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Abstract

Recent experiments showed that the bio-mechanical ease and end-point stability associ-
ated to reaching movements are predicted prior to movement onset, and that these factors
exert a significant influence on the choice of movement. As an extension of these results,
here we investigate whether the knowledge about biomechanical costs and their influence
on decision-making are the result of an adaptation process taking place during each exper-
imental session or whether this knowledge was learned at an earlier stage of development.
Specifically, we analysed both the pattern of decision-making and its fluctuations during each
session, of several human subjects making free choices between two reaching movements that
varied in path distance (target relative distance), biomechanical cost, aiming accuracy and
stopping requirement. Our main result shows that the effect of biomechanics is well estab-
lished at the start of the session, and that, consequently, the learning of biomechanical costs
in decision-making occurred at an earlier stage of development. As a means to characterise
the dynamics of this learning process, we also developed a model-based reinforcement learn-
ing model, which generates a possible account of how biomechanics may be incorporated
into the motor plan to select between reaching movements. Results obtained in simulation
showed that, after some pre-training corresponding to a motor babbling phase, the model
can reproduce the subjects’ overall movement preferences. Although preliminary, this sup-
ports that the knowledge about biomechanical costs may have been learned in this manner,
and supports the hypothesis that the fluctuations observed in the subjects’ behaviour may
adapt in a similar fashion.

Keywords: Decision making, visual planning, biomechanics, reinforcement learning, motor
actions, dynamic programming, psychophysics.

1. Introduction

Significant progress has been recently made to determine the implication of the motor
apparatus in the preparation and execution of motor movements. First, in the context of
goal-directed movements, prior postural adjustments have been described as a method to
bring the muscular-skeletal conditions to an initial state, favourable for the execution of
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the intended movement (Bottaro et al., 2008; Lakie and Loram, 2006; Lakie et al., 2003;
Morasso and Sanguinetti, 2002). Second, reaching movements around pointy obstacles also
exhibited a bias towards trajectories exhibiting a larger resistance to potential perturbations
perpendicular to the trajectory (Sabes et al., 1998; Sabes and Jordan, 1997). Third, a series of
recent experiments have shown that not only are some estimates of the biomechanical cost of
future trajectories calculated in anticipation of movement onset (Dounskaia et al., 2011), but
also that these costs influence the selection of a reaching movement over another (Cos et al.,
2011). Furthermore, variations of the same task with different levels of end-point control also
showed that biomechanical factors were most influential in the absence of precise instruction
about the movement, e.g., when the movements were most unconstrained, implying that
biomechanical factors associated to motor movements are highly context-dependent and
interact with the subjective desirability of potential actions (Cos et al., 2012).

Hence, although this proved biomechanical costs to be calculated during movement prepa-
ration, it remains to be tested whether this information is gained in a gradual manner, depen-
dent on the task specifities, and necessitates of significant training, or by the contrary, it had
been learned at an earlier development state. Although these goals extend beyond the scope
of this paper, here we propose to initiate that path by assessing the dynamics of the influence
of biomechanics on decision-making during the course of an experimental session. In other
words, here we investigate to what extent is knowledge about the structure of the motor
apparatus learned or adapted during the task, and to what extent this has been learned at
an earlier stage of development. Furthermore, we also developped a theoretical model, aimed
at reproducing the patterns of decision incorporating the factor of biomechanics as shown by
(Cos et al., 2011), as well as the variability exhibited on a single individual basis. The model
is trained by reinforcement learning (RL) (Sutton and Barto, 1998) on the basis of the costs
and benefits associated to the execution of each movement. A key principle of the model is
that the learning of such costs and benefits is based on an internal model, which previous
research has stressed to be of crucial importance for the generation of goal-directed move-
ments (Kawato, 1999). Similar to previous models of motor decision-making (Doya et al.,
2002; Peters and Schaal, 2008), here the internal model is learned as the combination of a
reward function, and a state-action transition function in a model-based RL framework. We
illustrate the principle of learning to incorporate biomechanics within such internal model
by generalizing the so-called reward function in a manner that takes into account both costs
and benefits (Sutton, 1991), and by alternating a phase for learning the internal model —
here through motor babbling — with a phase for making decisions based on this internal
model (Sutton, 1990). In a straightforward fashion, the simulated results exhibit a remark-
able similarity with the results obtained experimentally, therefore supporting the hypothesis
that the influence of factors related to the motor apparatus on movement preparation may
be learnt via reinforcement, together with processes of early motor adaptation.

