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Abstract. This paper presents a dynamic model of the kngaplincess based on artificial neural networks.

This dynamic neuronal model allows predicting thedlol dough temperature and the delivered powerseang
to carry out mechanical work. This neuronal techaigffers the advantage of very short computatitinas
and the ability to describe nonlinear relationshgmsmetimes causal, explicit or implicit, betweba tnput and
output of a system. We used the recurrent neutalanks to capture the dynamic of the process. The &and
the number of inputs to the neural networks, ad aglthe nature of the learning set, the architecund the
parameter learning technique have been studiedcdimparison of the results with experimental da@as the

possibility to predict the temperature and the podedivered to the dough for various operating ¢towls.

Keywords. Bread-making; Kneading; Recurrent Neural NetwoAificial learning; Performance modelling.
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1 I ntroduction

The increasing complexity of systems used in fawtlstry, in terms of functions and methods impletaeén
promotes the use of innovative tools for modellpr@cesseg§Norton & Sun, 2006; Bimbenet et al., 2007;
Broyart & Trystram, 2002; Perrot et al., 1996; Ndizet al., 2005)This increasing complexity of the operation
requires an increased accuracy of the descriptfothe technology involved, in particular for thengplex
systems where instrumentation or analytical apgroae difficult. This difficulty, which arises fronthe
processes nonlinearities and of strong interactibetveen operating variables, is therefore addedhéo

complexity of the analysis of physical phenomena.

These difficulties are well illustrated in wheatdl dough kneading, the fundamental process indbnegking,
responsible in large part of the quality of thadied product. From two main components, waterfemua, this
process allows the preparation of homogeneous #@ubelastic dougl{Bloksma, 1990; Roussel & Chiron,
2003) The dough is subject to intense forces of extenaind shear, depending on the geometry of thermixe
bowl, stirrer and on the rotor speed as well asrfieological properties. After the phase of mixifoy
moisturizing the components, the protein networlolidained; the dough undergoes an important ewwiuti
which causes a modification of its elasticity at&lviscosity. These changes reflect the modificetion the
nature of hydrogen and disulfides bonds, and of hixdrophobic interactions which associate the wexio
components. The dough properties can be profouttiyging because of the flours quality, the nasume the
quantity of the technological auxiliaries addedd @ahe water content in the recipe. The processesaas
intensive contribution of mechanical work, essdntia the dough qualityTanaka & Bushuk, 1973)The
mechanical energy provided by the stirrer, is pHyticonverted by viscous dissipation into a thdrewergy
contribution to the dough. This energy, absorbedhsy dough, is practically measured by temperataise
during kneading proceg€ontamine et al., 1995; Charun et al., 20@G)other part of the energy transmitted by
the moving arm is dissipated towards the outsidea &nergy balance is difficult to set, mainly bessaof the
discontinuity of the limit surface of the dough vénvironment. Besides the contribution of mecharénergy,
the value of instantaneous specific power will @ffect the dough characteristics. Accordingd-tgnka (1962)
consistency increases with the dough temperatulef@mequal consistency, the speed of dough devatop
increases with the dough temperatiBlksma and Nieman (197#)dicate that the dough stickiness decreases

according to the temperature until 40 and 45 °CesEhresults illustrate the complex dependency ef th
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rheological behaviour of dough during kneading,ween the process variables and, finally, the appare

contradiction the operator has to face, eitherreagyi or baker.

At present, the behaviour of the kneading operatigpends on operators “know-how”, developed engdlsic
and for whom there is no pertinent sensor, but who®mwledge is necessary to control the kneadimgieur
and the bread final quality. This lack of knowledgdasically due to ignorance of the underlyinggtal and
chemical mechanisms. As an example, to make featientprogress satisfactory, it is recognised resagsto
have a final temperature of dough between 20 arf€C.26his basic temperature allows to determine the
temperature of the water added to the flour, antbsacquire at the end of kneading dough with thgeeted
temperature. It is an empirical method that all@bsaining constant results by means of a simpleutation
(Roussel & Chiron, 2003)To fill up these gaps, different studies were tedthe process kneadirighin &
Campbell, 2005; Levavasseur et al., 2006; Mant.e2@08)and its modellindBinding et al., 2003}o describe
the evolution of dough characteristics accordingperating conditions. They illustrate the spetifiof the
technology of the kneading equipment and the usegbe. The extension of such works to all operatioh
bread-making process would allow defining toolsdecision support and innovation, and to predieirtimpact

