. Indicators of performance on validation data set for power and temperature variables.  

 d R2 AMB SMSE 

Temperature 0,99 0,99 [0,04-0,2] [0,0452-0,2584] 

Power [0,28-0,8] [0,37-0,96] [2,55-7,65] [9,85-52,7] 

 

 
Table.2. validation results for tree architectures tested.   

 
% ERROR ON 

VALIDATION 

EFFECTIVE PARAMETERS OF 

TOTAL 

NBRE OF 

ITERATIONS 

M1 with 4 inputs 

(M, Vr, Tf, Te) 

Temperature 0,53% 
37%  of 56 800 

Power 6,97% 

M1 with 3 inputs 

(M, Vr, Tf) 

Temperature 0,43% 
35% of 50 500 

Power 6,21% 

M1 with 2 inputs 

(M, Vr) 

Temperature 0,45%   
52% of 44 450 

Power 6,8% 

 
 



Table.3. Indicators performance on validation for tree architectures tested.  

 d R2 AMB SMSE 

M1 

4 inputs 

Temperature 0,99 0,99 [0,04-0,2] [0,0452-0,26] 

Power  [0,82-0,97] [0,76-0,96] [7,65-52,55] [9,85-52,7] 

M1 

3 inputs 

Temperature 0,99 0,99 [0,036-0,21] [0,04-0,245] 

Power [0,73-0,97] [0,73-0,97] [7,45-26,15] [10,50-32,58] 

M1 

2 inputs 

Temperature 0,99 0,99 [0,045-0,21] [0,05-0,25] 

Power [0,77-0,98] [0,65-0,97] [8,74-35,13] [10,31-36] 

 
 
 


