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Abstract 19 

The construction of a new forest management module (FMM) within the ORCHIDEE 20 

global vegetation model (GVM) allows a realistic simulation of biomass changes during 21 

the life cycle of a forest, which makes many biomass datasets suitable as validation data 22 

for the coupled ORCHIDEE-FM GVM. This study uses three datasets to validate 23 

ORCHIDEE-FM at different temporal and spatial scales: permanent monitoring plots, 24 

yield tables, and the French national inventory data. The last dataset has sufficient 25 

geospatial coverage to allow a novel type of validation: inventory plots can be used to 26 

produce continuous maps that can be compared to continuous simulations for regional 27 

trends in standing volumes and volume increments. ORCHIDEE-FM performs better than 28 

simple statistical models for stand-level variables, which include tree density, basal area, 29 

standing volume, average circumference and height, when management intensity and 30 

initial conditions are known: model efficiency is improved by an average of 0.11, and its 31 

average bias does not exceed 25%. The performance of the model is less satisfying for 32 

tree-level variables, including extreme circumferences, tree circumference distribution 33 

and competition indices, or when management and initial conditions are unknown. At 34 

the regional level, when climate forcing is accurate for precipitation, ORCHIDEE-FM is 35 

able to reproduce most productivity patterns in France, such as the local lows of 36 

needleleaves in the Parisian basin and of broadleaves in south-central France. The 37 

simulation of water stress effects on biomass in the Mediterranean region, however, 38 

remains problematic, as does the simulation of the wood increment for coniferous 39 
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trees. These pitfalls pertain to the general ORCHIDEE model rather than to the FMM. 40 

Overall, with an average bias seldom exceeding 40%, the performance of ORCHIDEE-FM 41 

is deemed reliable to use it as a new modelling tool in the study of the effects of 42 

interactions between forest management and climate on biomass stocks of forests 43 

across a range of scales from plot to country. 44 

Keywords: model validation; global vegetation model (GVM); ORCHIDEE-FM; forest 45 

management; carbon cycle; 46 

47 



4 

 

1 Introduction 48 

Global vegetation models (GVMs) simulate fluxes of carbon, energy and water in 49 

ecosystems at the global scale, generally on the basis of processes observed at a plant 50 

scale. Despite their correct ability to simulate hourly local (e.g., at flux tower sites) and 51 

global seasonal to interannual (e.g., compared with atmospheric CO2 observations) 52 

variations in CO2 fluxes, these models usually fall short of simulating biomass and soil 53 

carbon pool dynamics within ecosystems (Desai et al., 2007; Viovy et al., in prep.; in 54 

revision). This shortcoming has been attributed to forest age structure and 55 

management, which are not simulated by most GVMs (Ciais et al., 2008). ORCHIDEE-FM, 56 

a new GVM with an explicit representation of forest management practices typical of 57 

European forests (Bellassen et al., this issue), addresses this challenge, but it has yet to 58 

be validated against independent datasets. 59 

Several of the many variables processed by GVMs can be measured and, thus, used for 60 

validation: for example, leaf area index (Demarty et al., 2007), light absorption and light 61 

use efficiency (Jung et al., 2007), carbon stocks (Masek and Collatz, 2006), 62 

evapotranspiration (Thornton et al., 2002), and latent and sensible heat fluxes 63 

(Abramowitz et al., 2008). However, validation exercises for GVMs most frequently 64 

focus on carbon fluxes estimated with eddy-covariance techniques (Thornton et al., 65 

2002; Krinner et al., 2005; Turner et al., 2005; Schaefer et al., 2008).  66 
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Flux towers have two major strengths: the flux data that they deliver have a very fine 67 

resolution in time, often half-hourly, and their reasonably large footprint of 68 

approximately 100 ha (Nagy et al., 2006; Reichstein et al., 2007) averages the variability 69 

due to individual trees. With regard to GVM validation, they also have two major 70 

drawbacks. First, their costly structure and maintenance limits their numbers: large 71 

networks such as FLUXNET manage to have good coverage of the different land-use 72 

types and climates (Baldocchi et al., 2001), but they seldom provide clear insights on 73 

inter-site variability within a given climate and land-use type. Therefore, it is difficult to 74 

generalise measurements that could be heavily influenced by local conditions (e.g., soil 75 

fertility or hydrological parameters) or management (e.g., recent thinning) (Lindner et 76 

al., 2004). Second, because eddy-covariance technology is quite recent, the time-series 77 

are seldom longer than one decade (Urbanski et al., 2007). This precludes the validation 78 

of full stand rotations, which commonly last between 100 and 200 years, on temperate 79 

forest ecosystems (Bottcher et al., 2008) unless flux towers are smartly distributed to 80 

measure chronosequences (Amiro et al., 2006). 81 

 Thus, in their review of terrestrial carbon models, Hurtt et al. (1998) concluded that 82 

GVMs need to be validated for a diverse range of spatial and temporal scales. Datasets 83 

of forest stand structure variables (e.g., height, basal area, and volume increment) are 84 

good candidates for this diversification because they are often available on wider spatial 85 

and temporal scales than eddy-covariance data, but these variables are not simulated by 86 

most GVMs. A new generation of GVMs that explicitly simulate forest management 87 
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begins to bridge this gap: Desai et al. (2007) validated the regional forest biomass 88 

simulated by Ecosystem Demography with data derived from forest inventories in the 89 

midwest United States, and Sato et al. (2007) compared the local age structure 90 

simulated by SEIB-DGVM with intensive monitoring plots. However, to date, no GVM 91 

has been evaluated simultaneously at the diverse spatial and temporal scales relevant 92 

to managed forests. 93 

Beyond the assessment of model error, a model validation exercise also provides the 94 

opportunity for a better understanding of the model’s strengths and pitfalls. In 95 