2. Materials and Methods

2.1. Psychophysics experiment
Characterization of biomechanics.



Several factors may be associated to the notion of biomechanics: muscle viscoelastic
properties, passive inertia, interaction torques, or muscle energy. However, because the pri-
mary goal was to assess whether some of these factors were included into the motor plan and
whether they influenced decision-making, we used the alignment of the end-point trajectory
with the axes of the planar ellipse of mobility/admittance as our metric of biomechanics
(Hogan, 1985a,b,c). Although this is approximate in so far it does not include interaction
torques, it is a reasonable first order approximation, as it captures the morphology of the
arm, its distribution of mass and of visco-elastic forces, and quantifies the contribution of
biomechanics to move along each different directions. The equation below shows the expres-
sion of the tensor of planar mobility:

macsls + Mels + Mmecele + 2mecelslecos(6e) mecelslecos(6e) + mecele
MeCelslocos(be) + cele MeCele

1(6) =

In this equation, 6. is the elbow angle, m,=1.76kb, m.,=1.65kg, ¢,=0.475 and c,=0.42
(Sabes and Jordan, 1997;Sabes et al., 1998). The ellipse of biomechanics is derived by
calculating the eigenvalues and eigenvectors of this tensor, which correspond to the directions
of the axes of the ellipse. Based on this, we have explicitly used the alignment of the endpoint
trajectory with the major or minor axis of the mobility ellipse as our metric of biomechanics.

Behavioural Task. The task consisted of making free choices between two reaching
movements towards one of two targets, which vary in biomechanical cost, path-distance
and end-point control requirements. Each potential movement is defined by a via-point
and a target (see figure 1C-F). The factor of biomechanics is determined by the placement
of these markers, in such a manner as to align the final trajectory either with the major
(T1-Major, T1IM arrangement) or minor axis of the ellipse of biomechanics (T1-minor, T1m
arrangement), see figure 1C-F. Furthermore, the relative path length between targets was
varied for the following distances (9 vs 13cm, 10 vs. 12cm, 11cm vs. 1lcm). Two additional
factors concerned with the control of the endpoint were also manipulated (see figure 2A-D,
left). The first was the aiming accuracy, parametrized as a function of the width of the target
(1 or 3cm). The other factor was the constraint of stopping, implemented by instructing
the subject to stop at the target or to punch through it and to stop whenever afterwards.
Each combination of these two constraints was performed in four separate blocks, labeled as
Unconstrained (U), Stopping Only (S), Aiming Only (A) and Aiming+Stopping (AS), see
figure 2. Targets were 3cm wide in the U and S conditions and lem wide in the A and AS
conditions.

The experimental session consisted of four blocks of 320 trials each, one per control
condition. Trials within each block were of two sorts: two-target (300) and one-target (20).
The sequence of trials was generated at random and was the same in all sessions. Within
each trial, each potential trajectory was defined by the origin cue (cyan dot, Radius lem),
a via-point (red dot, Radius lem), and a target (dark blue square, side from lem to 3cm,
depth lcm, see figure 1C-F). Each trial began when the origin cue was shown on the screen
and the subject placed the stylus into it. After a 300-700ms Center Hold Time (CHT), the
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via-points and targets were shown. After an additional 500-700ms Observation Time (OT),
the origin disappeared (GO signal). Subjects were instructed to react as fast as possible,
to choose the action that felt most comfortable, and to move the stylus over the via-point
and towards the target. Furthermore, the colour of the via-point and target cues changed
to green as the stylus moved over them. For additional control conditions, see (Cos et al.,
2011).

2.2. Analyses

Metric of biomechanics. The modulatory effect of biomechanics, as well as of the
control constraints, is assessed by calculating the T1 preference [Pr, (Q)] in each of the four
types of control constraints (U, S, A, and AS) by calculating the number of times that
subjects selected T divided by the number of choices at each of the geometric arrangements
(sagittal T} major, sagittal 77 minor, transverse 77 major, transverse 7 major). In each of
the four arrangements, the T1 preference [Pr, (Q))] values were plotted on a logarithmic scale
and fitted with a sigmoidal curve, as described by the following equation:

D,
Pr(Q) = %,whwe@ =a X [log(ﬁz)] +b

where a and b are the parameters fitted for data from each configuration and D; and Dy
are the relative distances to T} and T5, respectively, measured along the path from the origin
through the via point and to the target. The design of the geometric arrangements, for the
sagittal and transverse orientations, was aimed at maximising the difference of biomechanical
factors between targets. The rationale of the method was to compare the percentage of T1
choices over the total between T1M vs T1m arrangements, hence when the biomechanics were
exchanged. Furthermore, although movements were planar, arrangements could assume one
of two orientations: sagittal or transverse (see fig 1C-D vs 1E-F), depending on whether the
movement options were either away or towards the subject’s body, or towards the right or
left of the origin. Hence, we calculated the T1 preference curves both for the T1IM and T1m
configurations as a metric of the effect of biomechanics, and we compared across the four
control conditions considered: Unconstrained (U), Stopping Only (S), Aiming Only (A) and
Aiming+Stopping (AS), as shown in Figure 2A-D.

Target Preference Variability. The variability of the influence of biomechanics on the
process of decision-making has been assessed using an extended version of the same metric
used to test the overall effect of biomechanics. However, rather than performing the analysis
with all the trials at once, we have selected three hundred consecutive trials at a time at
regular intervals during the session, to calculate an estimate of the subject’s preference for
T1 at that time. Furthermore, in a similar fashion, we have also calculated the variation
of the effect of biomechanics at each time interval by measuring the area between the T1-
preference sigmoids obtained in the T1-Major and T1-Minor arrangements, which we have
plotted both for the saggital and transverse cases.