on the properties sensory of the prod{iRbusu et al., 2003Previous approach based on the incorporation of
“know-how” (Ndiaye et al., 2009ermits a qualitative model which considers breaking process as a chain
of various discrete operations without taking irgocount the dynamics of each operation. Currendy n
mathematical model representing the power and teahge dynamics of the dough during kneading is
available. Therefore, the development of a metlwwdpfediction and control of these two variablesdaiven
formulation present a real interest for the opegtdhis work describes the methodology, basedubonaatic

learning, to model one of the most complex openatio bread-making: the kneading process.

In this context, we suggested a dynamic model basedrtificial neural networks called "Model-Opéoat'.
Developments in recent years with nonlinear modglpproaches based on automatic learning, incpéati
artificial neural networks, justify our interestrdad in these approachéBreyfus et al., 2002Acuna, 1995;
Fravolini, 2003; Hernandez-Perez, 2002; Olmos-Reg303) Artificial Neural Networks (ANN) are a
promising technique because of their parsimony taed flexibility towards the environment variat®no be
analysed, in other words their ability to adaphtivelty. Neural approach is well adapted for a cem@nd

nonlinear process such as dough kneading in oodengrove knowledge of the effect of kneading ctindis on
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temperature and instantaneous power evolutionasbyming that these variables allow to describehéelogy
and the dough quality at the end of the kneadinggss(Lamrini et al., 2009)The neural model introduces
same advantages in term of cost, of time and afrmigdtion, for the development of prediction andide®n
support tool computing the temperature by usingpihwer dissipated during the kneading process. iGerisg
control purposes, the ability to describe doughperature evolution and power only from initial ogtémg
conditions is an important objective. In this studgsed on the general architecture of system gegighamrini

et al., 2009) is the first one to apply theonnexionisttechniques for dynamic process modelling such as th
kneading. In this purpose, a set of experimenttd daolving formulations variables and operatiranditions

was exploited to define the model.

In a general way, the modelling techniques baseduwomatic learning allow to approach the modellaig
physical phenomena which description is arduousti8e widens the field of possible as far as miagl but
also to separate from a detailed physical desoriftir known processes and to reduce the develofptines of
a particular model. The scope of the paper covargn@moduction; a description of database is giberfore
introducing the methodology adopted to model thevggodynamics and that of temperature of dough @ th

course of kneading. Finally, experimental resutts model performance are presented and discussed.

2 M aterials and methods

2.1  Database composition

We consider the kneading process as a system agalviits environment and that we can interact witht is
therefore important to distinguish the input valésballowing the system to evolve from the onesdifiig the
state of its output variables we are interestegrtlict. Then, it is important to determine theatieinships
between inputs and outputs and to know the natondetiae modes of interaction with the environmertie T
outputs can be modified by the inputs action or dmethe effect of disturbances from the environment
According to a systemic study, carried out on difé¢ stages of bread-making, a first presentatibithe

kneading process and its environment can be iflteddr byFig. 1 Through this structure and with various
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operating conditions (amounts of ingredients, theinperature, air temperature, rotor speed, kngadiimation,
etc.), we proposed three models as follows:

1. Operation-Model: used to predict the temperatumgadyics ‘T (t)’ and that of power ‘P (1)’ delivered
during the kneading process.

2. Rheology-Model: used to predict the rheological amtoelastic behaviour of the dough during the
leavening process. The considered variables inntloidel are: dough porosity /or volume fraction ‘Fv
(t)', dough stability ‘H / L (t)’ defined byshehzad et al. (201@nd dough elasticity ‘E '(&)’ (T ey is
the dough temperature during leavening process).