particular, it should be designed to attribute a share of model error to each model 96 

component. One way of attributing this model error is to quantify the improvement of 97 

model fit when a given component is switched on. This approach was used by Zaehle et 98 

al. (2006) for a model component simulating the processes involved in the age-related 99 

decline of net primary productivity (NPP). Because it requires a validation variable that is 100 

simulated both in the absence and presence of the component, this method is not 101 

always applicable. Another way of attributing modelling error is to force a model by 102 

replacing the outputs of one model component by site measurements. By assimilating a 103 

satellite-derived leaf area index (LAI) in ORCHIDEE, Demarty et al. (2007) showed that 104 

the phenology component of the model is responsible for 25% of the lack of fit to flux 105 

tower data. Because the new forest management module (FMM) of ORCHIDEE 106 

generates a whole new set of variables and processes, this second approach was found 107 
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to be better suited to discriminate between its error and the error coming from the 108 

general core of ORCHIDEE. 109 

In this study, we use forestry datasets to further evaluate the performance of the 110 

ORCHIDEE-FM simultaneously at several spatial and temporal scales, which are all 111 

relevant to the novelty introduced by the forestry management module, namely the 112 

simulation of stand structure and its evolution with age. Two requirements are set for a 113 

validation dataset: 114 

 It should cover the diverse spatial and temporal scales necessary for exploring 115 

regional variations and the full lifespan of a forest from harvest to harvest. 116 

 It should provide the possibility to replace the input of ORCHIDEE to the FMM 117 

with actual field values so that a share of modelling error can be attributed to 118 

both the ORCHIDEE and the FMM components (see Figure 1).  119 

No single dataset was found to match all of these requirements. Instead, we selected 120 

three complementary datasets: permanent forest monitoring plots, yield tables, and 121 

extensive forest inventory data (see Figure 2). Permanent plots provide long time series 122 

and detailed within-plot measurements, but their spatial coverage is very limited. Yield 123 

tables cover the entire European continent, but their precise area of relevance and 124 

source data are often unknown. Inventory data is sufficiently abundant to create 125 

spatially continuous maps of carbon stocks and stock changes (through surface tree 126 

cores), but only one snapshot measurement is available for each plot. Here, these 127 
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datasets are successively compared to specific simulations to validate ORCHIDEE- and to 128 

identify the most important sources of model error. 129 

The notion of model validation is controversial (Oreskes et al., 1994). Confirmation that 130 

models reproduce existing in situ measurements reasonably well is, nevertheless, 131 

required of GVMs, the projections of which are used in the definition of climate change 132 

mitigation and adaptation policy (IPCC, 2007). Therefore, we use the term of 133 

“validation” with the cautionary requirements set by Rykiel (1996), clearly specifying the 134 

model’s purpose, its context of operation and the criteria that it must meet for being 135 

considered “acceptable for use”: 136 

 Model purpose: to simulate the age-related dynamics of carbon stocks and 137 

fluxes that are ignored in the standard version of ORCHIDEE. 138 

 Context of operation: a tree to continental scale, limited to Europe. 139 

 Validation criteria: whereas plot-scale models, calibrated with site- and species-140 

specific parameters, can be expected to fit local data series, the aim of a GVM is 141 

to simulate a regional average CO2 flux, typically using 0.5° resolution. The 142 

performance of ORCHIDEE-FM is, therefore, assessed through its ability to cut 143 

across a cloud of data points corresponding to different sites in the same region. 144 

All abbreviations used in this paper are indexed in Annex 1. 145 
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2 Material & Methods 146 

2.1 ORCHIDEE and its forest management module (FMM) 147 

2.1.1 Description of ORCHIDEE-FM 148 

The ORCHIDEE global vegetation model (ORganising Carbon and Hydrology In Dynamic 149 

Ecosystems) was designed to operate from regional to global scales (Krinner et al., 150 

2005). ORCHIDEE typically represents an average mature forest at steady-state 151 

equilibrium in a big-leaf manner. For a given climate, it simulates the carbon, water and 152 

energy budget at the pixel scale. For carbon, ORCHIDEE computes its fixation (gross 153 

primary productivity or GPP), allocates photosynthetates to the different biomass 154 

compartments where they are respired or stored, and recycles carbon through constant 155 

tree mortality and soil respiration. To simulate forest management, several processes 156 

have been added to the standard version of ORCHIDEE, among which is a forest 157 

management module (FMM) inspired by the stand-level model FAGACEES (Dhôte and 158 

Hervé, 2000). The key concept is to add to the “average tree” representation of 159 

ORCHIDEE an explicit distribution of individual trees, which is the basis for a process-160 

based simulation of mortality (see Figure 1). The above-ground plot-scale wood 161 

increment simulated by ORCHIDEE is distributed among individual trees according to the 162 

rule of Deleuze et al. (2004): 163 

 iiii circmcircmmcircba  


 4)(
2

2
  (1) 164 
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where δbai is the annual increase in the basal area of tree i in square meters, and circi is 165 

the circumference of tree i in meters. γ, σ and m are the slope, the threshold and the 166 

smoothing parameters, respectively (see Figure S1): trees whose circumference is lower 167 

than σ grow very little; thus, γ is the slope of the δbai vs. the circi relationship above σ. 168 

Then, tree mortality processes, due to natural competition, anthropogenic thinning or 169 

clear-cutting, rely on the self-thinning rule (Eq. 2) of Reineke (1933).  170 

  (2) 171 

where densmax is the stand maximum density in ind ha-1 (individuals per hectare); αst and 172 

βst are parameters; and Dg is the quadratic mean diameter in m. 173 

For more information on the structure of ORCHIDEE-FM, see Bellassen et al. (this issue). 174 

2.1.2 Pedo-climatic inputs and model “spinup” 175 

The climate data used in this study to drive ORCHIDEE is from the 0.25°-resolution 176 