2.8. Theoretical Model

Here we introduce the principles of a Reinforcement Learning (RL) model which can
explain the experimental results by learning to select actions (i.e. movements in the present
case) that minimize the biomechanical cost. Such a cost represents the fact that to reach
along any desired direction requires a certain effort, which depends on the intrinsic properties
of the arm along that specific direction. Movements along different directions will have
different costs. Our hypothesis here is that these differents costs have been implicitely pre-
learned by subjects during their development (e.g. during early motor babbling phase) and
could thus be encoded in an internal model of arm movements which would contribute to
decision-making in the considered experimental task.

In the Reinforcement Learning framework (Sutton and Barto, 1998), learning such an
internal model consists in parallely learning two mathematical functions: a state-action
transition function 7, which in the present task basically learns the effect of each motor
command on the arm position — more precisely it stores for each position of the arm in space
(called state s) and for each possible motor action a performed in that state in which new
state s’ (or new position) the arm will be; and a reward function r which stores the reward
value (when it is positive) or the cost value (when it is negative) of each such experienced
transition. In applications of RL models to decision-making tasks, the reward function
usually simply represents the food, juice or monetary reward obtained by animals or human
subjects at each correct trial (Houk et al., 1995; Suri and Schultz, 1999; Morris et al., 2006;
Daw et al., 2006; Humphries et al., 2012; Khamassi et al., 2013). But in the Machine
Learning literature, the reward function can more generally include negative outcomes such
as punishments (e.g. when the agent bumps into an obstacle) and costs along with positive
outcomes (Sutton and Barto, 1998).

Numerous applications of the RL framework to motor control problems have been previ-
ously done (Doya et al., 2002; Peters and Schaal, 2008; Han et al., 2008; Marin et al., 2011;
Rigoux and Guigon, 2012; Marin and Sigaud, 2012), with advanced computational solutions
to solve learning issues in continuous time and space. Here we sketch a very simplified
and classical version of a Reinforcement Learning algorithm, with discretized space and arm
movements, in order to illustrate the important learning mechanisms that may explain the
experimental results, and in order to draw a set of simple testable experimental predictions
raised by the model.

The two important ingredients on which the model relies are: 1) the use of a reward
function that yields a negative value at each intermediate step prior to target arrival to
capture the bio-mechanical cost associated to that movement interval and a positive value
whenever the target is attained; 2) the operation of the model in two distinct steps: it first
learns an internal model of the biomechanical costs of moving along each direction during
the motor babbling phase, and second, it tests the influence of the learned biomechanics on
the probability of selecting one motor response over another. Such distinction between an
initial motor babbling phase and a decision-making phase can be seen as a natural extension
of the classical Real-Time Dynamic-Programming algorithm (Sutton, 1990, 1991) where
simulations alternate between phases to learn an internal model and phases to derive the



model into a decision through a Dynamic-Programming (DP) process.

The fact that the proposed algorithm learns and uses an internal model makes it belong
to the class of Model-Based Reinforcement Learning (Doya et al., 2002) as opposed to Model-
Free Reinforcement Learning which is classically used to explain how phasic dopamine signals
can be used to slowly and incrementally learn cached action values through trial and error
(Schultz, 2002).

The Markov Decision Problem. Our hypothesis is that subjects take intrinsic costs
of the motor apparatus into account to make decisions between reaching movements, and
that the incorporation of this cost is the result of a gradual learning process by interaction
with the environment. In order to model such interaction we describe the learning problem
as a Markov Decision Problem (MDP) where the aim is to maximize reward and minimize
cost when making choices between reaching movements along different directions. Formally,
the problem is described by a tuple (S;.A; T ;) where S is the state space (each possible arm
position in the space in front of the subject), A is the action space, which here consists of two
possible actions: moving towards the right target (T1, see Figure 4A) or moving towards the
left target (T2, see Figure 4A), T is the previously defined state-action transition function,
and 7 is the reward function.

To assess the incremental influence of the biomechanical cost on the choices as the learning
progresses, we have simulated the same two experimental conditions labelled as T1-Major
(T1M) and T1-minor (T1m) in the experimental setup. Since the effect exhibited is the same
in the sagittal and transverse arrangements, we have opted for simulating the transverse only
(Figure 4A). For simplicity of the demonstration, each of the arrangements (T1M and T1m)
has been simulated as a separate MDP. To address the problem in a manner similar to the
one described in our experimental setup, we also varied the relative distance between targets,
considering eleven different relative distances. Therefore, each trajectory is structured as a
sequence of states, from the origin (state s7) until the target state either T1 or T2. Depending
on the type of trial, the final state can be located at an intermediated state between s; and
s5 for T1 and between sg and s13 for T2.

Learning by Motor Babbling. This is the phase during which the model learns an
internal model of the possible transitions and biomechanical costs of each reaching movement.
The learning occurs whenever the subject makes reaching movements in the space in front
of him. Since our problem is formalized as a MDP, it satisfies what is called the Markov
property, which imposes that in a given state s; at time ¢, if the subject selects the action
a; , the next state s;; depends only on s; according to the transition function 7

T (5¢, a1, $141) = P(S141]5¢, ar)

The fact that the transition function is written in a probabilistic manner simply takes
into account that due to motor noise and external noise, the effect of a given movement in
a given state not always produces exactly the same effect: e.g. moving one’s arm from one’s
chest straight towards the space in front of one will 99% of the time result in a perfectly
straight movement, and 1% of the time will lead the arm slightly to the left or slightly
to the right. Learning the transition function will consist in sampling many different arm



movements and learning an approximation of these probabilities, as when a baby moves its
arms in all possible directions presumably to learn the effect of different motor commands.