3. Quality-Model: used to predict automatically, a¢ #nd of the process, the sensory variables oftdoug
such as, smoothness, stickiness, elasticity, eikiititys stability, and identify the three doughastts
(normal, excessive and insufficient) by means atfuclassification. The validation results of tknot
models “Rheology-Model” and “Quality-Model”, intraded by (Lamrini et al., 2009yill not be

discussed in this paper.

The work in this paper is only dedicated to therappen model. The structure of this "Operation-Mddeas
been proposed starting from the collected data lom hbread dough kneading through the literature,
experimentations and technological expertis&. 2). The Operation model is designed to predict the tw
‘Variables-Operation’: the power P(t) and the dougmperature T(t) at time ‘t +1'. The following apéng
variables are used as inputs of model: the ingrgslimass 'M', the rotation speed 'Vr', the wateiptrature 'Te'
and the flour temperature ‘Tf. According to thepext knowledge, the environment temperature hde lit
influence on the temperature evolution of the douggpecially in a classical range of operation Z55°C),
which justifies that it is not present as an inpbheural Operation-Model. To take into accountdiyaamics of

the two outputs, we used the recurrent neural mésvo

Fig. 1.Representative Diagram of the kneading processtamtvironment

Fig. 2.Operation model structure adopted to predict ¢éngperature dynamics of the bread dough and those of

power delivered during kneading process.



146 For the modelling stage, we established, duringdiwegh kneading, a database of 36 power and tetopera
147  kinetics(Fig. 3, Fig. 4 and Fig. 5A spiral mixer (DIOSNA GmbH, Osnabriick, Germanyjsaused according
148 to a procedure detailed I&hiron et al. (2008)the data are collected for different conditionsathtion speed
149  [81-329 rpm], ingredients temperature [5-25 °C] amictture weight [3-10.5 kg]. The flour used is qey55,
150 containing neither enzyme nor additive. The floass used varied between 1.8 and 6.3 kg, and neigtas
151 kept constant (water added = 62% of flour masskdding is carried in two stages: a mixing stage 4fmin
152 and with a speed of 100 rpm, to moisturize the comepts and obtain a smooth dough, followed by aadtime
153 stage which varies according to an experimentaigdefixed by the expert in order to explore the mgpiag
154 possibilities of these mixers and, possibly, deteenthe combination of these variables allowingaparate the
155 temperature and energy variablegy. 3 shows the domain of experimentation and so theetmefinition. The
156 raw data of signals measured every 3 s (temperamndepower) have been smoothed by mean of moving
157 average on 10 measurements. Data collection waigdan such a way that the data sets intendedefoning
158 are representative of those intended for validgtioase and of the entire operating range of themix

159

160

161 Fig. 3.Experimental conditions variations according tfirdéon domain.

162

163

164 Fig. 4. A streaming example from database of powers amgéeatures measurements.

165 Measured (up) and smoothed (down) for six diffeaerating conditions.

166

167

168 Fig. 5. Temperature evolution during kneading processi(mgix texturing) according to an experiment given.
169

170

171 The observation of experimental data showed maximaluwes of temperature (T> 25 ° C) and power urd0
172 watts. The power evolution suggests that the daagisistency increases, reaches a maximum beforeatstg
173 gradually(Fig. 4,curvesl] and+). This phenomenon corresponds to over-kneadingjsaftdquently associated
174  with the appearance of a strong stickiness thatbeadisadvantageous for the dough handIMgreover, for

175 identical conditions of kneading process, incregitime speed of kneading is accompanied by an isereé
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shear forces within the dough. For examplghorn and Tipples (1972pbserved the existence of a minimum
threshold of power below which the bread volumereases strongly in the CBP process (ChorleywoocdBre
Process), and obtained an optimal development edlidor a minimum energy contribution equal to 40kig*

of dough. Moreover, according to these authorspea#ling with constant power implying a varying spee
would significantly reduce the time of dough deystent. In this work, the analysis of various dasedifor
modelling, shows that the power variable has aifsigmt influence since the higher powers promdie t
emergence of higher values of temperature. Thiffipsour decision to introduce the power as guutrvariable

to describe correctly the evolution of the doughperature during kneading process.