REMO reanalysis covering the 1861-2007 period (Kalnay et al., 1996; Vetter et al., 2008). 177 

Maps of soil depth and texture were derived from FAO and IGBP products (Vetter et al., 178 

2008). Following a standard method in GVM modelling, a model “spinup” is performed 179 

before all simulations to define the initial conditions from which subsequent simulations 180 

will be performed, in particular for soil carbon. For this “spinup”, ORCHIDEE and 181 

ORCHIDEE-FM are repeatedly run for the climate of the years 1861-1911 with a CO2 182 

concentration of 280 ppm until all ecosystem carbon and water pools reach a cyclical 183 
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(clearcut-regrowth) steady-state equilibrium. The conditions of the stand after the last 184 

clearcut are used as initial conditions for all ORCHIDEE-FM simulations. 185 

2.2 Validation data 186 

Three complementary datasets are used to validate the FMM and its integration in 187 

ORCHIDEE: permanent plots, yield tables and national inventory. All three are necessary 188 

to cover the three different scales of interest: tree scale (e.g., individual tree growth and 189 

circumference distribution), stand scale (e.g., tree density and basal area), and 190 

continental scale (e.g., inter-regional variations). The following paragraphs describe 191 

each dataset and its specific use in our model validation assessment. Table 1 192 

summarises the characteristics and aims of each simulation. Figure S 4, Figure S 5, and 193 

Figure S 9 summarise measurements, simulations and validated variables for each of the 194 

three datasets. The uncertainty associated to each dataset in discussed in part 2 of the 195 

Supplementary Materials. 196 

2.2.1 Permanent plots 197 

Description 198 

Fifty-eight permanent plots (PP) were set by the Institut National de la Recherche 199 

Agronomique (INRA) for long-term monitoring of the evolution of forest stands (Dhôte 200 

and Hervé, 2000). These plots contain either oaks or beeches. They all belong to even-201 

aged stands and were subject to different management intensities with a post-thinning 202 
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relative density index (rdi, see Eq. 3) ranging from 0.4 (heavy thinning) to 1 (no 203 

anthropogenic thinning = unmanaged). 204 

maxdens

dens
rdi     (3) 205 

where rdi is the relative density index, and dens and densmax are the actual and maximal 206 

tree densities, respectively, of the stand in ind.ha-1. 207 

densmax is derived from Eq. 2. All trees in the plots are marked, and for each 208 

measurement year, the status of trees is recorded (dead, alive, or thinned), as is their 209 

circumference at breast height. Measured ages span 37-203 years, with an average 210 

measurement frequency of 4.2 years. 211 

A summary of permanent plot characteristics is provided in Annex 2. 212 

Estimation of non-measured variables 213 

The key variables of interest available at each plot for the validation of the FMM-214 

simulated counterparts are as follows: 215 

 circumference distribution variables: minimum, average, and maximum 216 

circumference as well as number of trees in a given circumference class 217 

 stand variables: tree density and basal area. 218 

Other variables, such as standing volume, standing biomass, tree height, wood 219 

increment, and individual tree growth indicators (the σ and γ of Equation 1) can be 220 

estimated. For detailed information on the estimation method, see part 1 of the 221 

Supplementary Materials. 222 
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PPf and PPc simulations: validation of tree-scale and stand-scale characteristics 223 

The PPf (permanent plot-forced) simulation is aimed at validating tree-scale and stand-224 

scale characteristics between two measured states: the state of a stand at first 225 

measurement and its state at last measurement. To validate the FMM separately from 226 

the rest of ORCHIDEE, the annual increase in aboveground woody biomass (woodinc) is 227 

forced by the in situ estimate instead of the value simulated by the core of ORCHIDEE. 228 

The initial conditions of PPf are the conditions of each permanent plot at its first 229 

measurement regarding tree circumferences and, therefore, aboveground biomass. The 230 

other biomass compartments (e.g., leaves, roots, and soil) are not used as inputs in the 231 

FMM and, therefore, do not need to be accounted for when the FMM is forced. 232 

The aim of the PPc (permanent plot-coupled) simulation is to assess the additional error 233 

brought to the FMM outputs by an initial error in the simulation of stand-scale wood 234 

increment by ORCHIDEE. PPc is therefore similar to PPf, except that the FMM is no 235 

longer forced by data-derived woodinc. Instead, the coupled ORCHIDEE-FM model is run 236 

over the measurement period of each plot using the corresponding climate forcing to 237 

provide a simulated woodinc. Whereas the differences between PPf and the data reveal 238 

the error of the FMM in simulating management and growth distribution, those 239 

between PPc and PPf reflect the error due to the simulation of woodinc by ORCHIDEE. 240 

Comparing the performance of PPf vs. data to that of PPc vs. PPf allows us to attribute a 241 

share of the total error (PPc vs. data) to each of the model’s components. Comparing PPc 242 

directly to the data would be confusing because the error of each component might 243 
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cancel each other out and, consequently, be wrongly interpreted as a high modelling 244 

efficiency. 245 

PPfi simulation: validation of initial distribution 246 

The PPf (permanent plots initial conditions) simulation complements the PPf simulation 247 

by assessing the model’s ability to reproduce the state of each plot at its first 248 

measurement, starting from the default model initial conditions of 10,000 trees per 249 

hectare, with circumferences following a decreasing exponential distribution (Bellassen 250 

et al., this issue). The FMM is, therefore, run on each permanent plot from its date of 251 

regeneration until the first measurement year. For the PPf simulation, the FMM is 252 

decoupled from the rest of ORCHIDEE: the annual increase in aboveground woody 253 

biomass between year one and the first measurement is forced by the average annual 254 

wood increment estimated from field data over the measured period. 255 

2.2.2 Yield tables 256 

Description 257 

More than a thousand forest yield tables have been compiled by the Joint Research 258 