Similarly, the obtained reward r,,; at a given time ¢ + 1 will only depend on the state
s; where the arm was and on the action (or movement) a; that was performed. In other
words, each specific movement will have a biomechanical cost (thus a small negative reward)
representing the associated amount of energy spent. Movements that eventually bring the
arm to a desired target will have an additional positive reward representing the subjective
satisfaction of the subject for having achieved the desired movement. We will thus write the
reward function in the following way:

Tee1(St, a) = c(St, ar) + Tsubj(sty a) (1)

where ¢(s¢, a;) is the biomechanical cost associated to the selected movement, and rp; (st, ar)

is the subjective reward that the model associates to that specific movement. The rg,;; will
be null during the motor babbling phase, since no target is presented at that time. We will
train the model by performing random movements to learn an internal model containing an
estimation of the transition probabilities between states — such estimation will be written
as T — and the reward function (at the first stage containing only cost information). The
estimation 7® at a given time t will be updated when a new movement a; is performed
starting from a position s; and resulting in a new position s’:

1 1
Nt(staat> Nt(St,at) (2)

The above equation simply counts how much time the same movement has already been
performed in the same departure position — represented by the term N;(s,a) — and computes
the proportion of time this movement leads to the experienced resulting position s’. For
instance, imagine this is the third time that movement a; is performed from the starting
position s; (i.e. Ni(s,a) = 3). And imagine that the two previous times the same movement
had been performed it ended up one time in state s’ and one time in a different state

s”. In such a case, the previous estimation of the probability of ending up in state s’

with the same movement was: T®(s;, ay,s') = 5. Since the third time the movement is

performed it ends up again in state s’. The new estimation of this probability will be:
T (s4,a0,8") = (1 — 1)1+ :=2

We will update in the same manner the estimate of the reward function 7 in relation to
each movement a; performed from a starting position s;:

7A-(t+1)(8t7 a, S/) _ (1 . ) j‘(t)(st, ag, s’) +

(1) I SRR S P (st ar)
' (50,04) = (1 Nt(3t7at)) s ) + Ni(st, ar) )
where c(s;, a;) is the experienced cost of the movement. Therefore, the motor babbling
phase consists in implicitly learning the possible transitions and biomechanical costs by
sampling all possible movements several times.
The motor babbling phase where an internal model is learned can thus be summarized
as follows:



Algorithm 1 Learning an internal model during motor babbling

1: Initialise the state-action transition function estimate 7 to have a uniform probability
distribution on all actions in all states.

2: Initialise the reward function estimate 7 to zero.

3: for : =1 — 1000 do

4: Draw a random state s and a random movement a

5: Observe the consequence of movement in terms of resulting state s and cost ¢
6: Update state-transition function using Equation (2)

7: Update reward function using Equation (3)

8: end for

Making decisions in the model via dynamic programming. Once the motor
babbling phase has ended, the learned internal model can be used to make decisions between
potential motor movements at different trials, either by choosing to perform the sequence of
movements towards T1 or towards T2. In RL terms, the goal here is to select at each time
t the action (i.e. movement) a; which maximises the cumulative sum of rewards obtained in
the long term. This we define as the total discounted expected reward:

> A (s, at)]
t=0

where E is the mathematical expectation (or expected value) of this cumulative sum
of rewards. The sum starts from ¢t = 0 (present) until ¢ = oo (far future). The discount
factor 7 is a parameter of the model which always satisfies v < 1 and which gives a smaller
importance to future rewards compared to immediate rewards (i.e. 7' becomes smaller and
smaller as ¢ increases). Thus setting a particular value to the vy parameter defines a trade-off
between intermediate and long term rewards: if small it will bias the behavior of the model
towards short-term outcomes; if large (i.e. close to 1) it will bias the behavior of the model
towards long-term outcomes. Finally in this equation 7 represents the estimation in the
model of reward associated to each movement in each position. Following Equation 1 such
estimation both includes the biomechanical cost ¢(s;, a;) that was learned during the motor
babbling phase and the term of subjective reward rg,,; = 1 obtained every time a target is
reached.

Thus to say it simply, with this objective the model will always try to select movements
that lead to a target while minimising the biomechanical cost.

At each trial, two targets T1 and T2 are presented. The assessment consists of mentally
rehearsing the two possible trajectories and to decide what is the best behavioral policy to
adopt as a function of the expected reward associated to each option. Such a policy consists
of a mapping: 7 : S — A , which assigns an action a to each state s. This action will be
executed whenever the model is in that state. The state-action value (written @ for Quality)
is the amount of future reward expected from executing action a in state s. The optimal
policy is the policy 7* that has the largest state-action value, i.e.,

R=E




Vs € §,Vr,max Q*(s,a) > max Q" (s, a)

where Q* denotes the state-action value of policy 7*.