The second part of this work will consider the itfiezation of model parameters. For this, experitaélata
were separated into two sets: a data set consgtthie learning basis upon which the weights assiga neural
network connections are determined, and a datm setlidate the model but not used during the liegrphase.
Twenty kinetics (about 56% of initial database) evased to define the Operation model. The remaifsileeen

kinetic), is used as independent validation set.

3 Artificial Neural Networks and expert knowledge insertion

In our modelling problem, according to the kneadiagiables, we used the Recurrent Neural NetwdRi¢R)

as dynamical system. This type of networks fornstaas of networks where the output of same neusoused
as input to other neurons located upstream in casgrato propagation direction of the informati@uo that a
system is causal, it must be associated any caonesith a delay: a recurrent neural network isyaamics
(Dreyfus et al., 2002, Dreyfus & Ploix, 1998)overned by differential equations. As most aggtlons are
carried by computer programs, we stand in the comtediscrete-time systems, where differential &ens are
replaced by difference equations. A feedback neneailvork of discrete-time is therefore governedobg or
more non-linear difference equations, resultingrfrthe composition of functions carried by each oeuand
delays associated with each connection. The caaldfioion of equations governing a recurrent neuedivork is

following:
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x(k +1) = ¢[x(K),u(k)] and y(k) =g [x(k), u(k)] 1)

Where ¢ and ¢ are nonlinear functions implemented by a neuralagk forward, andk designates the

discrete timeFig. 6 (Personnaz & Rivals., 2003hows the canonical form of a RNN. Any neural nekvean

be put in this canonical form, so completely autbona

Fig. 6.General structure of a Recurrent Neural Network.

3.1 Takinginto account knowledgein neural modelling

The works conducted to model the kneading prodéss is: the prediction of the temperature evolutituring
kneading operation) follow a systematic study base@xpert knowledge and physical analysis of phreama
occurring during kneading proced8oussel & Chiron, 2002, Chiron et al., 200B8) fact, we utilized this study
to constitute a data set for the learning phaseiedisas information on the choice of inputs antbots model. It
was established that the dough temperature andrpaeénfluenced by different variablésig. 1), and can be
described by a dynamic model, with four operatiagables. The evolution of the process allows toontuce
the power into the neural network as a second statable representing the thermal source whiclacasf much
on the one hand the dough overheating and on tfex baind, its texture at end kneading. The idélaais since
a neural network will seek to minimize the costdiimn, we can build a network for minimizing thisttion by
associating its variables to variables of the mlodglproblem. For this, the systematic approachnbeyral
networks consists to solve successively the thubepsoblems: 1) find a network topology that coritets are
interpreted as functions carrying the knowledgegbbtdior problem resolution in output system, 2)ltha cost
function of the problem whose minimum is the bedttson, i.e. the convergence conditions must héied, 3)
and deduce the weights of the connections betweenons and input applied to each neuron from tts co

function found.