Centre (JRC, 2009). They cover 26 European countries and 23 genuses. Forest yield 259 

tables give the evolution of typical stand variables, including tree density, basal area, 260 

dominant or average height, average circumference, standing volume and thinned 261 

volume, with age. All of these variables will be tested against FMM simulations for 262 

validation. Yield tables are usually established based on either permanent plots 263 
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monitored over an entire rotation, or temporary plots of different ages monitored once. 264 

Their aim is to reproduce the average growth pattern of a tree species in a given region, 265 

which sometimes declines in yield classes representing different levels of treatment or 266 

local fertility. Because the FMM simulates the growth of an average coniferous or 267 

broadleaf species managed as a high stand, coppices and fast-growing poplars and 268 

eucalypts were discarded from the database. When needed, cormometric volume 269 

(merchantable volume) was converted into dendrometric volume (whole tree) using a 270 

branch to total volume ratio of 0.25 for needleleaf species and 0.38 for broadleaf 271 

species (Loustau, 2004). 272 

Testing the effect of climate and management in the dataset 273 

Yield tables complement permanent plots by providing a presumably much more 274 

diverse range of climates, species and management conditions. However, neither 275 

management style nor climate are represented by explicit indicators as is the case with 276 

permanent plots for which accurate location, plot age and the targeted relative density 277 

index play that role. A first step in testing the FMM against this assumed variety of 278 

climates and management conditions is therefore to test whether climate and 279 

management effects can indeed be detected in the dataset. To test the climate effect, 280 

an analysis of variance was performed using the mixed linear model of Eq. 4. 281 

),,(),,( kjikjivol jitot     (4) 282 

where α is the intercept; βi and γj are the coefficients associated with plant functional 283 

type (PFT) i and country j, respectively, and voltot(i,j,k), and ε(i,j,k) are the total volume 284 



16 

 

produced at year 80 and the error term associated with yield table k of PFT i and 285 

country j, respectively. The error terms ε(i,j,k) are assumed to be dependent upon the 286 

yield table k, justifying the use of a linear mixed model with PFT and country as fixed 287 

effects. 288 

Because the total biomass (standing biomass + thinned biomass) produced by a plot is 289 

largely independent of the management style (Lanier, 1994), this variable was not suited 290 

to test the diversity of management styles in the data. For this purpose, a second 291 

analysis of variance based on tree density was performed using the linear mixed model 292 

of Eq. 5. 293 

),,(),,(),,( kjikjivolkjidens totji      (5) 294 

where α is the intercept; βi, γj and δ are the coefficients associated with plant functional 295 

type (PFT) i, country j, and total volume produced at year 80, respectively; dens(i,j,k), 296 

voltot(i,j,k) and ε(i,j,k) are the density, the total volume produced at year 80 and the 297 

error term associated with yield table k of PFT i and country j, respectively. The error 298 

terms ε(i,j,k) are assumed to be dependent upon the yield table k, justifying the use of a 299 

linear mixed model. 300 

Density is highly dependent on management for a given productivity level, which is 301 

embedded in the random factor voltot,  and management is, therefore, likely to explain 302 

most of the variance attributed to country and PFT when productivity is already 303 

captured by another variable (here voltot). In this model, β and γ can thus be interpreted 304 

as indicators of the country- and PFT-specific variation in management style. 305 
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YTf simulation: validation of stand-scale characteristics across Europe 306 

The YTf (yield tables-forced) simulation is aimed at validating stand-scale characteristics 307 

across Europe. As in the PPf simulation, the annual increase in aboveground biomass is 308 

forced by the mean annual increment given in the yield table to validate the FMM 309 

separately from the rest of the ORCHIDEE model. However, because the yield tables do 310 

not provide initial conditions with enough detail, the initial conditions of the YTf 311 

simulation are set to the default model initial conditions, as in the PPfi simulation. To 312 

bridge the data gap between age 0 and the first age of the yield table, which varies 313 

between 5 and 20 years, the mean annual increment during this period is set to add up 314 

to the first data on total volume. 315 

2.2.3 French national inventory 316 

Description 317 

The French National Forest Inventory (NFI) conducts yearly field measurement 318 

campaigns covering the entire French metropolitan territory. Each intersection of a 319 

systematic grid of 10 x 10 km² is photo-interpreted to determine land cover and land-320 

use. Of these intersections, every other forested point, totalling about 8 000 points per 321 

year, is visited and inventoried following the NFI protocol (IFN, 2006): circumference at 322 

breast height, width of the last five rings, height and species are recorded for a 323 

representative sample of trees. NFI allometric rules are used to estimate tree volume 324 

and annual volume increment, and all of these data provide the basis for an estimate of 325 
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plot-scale tree density, basal area, dominant height, standing volume and the annual 326 

volume increment. For even-aged stands, a few trees are cored to the stem centre to 327 

estimate stand age. For this study, we pooled together the results of three campaigns 328 

(2005, 2006 and 2007). Because the FMM only represents even-aged high stands, all 329 

other management types were excluded from the analysis. Our sample size was, 330 

therefore, reduced to 11,222 sites. The raw data are available on the IFN website: 331 

www.ifn.fr. 332 

Interpolation 333 

Both permanent plots and yield tables are unsuitable to test the ability of ORCHIDEE-FM 334 

to simulate regional trends in carbon stocks and fluxes. Thus, a spatially continuous 335 

dataset is needed. With its high spatial density, the NFI dataset presents the opportunity 336 

to build continuous maps: for the category of broadleaf plots of the 80-100 years age 337 

class alone, half the French territory has at least 10 plots within a distance of 0.5° (55 338 

km), and only 24% of the territory has less than 5 plots. However, this dataset is 339 

heterogeneous: the order of magnitude of the standard deviation of the volume 340 

increment within a radius of 0.5° is 30%. Therefore, a smoothing is necessary to 341 

eliminate the local variations due to topography, soil fertility and species composition 342 

and to retain only the regional climate-related variations in carbon stocks and fluxes. 343 