In previous applications of model-free RL algorithms such as Q-learning (i.e. RL algo-
rithms that do not incorporate the previously defined internal model) to motor decision-
making (e.g. see Han et al. (2008)), the @ function is gradually updated at each trial after
performing an action at a given state and experiencing the consequence of the action. This
results in slow adaptation of the decisions trial after trial and would not explain the imme-
diate adaptation of human subjects to each new configuration of targets presented at each
trial in our task. Here, we use the internal model (hence the term model-based RL) of the
transition and reward functions learned during the motor babbling phase to quickly update
the Q function during an online Dynamic Programming technique (Sutton, 1990, 1991) until
the optimal state-value action Q* has been attained, and deducing the optimal action plan
from it. This process is performed at each trial before acting, and will therefore represent
the decision-making process.

At each trial, the model starts with an initial guess Q*=% of the optimal state-value
function (for instance it estimates that both moving left and moving right have an equal
value of %) The model then infers several steps ahead what would be the consequences
of moving the arm either left or right in terms of costs and rewards. Such process takes
some time before making a decision to iterate the estimated values of moving left and right.
For instance after several iterations the model could find out that moving towards the right
target has a value of 0.8 (because the associated movement has a small biomechanical cost)
while moving left has a value of 0.2. Then the model can take a decision to either move the
arm in the left or right direction.

The iterative process which enables to estimate the value of each possible movement
employs the classical equation of Dynamic Programming — see (Sutton and Barto, 1998) for
more details:

Q¥ (s, a) = #(s,a) + Z T (s,a,s") max Q¥ (s, a') (4)
s'eS “

This equation says that the new estimation at iteration k + 1 of the value Q(s,a) of a
movement a performed in a position s will be equal to the sum of: first the reward and cost
associated to that particular movement — regrouped under the term 7 (s, a) — plus the value of
the best movement that can be performed consecutively — maxy, Q™ (s',a’) — multiplied by
the probability — 7’(3, a,s') — of arriving in a state s’ that enables to perform this consecutive
movement. This process is iterated many times because the task may require a sequence of
costly movements before arriving in a terminal state that correspond to a target location.
The result of this iterative process provides the optimal state-action value Q* that will be
used to decide either to move towards target T1 or target T2. In the exemple depicted in
Figure 4A, the resulting value associated to initiating a movement towards target T2 in the
departure state s; (i.e. Q*(s7,left)) will be smaller than the value associated to initiating
a movement towards T1 (i.e. Q*(s7,right)) because the cumulated cost of the former is
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higher. But both will be positive values since the sequence of small costs that occur along
each trajectory is compensated by a large positive reward corresponding to target attainment.

At each trial, once the optimal state-action value Q* has been computed, the model
can make a decision to move either towards T1 or towards T2. Rather than systematically
choosing the motor plan that has the highest value (i.e. always following the optimal policy
7 which consists in choosing argmax,Q*(s7,a)), we would like the model to act according
to an exploration-exploitation trade-off: most of the time choosing the apparently optimal
movement, but sometimes trying a different movement (exploration). Such an exploration-
exploitation trade-off is often observed in human and animal behaviour (Daw et al., 2006;
Morris et al., 2006; Frank et al., 2009; Humphries et al., 2012; Khamassi et al., 2013) and
is supposed to accelerate the adaptation to changing environments. In order to perform
this trade-off, we have endowed the model with a softmax function, which normalises the
probability of performing each action by its Q-value:

exp(BQ*(s, a)) (5)
Y wea Xp(BQ*(s,a’))
where [ is a positive parameter called the inverse temperature. As  — oo, the decisions
resulting from the softmax equation above become equivalent to the greedy decisions corre-
sponding to the optimal policy 7* = argmax,Q*(s, a).

The Dynamic Programming method that we apply to make a movement decision at each
trial can thus be summarized as follows:

P(als) =

Algorithm 2 Dynamic Programming applied to motor decision-making
1: Load transition and reward function estimates learned during the motor babbling phase.
2: for each trial of the human behavioural task do
3: Present two targets.
4: Provide an initial guess Q®) of the optimal state-action value (here we simply used
the one from the previous trial).
5 while ||Q®) — Q* V|| > ¢ do
6: Update @ using Equation (4)
T end while
8
9

: Use the resulting @Q* to decide between the two targets with Equation (5)
: end for

From this process at each trial we have in the departure state the probability of going to
the left (resp. to the right) which for simplicity we take as the probability of executing the
full motor sequence towards target T1. In other words once the initial action is chosen in
the departure state, we force the model to execute the whole sequence of movements until
the target without making new decisions at intermediate states within the sequence.
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3. Results

3.1. Human Movement preferences

Figure 2A-D shows a summary of the results of Cos et al. (2012; 2011), which is the
experimental data set whereon we based our additional analysis of temporal variability of the
effect of biomechanics. Briefly, the results showed that, both in the saggital and transverse
arrangements, the preference for T1 decreased with path distance, and that T1 was much
preferred in its major than in its minor configuration. Furthermore, the analysis of the effect
of task constraints on the subjects’ choices shows that the distance between the Major and
minor preference curves is magnified whenever stopping at the target was not required, hence
when in the absence of control constraints (U condition). The size of the bias for the major
target decreased as control constraints were imposed. Remarkably, the difference between
the S and the U conditions highlights that the demand of stopping exerts a very significant
effect to diminish the subjects’ choice for the major target to gain a little more comfort
in stopping. In conclusion, although the control constraints do not invert previous target
preferences, the results shown suggest that stopping reduces the effect of biomechanics on
decision-making.