3.2  Optimization tools. L earning phase



234 Most learning algorithms of artificial neural netike are optimization algorithms that seek to miaieniby
235 means of nonlinear optimization methods, a costtfan which is a measure of the difference betwibenreel
236 responses of the network and its estimated respofi$és optimization is carried iteratively, by clging the
237  weights according to the gradient of the cost fiomctThe gradient is estimated by back-propagati@thod.
238  The back-propagation method has been successpylied to a wide variety of problems such as, faraple,
239 leavening optimization in bread-makingrravolini, 2003) modelling of thermophilic lactic acid starters
240 production(Acuna, 1995) and determination of the roasting degree of eoffe real-time(Hernandez-Perez,
241  2002) The weights are randomly initialized before tiagn and then iteratively modified until a satigfay
242 compromise between approximation accuracy on #iritrg set and the approximation accuracy on alaibn
243 set. The learning of neural networks is not paldidy slow: there are algorithms for nonlinear optiation
244  extremely fas{Press et al., 1992)vhich can carry industrial developments with dienpomputers. Learning of
245 neural networks with feedback connections (to bdildamic models) is very similar to the one of féedvard
246  networks.
247
248 In this work, the choice of the architecture (numbiehidden layers, hidden neurons, and activatimation) of
249  the Operation-Model neural network is justified Hye universal approximation and parsimonious ANN
250 properties. The number of neurons in the hiddeerlayas optimized with the Bayesian regularizatiogthod
251 (Mackay, 1992jn combination with the Levenberg-Marquardt algon allowing weak weights to be penalized
252 (the connections with weak weight are eliminatéathis framework, the weights and biases of thsvoek are
253 assumed to be random variables with specifiedibligions. The advantage of this algorithm is tharovides a
254 measure of the number of parameters (weights aamk$) effectively used by the network. The regeddion
255 parameters are related to the unknown variancesiagsd with these distributions. We can then estinthese
256 parameters using statistical techniques. This ambreonsists of minimizing the cost functiofw) , defined in
257  (2), using training and modifying this objectiventition to:
258

C'(w)=C(w) +aQ(w) (1)
259
260  Where:
261
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C) =D (Y™ w) - Y™ and Qw)==Y w? 2)
i=1 i=1

n is the number of network weight§(w) is the sum of squared errors betvvey;qf’lred neural outputs and

y{"* real outputs.a is a parameter that determines the importancéetwo terms in the new performance
function C'(w) . Using this, performance functions will cause tfework to have smaller weights and biases,

and this will force the network response to be sitmeoand less likely to over-fit. This method hlas advantage
of being simple to implement, since the gradientofcan be easily calculated from the gradientCofand the
network weights. It is sufficient to add the quantiow to the gradient vectorldC calculated by the
backpropagation algorithm:

Oc'=0C+aw 3
The Levenberg-Marquardt algorithm was designed gpr@ach the second order speed of training without

computing the Hessian matrix. When the cost funcitiothe sum of squared errors, the Hessian mednixbe

approximated by:
Hy =0%C(w,) (4)
The update is performed using the following equatio
Wisg =Wy — [’7(I)Rk]_1DC(Wk) with R =Hy +1 ®)
When the learning parametgy; =0, this is the Newton Method:
(6)

= Wy =W, —H QIDC(Wk)

When 7 is large, this is the gradient method:

-10-
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The learning parametey;, allows to adapt the algorithm to cost functiomicand to carry a good compromise
between the Newton methodj{, =0), which converges very rapidly towards a minimuand the simple
gradient method/f;, ->), effective far from minima.

The learning neural model is normally carried deo¥as:
1) Initialization of network parameters;
2) Propagation through the network temporally unfolded
3) Computing the gradient of the cost function (takiimg account the weight shared);

4) Update the parameters network, then return toZfep another iteration.

3.3 Determination of the model performances

The performances of the optimal model chosen agsemted in Section IV. They will be estimated using
number of indicators presented in this sectionthim literature, there are usually two groups offgrenance
indicators that can be used to assess the qudlityodels(Willmott et al., 1985) A first group represents the
overall agreement between observed and predicleds/arhe second group represents the quality afeffing,
in terms of excess thresholds predict{@utot et al., 2007)In this work, we used indicators of the first gpo

the absolute mean bia®\MB) and square root of mean squared er®VISE), as defined below:

1x 1
AMB:NZ‘yipred _ yimes‘ and SMSE= \/NZ(yipred _ yimes)z (8)
i=1

i=1

with y™* and yi’"ed are measured and predicted values by the modelectgely. Note that a positive value

of mean bias indicates a trend of model to ovamede, and a negative value indicates the trendnuber-
estimate. An additional indicator calledl (Willmott et al., 1985)reflects the degree to which the observed

variable is correctly estimated by the simulatedalde.