Several interpolation techniques were tested to obtain these smoothed data-derived 344 

maps, resulting in the joint use of the following two methods: 345 



19 

 

 Large footprint interpolation technique: the data were interpolated with a 346 

minimum footprint radius of 0.5° and no distance weighting. Where necessary, 347 

the footprint was extended to include a minimum of 10 plots. The result is a 348 

0.05° resolution map for which each final pixel represents the average of all plots 349 

within a 0.5° radius of the centre of the pixel. 350 

 Data density mask: density masks were created to distinguish pixels with more 351 

than 10 plots within a 0.5° radius. Applying these masks restricts model-data 352 

comparisons to the areas where the uncertainty in the data is lowest. 353 

NFIstd and NFIfmm regional simulations 354 

Two types of simulations were conducted to assess the model’s ability to reproduce the 355 

trends observed in the NFI data. 356 

 The NFIstd simulation aims at representing an average forest at steady-state 357 

equilibrium, typical of GVMs. Thus, the standard version of ORCHIDEE was run 358 

between 1956 and 2006, which is the average measurement year for the dataset 359 

(2005-2007). 360 

 The three NFIfmm simulations aim at validating the coupled version of the 361 

ORCHIDEE-FM. The model was run for 50, 90, and 130 years with all runs ending 362 

in 2006. The resulting NFIfmm50, NFIfmm90, and NFIfmm130 results can, thus, be 363 

compared to NFI plots of three selected age-classes: 40-60 years, 80-100 years 364 
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and 120-140 years. In both cases, the CO2 concentration follows its historical 365 

increase from 290 ppm in 1876 to 378 ppm in 2006. 366 

The wood increment estimated in the NFI data comes from surface cores of live trees. It 367 

is a gross commercial wood increment, and it does not account for woody losses from 368 

artificial thinning or natural mortality. From the simulation of tree-level growth and 369 

mortality, a similar variable can be extracted from the ORCHIDEE-FM simulations, 370 

allowing its validation. The commercial wood increment is converted to the total wood 371 

increment using the relevant PFT-specific branch expansion factor (BEF) of IPCC (2003). 372 

“Difference maps” present the relative difference between each pixel of data-derived 373 

maps and its closest simulation point. These maps are limited to pixels complying with 374 

the data density masks, which are pixels with at least 10 inventory plots within a 0.5° 375 

radius of the centre of the pixel. 376 

NFIopt and NFIst simulations for error attribution 377 

Unlike permanent plots, it is not possible to estimate the history of productivity in each 378 

NFI plot. The only data point available is the average tree-ring width over the previous 379 

five years that is obtained from a surface core. Therefore, attributing error to the 380 

management or productivity simulation is not straightforward when one is looking at 381 

cumulative variables such as standing biomass. To do so, two additional types of 382 

simulations are performed: 383 

 For the NFIopt simulations, we replaced the default values of the photosynthesis 384 

efficiency parameters (vcmax, the maximum capacity of the Rubisco enzyme, and 385 
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vjmax, the maximum regeneration speed of the Rubisco enzyme) with the values 386 

of Santaren (2006), who optimised their ORCHIDEE model based on eddy-387 

covariance measurements from six European sites. Broadleaves were 388 

unaffected, but the photosynthesis efficiency of needleleaves was increased by 389 

20%. NFIopt simulations are a sensible variant of NFIfmm simulations for 390 

productivity. 391 

 For the NFIst simulations, artificial thinning is disabled, and only self-thinning 392 

occurs, thus representing the minimal level of management. When a lack of fit 393 

between the ORCHIDEE-FM and data for standing biomass comes from overly 394 

intensively simulated management, NFIst provides a comparison with the most 395 

extensive type of management. 396 

2.3 Criteria of model performance 397 

Two common criteria are used to evaluate model performance: EF, model efficiency, 398 

and AB, model average relative bias (Soares et al., 1995; Smith et al., 1997). Their 399 

definition is given by Eq. 6 and 7. 400 
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where mesi and simi are the measured data point i and its simulated counterpart, 403 

respectively; mes  is the data average; and n is the number of data points. 404 

EF reflects the ability of the model to reproduce the data: the closer it gets to 1, the 405 

better the fit. AB indicates whether the model has a systematic bias. Whereas an 406 

efficient model necessarily has a small systematic bias, the reverse is not always true. 407 

However, when a large-scale model such as ORCHIDEE is compared to plot-scale 408 

measurements, avoiding systematic bias may be more important than scoring high 409 

efficiency: large-scale models are not expected to reproduce each stand specifically but 410 

rather to simulate an “average stand” within the gridcell of interest. 411 

To improve the interpretation of these criteria, we undertook three complementary 412 

analyses: 413 

 “Shadow models”: for each simulation, we built a “shadow model” for the 414 

ORCHIDEE-FM. These “shadow models” are simple statistical models using the 415 

same input variables as ORCHIDEE-FM. For the stand-scale variables of the PPf 416 

simulation, for example, the main input variables of ORCHIDEE-FM are total 417 

volume, initial conditions (initial median circumference), and management 418 

intensity (post-thinning relative density index). The shadow model thus follows 419 

Eq. 8. 420 

)()()()()( arg iirdicimedbivolaimes ettcirctot     (8) 421 
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where mes is the measured variable of interest (e.g., tree density and standing 422 

volume); voltot is the total volume of the stand at the last measurement; medcirc 423 

is the median circumference of the stand at the first measurement; rditarget is the 424 

post-thinning relative density index; a, b, c, and d are regression coefficients; i is 425 

the permanent plot number; and ε(i) is the error term associated with mes(i). 426 