3.2. Learning about the structure of the motor apparatus

Our additional analyses were aimed at determining whether the effect of biomechanics was
present from the beginning of the session, or whether it resulted from an adaptation process
during the session. Figure 3A-C shows the preference curves for T1 at different times during
the session obtained by selecting trials with a window of size 300 trials, slided at intervals
of 50 throughout the session. The results in figure 3A-C show that, despite significant
fluctuations of the target choice at different times of the session, the effect of biomechanics,
i.e., the difference between the preference for T1 in the major and minor arrangements is
present from the very beginning of the session. To gain a quantitative assessment of its time-
course, we have calculated the area between the T1-major and T1-minor preference curves
for each set of trials during the session as a metric of biomechanics, and have performed
a bootstraping test of that area. The results show that out of fifteen subjects, fourteen
exhibited a significant effect of biomechanics (bootstrapping test, p < 0.05) at all times
during the session.

Although these analyses showed that the effect of biomechanics is present at the beginning
of the simulation, they also showed that some subjects exhibit significant fluctuations of the
biomechanics effect during the session in a monotonic manner, therefore suggesting that
the incorporation of biomechanical information during the decision-making process is an
adaptive process, even if the incorporation of biomechanical information to decision-making
as a process, had been learned first.

3.3. Simulation results

To assess whether the process of learning of biomechanics prior to the experiment and its
dynamics of integration to the decision-making process, may be explained by reinforcement
learning we here introduce the results obtained in simulation.
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We only simulated Transverse conditions. Sagittal conditions would also be reproduced
with the same computational principles. We simulated 1000 motor babbling trials where
the simulated subject performed given actions (movements) in given states (positions in the
space in front of him) and learned a model of the transition and reward (i.e. biomechanical
cost of movements) functions for each Transverse condition (T1-Major; T1-Minor; Equal
Costs; see Methods). Then we performed the experimental phase by simulating one trial of
each target distance in each condition: (T1 at distance 2; T2 at distance 2), (2,3), (2,4),
(2,5), (2,6), (3,2), (4,2), (5,2), (6,2). And for each trial we stored the probability of the left
motor plan (moving towards target T2) versus the right motor plan (towards target T1),
which was read out from the softmax equation (Equation 5).

Here, we set parameters in the following manner: we set the highest biomechanical cost
(along the T1-minor axis) to -0.2 and the lowest biomechanical cost (along the T1-Major
axis) to-0.1. Note that the experiment is designed so that, at the beginning of the movement,
the biomechanical cost is the same for the two options. This is reflected in the identical costs
of the s; — s¢ and s; — sg transitions (see fig. 4A). The inverse temperature 5 was set to 1
during the motor babbling phase (to bias towards an exploratory behavior) and to 5 during
the experimental phase (to exploit the learnt knowledge); the discount factor v was set to
0.9 during all phases (to promote long-term oriented behavior, as the target can be located
up to 6 steps away from the origin state).

Figure 4B shows the results obtained during the simulations of the experimental phase.
The model produced results very similar to those obtained in the experiments. Decisions by
the model resulted from an integration of both target path distance and biomechanical cost
associated to each movement. The effect of distance was strong, as T1 was much preferred
if closer than T2 (i.e. log(D1/D2) = -1). Likewise, this tendency was reversed when T2 was
much closer to the origin than T1.

When the two targets were at equal distances (i.e. log(D1/D2) = 0) and the biomechan-
ical costs were also equalised, the model selected target T1 half of the time. For intermedi-
ate relative target distances, the model more often selected target T1 when the associated
biomechanical cost was lower (T1-Major condition) then when the associated cost was higher
(T1-Minor) or equal (Equal Costs) to the movement towards target T2.

We then studied the effect of different sets of parameters on decisions of the model during
the experimental phase (without relearning the internal model during the motor babbling
phase). Interestingly, for the same internal model learnt during the motor babbling phase,
different parameters in the model could produce different profiles of decisions during the
task (Figure 5). Increasing /5 produced more steepness in the decision function and thus a
more bistable shift between choosing target T'1 and target T2. Decreasing ~ flattened the
decision function and reduced the effect of biomechanics in decisions. Increasing v until 0.99
suppressed the influence of relative distance in the choice probability for T1M and T'1m
cases (Figure 5). The profiles obtained with these different sets of parameters reproduce
some of the profiles obtained for different human subjects (Figure 3). Thus a possible
explanation of these behavioral differences arising from the model would be that different
subjects have different levels of exploration and different discounting of long-term costs and

12



benefits. Furthermore, as previously mentioned, putting more constraints on the task such
as the requirement of stopping at the target diminished the effect of biomechanics in humans’
decisions between targets (Cos et al., 2012) (see Figure 2). Strikingly, a reduction of the
effect of biomechanics could be obtained in the model by reducing the v parameter (Figure
5). Thus one possible explanation of the behavioral results emerging from the model would
be that the subjects were more short-term oriented when more constraints were imposed on
the task. This of course does not rule out other possible explanations such as the explicit
inclusion of speed of movement in the decision-making process (which is not the case in the
model presented here) to enable a proper deceleration until stopping the hand on the target.
This suggests that a new experimental protocol may be required to discriminate between
these two alternative computational mechanisms.