-11-
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1-+ 9)
z(‘yipred _ ymes‘ + ‘yimes_ ymes‘)Z
i=1

This indicator is not a measure of correlationhie formal sense, but rather a measure of the dégased on a
set averaged) predictions without error. It vatietween 0 and 1. A value of 1 indicates perfeceagent

between measurement and model, while the valudiBates total disagreement.

4 Results and discussion

4.1 Resultsof prediction

The use of neural prediction involves the choicénpfit parameters but also the optimization ofahehitecture
of the neural network itself. The optimization aftb the type of nonlinear function and the neurtwork
architecture (number of neurons in the hidden layers made after numerous empirical testing. Adogrdo

Lepage et Solaima(003) for a neural network with one hidden layer, teeammended number of neurons
approximately equals/N(M +2) +1, where N is the number of input parameters andsMhée number of

neurons in the output layer. In our case, we ilhjtiased a multilayer perceptron with 6 inputs (W, Te, Tf, P
(), T (1), 6 sigmoid (to generate a degree of-tinearity between the neurone’s input and outputhe hidden
layer and, in output, the two state variables Rt and T (t +1). So there are 56 connections/oghteat the
beginning of learning. The final qualified netwarkiploys approximately 37% of the effective paramsgteith

a percentage error of 4.5% on the training setopérations carried through different network linksmmarizes
the energy exchange between the inputs and outdutse systemFig. 7 presents the optimal architecture
adopted for power and temperature predictieig. 8 to Fig. 1(Qorovide a visual overview of model performance
for each validated kinetic. For all curves involvdtht of validation phase, we adopted in this repbe
following convention of symbols: the curve with rkar(shown on each point) represents the power laed t

temperature measured belonging to the validatidabdae, the continuous line curve representinyahiables

-12-
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predicted by the model, and in dashed lines thdidemce interval at 95% of data predict&dy. 10 presents a

simulation result for 4 kinetic of temperature gomver variables on various conditions.

Fig. 7.OperatioAModel architecture.

Fig. 8 presents the results for the power prediction.F@n 8ait is clear that the prediction is good and the
model reaches to reproduce correctly the dynami@abitity. The different curves show a good dynamic
behaviour of the network; the envelopes are prgpketfilled. Looking at the correlation curves, shoverall
good behaviour is confirmed, but it appears in saihgtion that the input variables which are raien into
account, and probably other variables, have afgignt effect. It is the same with temperature préoh (Fig.
9a-b) Nevertheless, it is evident the good correspooeldor temperature and power between measure and
model. For power, the network response is a bibbstep with the real output. Consequently, thisvoek will
generalize well to new data. The neural Operatiad® has a global prediction rate (on the two \@es) close

to 91%. The various performance indicators andetation coefficients between the outputs prediaed real

outputs are presented in Table 1.

Fig. 8a.Powers measured and predicted by means of Opedidalel on validation phase.

Fig. 8b.Correlations between power measured and thatqieetlby means of Operation-Model on validation

phase.

Fig. 9a.Temperatures measured and predicted by meanseshtim-Model on validation phase.

-13-
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Fig. 9b.Correlations between temperature measured angibdicted by means of Operation-Model on

validation phase.

Fig. 10.A streaming example from simulation result of temgture and power variables (on 4 data series) in

various conditions.

Table 1.Indicators of performance on validation data sefpower and temperature variables.

Fig. 10illustrates how the model is working and pressotsie pure simulation from input variable showntaon t
figure. Although performances, in terms AMB and SMSE, are best for temperature, the indéxindicates a

better attractiveness for two variables. This doifit is between 0.28 and 0.8 for power and 0.80 f
temperature. Apart from the kinetic 1d € 028, R?> = 037), which is far from the desired performances, the

model well reproduces the dynamics variability lné two recorded outputs. The nonlinearity betwdmntivo

state variables is still well taken into accountthg model, since the general trend of power msfit respected

on the whole, if we discard the data stemming fiten kinetics 14, the two coefficiens and R? increase

respectively from 0.27 to 0.82 and 0.37 to 0.76.