“Shadow models” are calibrated on one half of the dataset, and their efficiency 427 

(EFstat) is assessed on the other half. The details of each model and its calibration 428 

are presented in the Supplementary Materials.  429 

 Systematic vs. unsystematic error: to assess the importance of the average bias, 430 

we computed the systematic (RMSEs) and unsystematic (RMSEu) errors of 431 

Willmott (1982), defined by Eq. 9 and 10, respectively: 432 
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where RMSEs and RMSEu are the systematic and unsystematic root mean square 435 

error, respectively; n is the number of the measurement; sim is the simulated 436 

variable; mes is the measured variable; i is the measurement number; and pred 437 

is the value predicted by the linear regression sim = f(mes): predi = a + b x mesi, 438 

where a and b are the regression coefficients. 439 

RMSEs represents the error due to a systematic bias in the model, and RMSEu 440 

represents the “random” error. The RMSEs/RMSEu ratio places the average 441 



24 

 

relative bias in perspective: even a large AB is not very meaningful if the 442 

RMSEs/RMSEu ratio is lower than one. 443 

 Error share of a given model component: an index (ESfmm) of the share of the 444 

total error of ORCHIDEE-FM that can be attributed to the FMM component was 445 

computed based on the permanent plots data as well as the PPf and PPc 446 

simulations (see Eq. 11). 447 
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where ESfmm is the error share of the FMM model component (0 when all of the 449 

error comes from ORCHIDEE and 1 when it comes entirely from the FMM), and 450 

EFPPf and EFPPc are the efficiency of PPf to reproduce the data and the efficiency 451 

of PPc to reproduce the PPf simulation, respectively. 452 

3 Results 453 

3.1 Stand scale: stand characteristics 454 

3.1.1 Permanent plots 455 

PPf and PPfi simulations: good performance of the FMM under controlled conditions 456 

Average stand characteristics such as tree density, basal area, average circumference 457 

and standing volume are efficiently simulated under the control conditions of PPf (Figure 458 

3 and Figure 4). All of these characters have modelling efficiencies higher than 0.5 and 459 
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average biases below 20%. This average bias is negligible because the systematic error is 460 

smaller than the unsystematic error: all RMSEs to RMSEu ratios are lower than 0.6 461 

(Table 2). The model is not as accurate for extreme circumferences: both have lower 462 

efficiencies, and the minimum circumference is consistently underestimated with an 463 

average bias of -25% and a systematic error component overtaking the unsystematic 464 

component. These deficiencies essentially occur for plots with large trees (Figure 3). 465 

With the approximations necessary for the PPfi simulation (default model initial 466 

distribution and average growth rate), the fit of all variables deteriorate. Except for 467 

standing volume and average circumference, all model efficiencies become negative. 468 

From the results of the PPfi simulation, we conclude that the model could not correctly 469 

reach the initial state of the PPf simulation. Average biases are also higher than for the 470 

PPf simulation, although none exceeds 45%. However, because all RMSEs to RMSEu 471 

ratios remain below 0.7, the default initial conditions of ORCHIDEE-FM can be 472 

considered to induce no strong systematic bias to the simulations. For both simulations, 473 

the FMM is more efficient than its simple statistical “shadow models”. For stand-scale 474 

variables, its efficiency is on average of 0.11 higher for PPf and 0.6 higher for PPfi. 475 

PPf and PPc simulations: a minor share of modelling error for the FMM component 476 

The (inaccurate) simulation of wood increment by ORCHIDEE is a more important source 477 

of error than the processes simulated by the FMM. For most variables, the forced FMM 478 

(PPf) is more efficient at reproducing the data than ORCHIDEE-FM (PPc) is at reproducing 479 

the forced FMM (Figure 4). For basal area, which is the variable most commonly 480 
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estimated by forest inventories, the efficiency of the forced FMM to reproduce the data 481 

is three times higher than that of ORCHIDEE-FM to reproduce the forced FMM, giving an 482 

ESfmm value of only 35%. Because the efficiency of the coupled PPc remains quite high for 483 

standing volume, the error for this variable is, therefore, split evenly between ORCHIDEE 484 

and the FMM (ESfmm = 48%). 485 

3.1.2 Yield tables 486 

Statistically significant effect of climate and management practices in the dataset 487 

The statistical model of Equation 4 explains 64% of the total variance, and both country 488 

and PFT predictors have a significant effect (p-value < 0.001) on the total volume 489 

produced (the detailed statistics are provided in the Supplementary Materials). 490 

Therefore, the effect of climate is present, though blurred, in the yield table dataset. 491 

This result can be ascertained visually from Figure 5: the estimated coefficients for 492 

country (γj), representing the relative effect of each country corrected for PFT effects, 493 

present a climatic pattern with lower values in arid Spain and the cold Russo-494 

Scandinavian countries. This pattern is clearly blurred over western and central Europe, 495 

where the differences between countries are difficult to explain based on climate alone.  496 

The statistical model of Equation 5 explains 47% of the total variance, and all 497 

explanatory variables (country, PFT, and total volume produced) have a significant effect 498 

(p-value < 0.01) on stand density. The effect of the total volume produced is, as 499 

expected, more important than that of PFT and country (F-value is about 50 times 500 
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higher for total volume). Because management style is expected to vary between PFTs 501 

and countries, this result points to a detectable effect of management style on tree 502 

density, although other explanations for the effect of PFT and country cannot be 503 

discarded (e.g., ecophysiological differences between PFTs and differences in 504 

methodology for establishing yield tables between countries). Similar results are 505 

obtained if density is replaced by basal area or standing volume in Equation 5, showing 506 

that management styles also affect these two variables. 507 

YTf simulation: validation across a variety of management and climate conditions 508 