4. Discussion

Decisions between motor actions have dominated animal behaviour far longer than ab-
stract decisions. Hence, it seems reasonable to assume that the fundamental operation of the
CNS responds to the need of properly managing decisions between movements. As shown by
the experimental results previously described, this operation also included the arm’s biome-
chanical properties. Specifically, our experiments showed that the biomechanical properties
of candidate actions, may exert a strong influence on decision-making. In addition to biome-
chanics, we also showed that this influence depends on the control demands of the task, as
this bias was modulated by additional constraints such as precise aiming or stopping at the
target. The largest biomechanical effect (the shift between the TIM and T1m preference
curves) was observed when the task was most unconstrained (U condition). However, when
the task includes the demand of stopping at the target, this reduces the subjects’ preference
for the Major directions, as stopping is more difficult, therefore reducing the desirability of
those movements. In conclusion, the requirement of stopping at the target does reduce the
bias towards Minor targets, as the control of the end-point along the direction of movement
is easier. In summary, our experimental results reveal that biomechanics exerts a remarkable
influence on the choice of movement and that the requirement of a controlled stop at the
target reduces the target preference resulting from the anisotropies of arm biomechanics.
Overall, this suggests that, in addition to a hierarchy of strategies for the control of move-
ment, there is also a multiplicity of factors which may be predicted and can influence the
selection of a movement.

Furthermore, we were intrigued to know whether this knowledge was gained at an earlier
stage or whether it was the result of adaptation during the session. To this end, we cal-
culated the time-course of the effect of biomechanics during a six-hundred trial session for
fifteen subjects. Despite small fluctuations of the target preference during the session, the
results clearly support the view that the knowledge of biomechanical costs are present from
the beginning of the session and that we use our knowledge of biomechanics at all times,
as no additional training is required. However, this also suggests that we probably learned
our knowledge about motor costs at some earlier stage during development, as we interacted
with our environment. To assess this process, we also developed a theoretical model to ex-
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plore the possible mechanisms involved in the incorporation of intrinsic costs of our motor
apparatus in the decision process. We showed that a standard model-based reinforcement
learning algorithm (Sutton, 1990, 1991; Sutton and Barto, 1998), taking into account both
biomechanical cost and task execution reward, could explain the first experimental results
obtained in this task. This model operates in two phases: an initial motor babbling phase, to
learn the biomechanical cost of transitions between states is learned by random exploration;
and a second phase to select actions via a Dynamic Programming process. Certainly, there is
no shortage of modelling studies in the motor control community, aiming at describing how
movement is generated and executed. However, most of this work is in the context of the
optimal feedback control hypothesis (Todorov and Jordan, 2002), which claims movement to
be continuously tuned via online feedback. By contrast, the sum of experimental results and
kinematic characterisation of the choice between reaching movements across conditions of
different visual, biomechanical, and control cost, have highlighted that aspects related to the
motor apparatus are taken into consideration during movement preparation, and that these
influence the choice between reaching movements. In other words, the evidence presented
here suggests that, if this biomechanical cost participates of the process of decision-making,
it should also be included into the initial motor command sent down to the spinal cord to
generate movement. In addition to this, here we have presented a discrete, model-based RL
model which predicts the patterns of decision-making between motor actions along differ-
ent directions of movement, by progressively building up a markovian space of transitions
between states characterised by different cost-reward ratios. Although this is a simplified
version of the real process, it serves the purpose of providing a proof of concept for the prin-
ciple of a model of decision-making that suggests the possibility of a gradual incorporation
of knowledge about the structure of the motor apparatus, which influences decision-making
between motor actions. The release of phasic dopamine has been proposed as a general
mechanism to learn stimulus-response associations by reinforcing the synapses between the
cortex and the striatum (Houk et al., 1995; Suri and Schultz, 1999; Schultz, 2002). Therefore,
although there is no specific evidence from neurophysiology for the case of intrinsic costs of
biomechanics, it may be reasonable to predict that the consideration for the structure of the
motor apparatus may progressively build up by the same reinforcement mechanism.

Model simulations presented here produced results very similar to those obtained in the
experiments. Decisions by the model resulted from an integration of both target path dis-
tance and biomechanical cost associated to each movement. Moreover, we could obtain
different profiles of decision between the two targets by using different biomechanical costs
and different parameters in the model. This suggests a possible explanation for the vari-
ability between human behavioral data: that different subjects make decisions with different
exploration levels and different discounting of future rewards and costs. Interestingly, chang-
ing the v parameter would also vary the number of iterations of the model necessary to attain
convergence during decision at each trial (i.e. during the dynamic programming process):
a large v value would require more iterations, and a small one would provide results more
rapidly. In the future it would thus be interesting to test whether changing the v parameter
in the model can explain different reaction times in human behavioral data.
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Moreover, here we simulated only one trial for each couple of distances because the algo-
rithm is highly consistent when it has enough time to make a decision; It gives very similar
probabilities for any given biomechanical cost and target distance, except if we constrain the
model to decide within a short delay. In the latter case, the value iteration may not have
yet converged, and thus the estimated state-action value function Q) computed at time t
may be different from its optimum @Q*. Such a case would thus yield larger variability in the
pattern of decision. We will in the future investigate whether such constraint on the model
may explain human behaviour in a version of the same task with imposed response delays.