A residues analysis measure-model showelgign 11 highlights the fact that the Operation-Model preésehe
best prediction performance for temperature andepoWwhe information part, provided by each conmectf
the neural network on real observations, is alghdi. For temperature variable, the model expl89& of
variance and has near-nil dispersion around thel itlee. For the power variable, the model has sible
dispersion, but low compared to all data set. TMSE of the model at this level is 9.85 to 52.7 but the
variation of almost all residues is systematictlyer at 1.97 standard deviation, in other worlls,deviation is

very small and is bounded by the interval [-2, 2].

Fig. 11.Standardise@Residual according to predicted values of powertemperature variables.
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4.2  Analysisof relativeimportance of input variables

The importance of each variable must be determgmeds to confirm the influence of parameters seteat
neural network input on the temperature and powelutions. However, the function implemented by AN

is complex. The analysis of the contribution of lea@riable is extremely difficult. Indeed, from tlhput
variables, the network is able to predict the outparameter, but the inner mechanisms of netwogk ar
completely ignored. The interpretation of an ANNnist so evident as the one of simple linear regpass
models. Thus, various methods have been implemeateldaracterize the ANN "black-box". These methads
quantitative nature, which allow analyzing the cimition of input variables on the ANN predictioflden et
al. (2004)assessed the pertinence of each method to estiheat®ntribution of variables as far as ANN and 9
methods described in the literature were tested. rekults show that one of them, called "connestisaights
approach”, is often the most accurate and reliahle.have therefore decided to use this approadrdar to
examine the contribution of predictor variablestba two model outputs. The connections weights @ggr
uses the weights of input-hidden connections adddri-output connections of an ANN. According@den et
al., 2004) it provides the best methodology for precise iifieation of the importance parameters of model.
This approach allows therefore to successfully tifiethe real importance of all variables of neunatwork. It
computes the result of the ‘input-hidden’ and ‘ldebutput’ connexions for each input neuron anduut
neuron, and recaps the sum of results throughidtlelh neurons. The relative contribution of indegemt
variables on the network prediction depends onnthgnitude of the numerical value obtained for eafcthe
variables considered. An input variable with stramgights connections represents high-intensity ignas
transfer. In other words, it has a strong contidubn the network prediction in comparison to othariables
characterized by smaller weight connections. Thepmdation procedure consists in multiplying theueabf the
weights connection of ‘hidden-output’ neurons, éaich hidden neuron, by value of the weights commectf
‘input-hidden’ layer. The sum of previous produdts, each input neuron, is then performed. In thsk, the
same architecture adopted has been tested withwalinputs M and Vr, and then with the flour temgdere as

a third input variable. By performing the processsatibed above for each input neuron, we identiy i
contribution to the output. IRig. 12we report the product carried and the sum givée. Various indices and

indicators performance are illustratedTliable. 2andTable. 3
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Fig. 12.Variables effect on the two outputs T(t+1) and P)taccording ta@onnections weights approach.

For two architecture@~ig. 12a and Fig. 12¢jhe two operating variables, mixture mass andrrspeed, have a
greater influence than the other two variables iid @e. We noted also the same for the two stateblas,
temperature T(t) and power P(t). The power andrrepeed inform the model on the stress intensityieth
during kneading process. Since the temperaturdefflour and that of water affect significantly tdeugh
behaviour in terms of its overheating at the englkiing, we can verify by this method that the O@naviodel
with four independent inputéig. 12c)is best adapted to model the power and temperatymamics. The

results of various performance indicators preseirtdtie tables below (here without the kinetic 4@ almost

identical for the three configurations. Howevek tioefficients margird and R?, on validation for the power

variable, change if we keep kinetic 14.

Although at the systemic study performed about Bimep process, the 4 variables were selected as key-
information, proof that their influence on the twaitputs is not useless in the absolute, with tha dat
considered for this modelling problem. Therefote tesults of this analysis indicate that, in thatext of
network optimization, it is possible to keep thesgiables (including the least influents, in oulsedTa’)

without disrupting significantly the results of malimodelling.