Except for tree density, average biases do not exceed 55% for the YTf simulation, and 509 

most modelling efficiencies are higher than 0.3, with the exception of average height 510 

and average circumference (Figure 6 and Figure 7).The FMM performs particularly well 511 

for standing volume with an EF value of 0.83 and an average bias of only -2%. This value 512 

is slightly better than the “shadow model” (EFstat = 0.82, ABstat = 16%, see Table 2). 513 

Because standing volume varies little for a given level of total volume produced, the 514 

linear regression is indeed more sensitive to extreme values, which may differ between 515 

the calibration and test subsamples and produce a higher average bias in the shadow 516 

model. 517 

For most variables, however, the performance of the FMM is lower for YTf than under 518 

the highly controlled conditions of PPf: Efficiencies are lower and average biases are 519 

higher, as is the systematic to unsystematic error ratio; however, it remains below 1 for 520 

all variables except average height. 521 
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The FMM does not efficiently simulate tree density (EF = -8). In particular, it 522 

overestimates high densities. However, the average bias of +160% is not uniform: Figure 523 

6 shows that the fit is best for low densities (around 600 trees.ha-1), meaning that the 524 

average bias comes from the high number of data points from the high densities where 525 

the bias is particularly high, rather than a systematic bias spanning the entire density 526 

range. The average bias of +96% in the shadow model shows that reproducing the tree 527 

density trends from the yield tables is not easy to accomplish. This difficulty could 528 

originate from a specific treatment effect or measurement errors for the higher tree 529 

densities. 530 

3.1.3 French national inventory 531 

Interpolated NFI plots and NFIfmm simulations: regional trends 532 

The interpolation technique unearths regional differences in volume increments (Figure 533 

8a and Figure 8c), most of which are bolstered by a large number of plot measurements. 534 

For broadleaves, the range of the volume increment is from 2 to 18 m3.ha-1yr-1, half that 535 

of the needleleaves, which can grow as fast as 30 m3.ha-1yr-1 in northeastern France. In 536 

particular, regional lows of -48% and -59% in the Mediterranean region (2)1 can be 537 

observed, extending somewhat inland toward south-central Toulouse to the west for 538 

                                                      
1 To help readers unfamiliar with French geography, numbers between brackets refer to the regional 

markers of Figure 8d. The exact boundaries of these “regions” are given in Erreur ! Source du renvoi 

introuvable. of the Supplementary Materials. 
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broadleaves (3, -21%), and from the mid-Atlantic coast (7, -12% and -26%) to the 539 

Parisian basin for needleleaves (1, -10%). Robust regional highs occur in northeastern 540 

France (4, +36% for both) for both functional plant types, in Britanny (5, +5%) for 541 

needleleaves and at the southwestern tip (6, +15%) for broadleaves. 542 

The sign of these regional trends in volume increment is generally correctly simulated 543 

(see Table 4). However, the amplitude of these variations is often underestimated; in 544 

particular, the regional high in the north-eastern region (4) and the regional low for the 545 

Mediterranean (2) are both underestimated in the simulations (Figure 8b and Figure 546 

8d). 547 

Model fit for different age classes 548 

Leaving the Mediterranean region aside, the simulated broadleaf increments are 549 

generally within the 20% uncertainty associated with the data-derived map (Figure 9). 550 

The increment is, nevertheless, slightly underestimated around Paris and in the 551 

southwest, by 20% and 50%, respectively. On the contrary, needleleaf increments are 552 

systematically underestimated by at least 20% and often by more than 50% with the 553 

exception of the southwest (6). For both plant functional types, the volume increment is 554 

largely overestimated for the Mediterranean region. 555 

Improvement in the simulation of biomass 556 

For 50-year-old broadleaves, the standard version of ORCHIDEE (NFIstd50) overestimates 557 

standing volume, which is directly related to aboveground biomass stocks through wood 558 

density, by an average of 60% (Figure 10a and Figure 10c). ORCHIDEE-FM (NFIfmm50) is 559 
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much closer to the data (Figure 10b), with an average underestimate of -16%. This 560 

pattern is also true for needleleaves at the southwestern tip of France (Figure 11a). For 561 

the rest of the country except for the Mediterranean region, the standing volume is 562 

systematically underestimated. When productivity is optimised in NFIopt50, model fit 563 

improves in some regions at the expense of others (Figure 11b). The same happens 564 

when management is made more extensive with no artificial thinning (Figure 11c). Only 565 

when productivity optimisation is combined with reduced management intensity in 566 

NFIopt_st50 can the high volumes measured in central and northeastern France be 567 

reproduced in the model (Figure 11d). This result reflects the lesser intensiveness of 568 

management in these mountainous areas. A similar pattern in data-derived rdi confirms 569 

this interpretation (Figure S 8). 570 

3.2 Tree scale: individual tree growth and circumference distribution 571 

3.2.1 Individual tree growth 572 

The FMM model imperfectly reproduces individual tree growth variables as measured 573 

on the permanent plots (Figure 12). Both σ and γ have low model efficiencies of 0.1 and 574 

-0.3, respectively, and γ is even significantly overestimated. However, both simulated 575 

variables vary within the correct range of values, and their average biases of around 576 

15% are not alarmingly high given the low efficiencies. The relevant “shadow models” 577 

are also very inefficient, suggesting that the current input variables are not sufficient to 578 

correctly predict these variables. Thus, the simulation of σ and γ will be difficult to 579 
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improve without a more detailed representation of inter-tree competition processes. 580 

This representation would require an additional level of complexity and site-specificity 581 

in the FMM, which is not compatible with the aimed generality of ORCHIDEE-FM. 582 