Finally the model presented here could be extended relatively simply to address the new
experimental results concerning the unconstrained, stopping, aiming and stopping+aiming
conditions. Indeed, we could modify the simulated environment so as to induce the necessary
trajectory variability: we could for example use an environment where the actions would be
acceleration commands, and where the state experienced after executing a given action in a
given previous state would not be deterministic, and would be more or less certain depending
on the direction and velocity of the movement. The current model can straightforwardly learn
non-deterministic transitions, thus does not require deep modifications to operate in such
an environment. Testing its ability to reproduce these results in such an environment is the
aim of future work.
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Figure 1: Experimental paradigm. A. Subject seated at the apparatus with her head in a chin rest and elbow
in a sling that suspends the forearm approximately parallel to the digitizer surface. B. Definition of joint
angles and the mobility/admittance ellipse at the hand (dashed line). The thick arrow depicts the large force
required to accelerate the hand away and to the left, while the thin arrow depicts a smaller force required to
produce the same acceleration away and to the right. C-F. The four arrangements of targets (blue dots), and
via-points (red dots) with respect to the starting circle (cyan dot). Dashed lines depict mobility ellipses at
the origin and end of movements. Arrows show example trajectories to target T1. Note that in the T1-Major
arrangements, the trajectory arrives at T1 along the major axis of the mobility ellipse, whereas for T'1-minor
it arrives along the minor axis. G. Predicted choice patterns for the sagittal stimulus arrangements (C,D).
The x-axis is the log of the ratio of path distances (D) to T1 versus T2, and the y-axis is the number of
choices made to T1. If subjects prefer to arrive along the major axis of the mobility ellipse then the choice
function for the T1-Major arrangement (solid line) should be shifted to the right of the choice function for
T1-minor arrangement. If subjects do not take biomechanics into account then the choice functions should
be identical (black line). H. Predictions for the transverse arrangements (E,F), same format. The B — Metric
is the vertical distance between T1M and T1m preference curves for the case of equal relative distance.
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Figure 2: Group analysis of T1 preference curves for each control condition (Unconstrained U, Stopping
Only S, Aiming Only A, Aiming and Stopping AS) — see depictions on top of the preference curves. A.
Unconstrained (U) or baseline case. B. Stopping only (S) case. C. Aiming only (A) case. D. Aiming +
Stopping case (AS). The raw data dots (symbols, see key) are fitted with sigmoidal curves for T1M (solid)
and T1m (dashed) in the sagittal (red) and transverse (blue) arrangements. Note that in all cases the T1-
Major curve (solid) is to the right of the T1-minor curve (dashed), showing that the T1 target is chosen
more frequently in its “Major” configuration in each experimental condition and geometrical arrangement.
Furthermore, a first observation indicates that the requirement of stopping at the target diminishes the effect
of bio-mechanics between targets, thus the distance between solid and dashed sigmoids is shorter in those
conditions in which stopping is enforced (S, AS) than in those in which the stopping requirement is relaxed
(U, A) — (BU > Bg > BAS).
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Figure 3: Variability of the effect of biomechanics over a trial. A. T1 preference curves for the T1-Major
and T1-Minor arrangements, both in the saggital and transverse cases, for three individual subjects. B.
Quantification of the effect of biomechanics over a session across all subjects for the saggital and transverse
arrangements.
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Figure 4: A: Simple state decomposition illustrated for the Transverse T1-Major experimental condition.
B: Simulation results for the Transverse T1-Major, T1-Minor and Equal Costs geometrical arrangements.
The x-axis represents different simulated target distances. D1 (resp. D2) represents the distance of target
T1 (resp. T2) from the departure state. The y-axis represents the probability of selecting the motor plan
towards target T'1 in the departure state: 7*(right|sz).
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Figure 5: Decisions made by the model during the dynamic programming phase for different parameters
B and 7. For the same transition and reward functions learnt during the motor babbling phase, different
parameters in the model can produce different profiles of decisions during the task. As in previous figures,
each plot shows the probability of choosing target T'1 (as read from the output of the softmax function
in equation 5) as a function of the relative distance between the two targets. Increasing 8 produces more
steepness in the function and thus a more bistable shift between choosing target T'1 and target 72. Decreasing
~ flattens the function and reduces the effect of biomechanics in decisions. Increasing v until 0.99 suppresses
the influence of relative distance in the choice probability for T1M and T1m cases. The curves shown in
figure 4B and illustrating simulations of the model to reproduce the global average effect of biomechanics on
decisions were obtained with 8 =5 and v = 0.90.
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