Table. 2.Validation results for tree architectures tested.

Table.3.Indicators performancen validation for tree architectures tested.

5 Conclusion
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In this paper, we clearly proved through the vdi@aresults of Operation-Model that the kneadimgcpss is
relatively nonlinear with respect to temperaturd @ower variations. We were able to predict theadyics of
these two variables from four operating variabtbs: mixture mass, the rotor speed, the flour teatpeg, and
water temperature, and the return of motional.tRiw purpose, we used a data set covering thetiargaspace
relative to ingredients mixing and operating coiodis of kneading. The experimental results showesl t
effectiveness and reliability of the neural apptodor this type of complex operation. Model perfame
depends on the quality and quantity of data aviglédy learning. The neural model has a predictaia close to
91%. Like any dynamic modelling approach, the usartificial neural networks requires that the dahle data
are sufficiently numerous and representative. Fthenperspective of development time, it is cleat tthe
neural approach is advantageous compared to @blenifjues, where the deployment of other data resjtine
built of a new model that will be much easier torgdy learning. The model variables remain the esgim a
first approximation and unless major evolutionexdhnique), so that learning of a new neural mod#s lown
to elaborate a representative database, and t@ingpit an usual learning algorithms, by varying rinedel
complexity by the number of hidden neurons. Ithgags desirable and often possible to use for ntwlesign,
the mathematical knowledge or physical laws, whick available for the phenomenon to model: neural
networks are not necessarily "black boxes". Agst fierspective of this work, we plan to expandg tigpe of
dynamic modelling approach to predict the rheolagy sensory proprieties of bread dough at the erdding
process. The final aim is to aggregate and deainétirmation streaming from these different operasi
(fermentation or proofing..., and baking) and to detiefects and faults as soon as possible, sowsdErstand

the mechanisms that influence the quality of thalfproduct.
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Fig. 9. a. Temperatures measured and predicted by means of Operation-Model on validation phase. b. Correlations between temperature measured and that pre ed by means of

Operation-Model on validation phase.
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Fig. 10. A streaming example from simulation result of temperature and power variables (on 4 data series) in various conditions.
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a [Inputs importance in comparison to outputs
model M1, with 2 independant inputs M and Vr

b Inputs importance in comparison to outputs
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Fig 12. Variables effect on the two outputs Tt + 1) and At + 1) according to connections weights approach.

Table.1. Indicators of performance on validation data set for power and temperature variables.

d )'g AMB SMSE
Temperature 0,99 0,99 [0,04-0,2] [0,0452-0,2584]
Power [0,28-0,8] [0,37-0,96] [2,55-7,65] [9,85-52,7]
Table.2. validation results for tree architectures tested.
% ERROR ON EFFECTIVE PARAMETERS OF NBRE OF
VALIDATION TOTAL ITERATIONS
M1 with 4 inputs Temperature 0,53%
37% of 56 800
M, Vr, Tf, Te) Power 6,97%
M1 with 3 inputs Temperature 0,43%
35% of 50 500
M, Vr, Tf) Power 6,21%
M1 with 2 inputs Temperature 0,45%
N 52% of 44 450
(M Vr) Power 6,8/0




Table.3. Indicators performance on validation for tree architectures tested.

d R AMB SMSE
MI Temperature 0,99 0,99 [0,04-0,2] [0,0452-0,26]
4 inputs Power [0,82-0,97] [0,76-0,96] [7,65-52,55] [9,85-52,7]
MI Temperature 0,99 0,99 [0,036-0,21] [0,04-0,245]
3 inputs Power [0,73-0,97] [0,73-0,97] [7,45-26,15] [10,50-32,58]
MI Temperature 0,99 0,99 [0,045-0,21] [0,05-0,25]
2 inputs Power [0,77-0,98] [0,65-0,97] [8,74-35,13] [10,31-36]