3.2.2 Circumference distribution 583 

When permanent plots are sorted by increasing the simulated proportion of trees in the 584 

greater than 1.4-m circumference category (Figure 13), a similar trend towards larger 585 

circumference classes appears in the observed circumference distributions. This trend 586 

shows that the model can capture the inter-plot differences in circumference 587 

distribution. The trend in the data however, is blurred by several plots with a high 588 

proportion of narrower trees than simulated. Some of these are merely attenuated in 589 

the simulations (e.g., plots n°14-21-26), suggesting that circumference distribution is 590 

essentially driven by the volume increment, with the FMM slightly overestimating tree 591 

growth for lower values of the volume increment. In other cases, the high proportion of 592 

narrower trees is not simulated at all (e.g., plots N°6-46-47-55). In these cases, 593 

circumference distribution is probably driven by other factors that are not modelled in 594 

the FMM (e.g., a high level of competition for light due to local topography or a “from 595 

above” thinning strategy). 596 
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4 Discussion 597 

4.1 Effect of climate and management on carbon stocks and fluxes 598 

4.1.1 Regional assessment of carbon fluxes 599 

The introduction of management and tree-level mortality into a GVM allows us to 600 

validate carbon stocks and stock changes on continuous maps derived from the spatially 601 

abundant inventory data. To our knowledge, this type of validation is a first for a GVM. 602 

It complements the validation of short-term CO2 fluxes at flux towers. Although the 603 

inventory data only has a five-year resolution in time, it uncovers regional variations in 604 

carbon fluxes that are very difficult to capture with flux towers. In particular, the low 605 

productivity of the Parisian basin and the high productivity of northeastern France that 606 

were detected in the data are correlated with pockets of low and high precipitation, 607 

respectively, in particular for the five years before 2006. The mixed performance of 608 

ORCHIDEE-FM in simulating these pockets is partly due to the mediocre accuracy of the 609 

climate forcing data: while the REMO reanalysis clearly shows a regional low in 610 

precipitation over the Parisian basin, it does not reproduce the pockets of higher 611 

precipitation in the northeast (Meteo-France, 2009). This shortcoming combined with a 612 

similar one in soil data (depth and texture) explains that simulations have a lower 613 

amplitude of spatial variation than averaged measurements. Another reason for this 614 

lower amplitude is the structure of the model itself. ORCHIDEE probably underestimates 615 

water stress in the Mediterranean context (Morales et al., 2005; Gervois et al., 2008). In 616 
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northeastern France, an area with high nitrogen deposition, the model’s inability to 617 

simulate the high observed values in the volume increment partly comes from the 618 

absence of an explicit simulation of the nitrogen cycle. 619 

Some larger-scale patterns, however, can be found in both the inventory and eddy-620 

covariance data. Using eddy-covariance data, Luyssaert et al. (2007) found that 621 

precipitation drives NPP when average yearly temperature is higher than 10°C. Because 622 

only a few mountainous grid cells (less than 10%) have an average temperature lower 623 

than 10°C in France, this rule is consistent with our previous observation that 624 

precipitation drives most regional trends in the country, both in data-derived maps and 625 

simulations. 626 

These comparisons between eddy-covariance-based and inventory-based validations 627 

must, nevertheless, be made cautiously. Flux towers measure whole-stand NEE (and 628 

GPP through flux-separation algorithms), while forest inventories estimate the share of 629 

NPP allocated to above-ground woody growth (woodinc) over a time period of several 630 

years. Both variables are strongly correlated, but a model with a faulty allocation 631 

scheme could perform well for total GPP and badly for woodinc. However, the joint use 632 

of both methods presents new opportunities for the separate validation of production 633 

and allocation processes. 634 
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4.1.2 Optimisation of biophysical parameters  635 

Another key result from this spatially continuous validation is the rescaling from an 636 

optimisation of photosynthesis efficiency parameters for needleleaves. Using the 637 

optimised parameter values of Santaren (2006) improves model fit, but this does not 638 

prove sufficient for all regions: rescaling allocation, plant respiration or management 639 

intensity parameters also seem necessary. The model better reproduces the estimated 640 

standing volume in southwestern France, which is not surprising: the parameters of 641 

ORCHIDEE are based on published experimental studies, which are much more 642 

abundant for southwestern Pinus pinaster than for northeastern Abies alba and Picea 643 

abies. Our results question the generality of this parameterisation. Although this 644 

optimisation of maximum photosynthesis rates is very coarse, the results are 645 

qualitatively similar to the much finer GVM-oriented optimisation of vcmax using leaf 646 

nitrogen content that was carried out by Kattge et al. (2009). This optimisation was 647 

indeed an large upward correction from the original values of Beerling and Quick (1995) 648 

for temperate needleleaves (see Table 5). 649 

4.1.3 Management intensity maps 650 

Management variability has also been shown to be an important driver of stand 651 

characteristics and carbon stocks, both at regional (forest inventory) and continental 652 

(yield tables) scales. In particular, management intensity has been shown to play a 653 

comparable role to photosynthesis efficiency in explaining regional patterns of standing 654 

volume. This result suggests that the performance of GVMs could be significantly 655 
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improved if management and photosynthesis efficiency were allowed to vary regionally 656 

instead of having unique PFT-specific parameterisation. Such a regional 657 

parameterisation would be feasible in Europe, where management intensity and species 658 

distribution can potentially be mapped (Nabuurs et al., 2008). 659 

4.2 Simulating endogenous heterogeneity in a GVM 660 

In the field of ecological modelling, a common distinction exists between exogenous 661 

heterogeneity, which arises from abiotic components such as climate or soil type, and 662 

endogenous heterogeneity, such as the heterogeneity in individual tree circumferences, 663 

which exists even in physically homogenous environments (Moorcroft et al., 2001). The 664 

validation of ORCHIDEE-FM highlight the use of simulating such fine-scale processes in 665 

large-scale GVMs. Although the endogenous heterogeneity now represented by the new 666 

model structure with extreme circumferences, competition indexes, and circumference 667 

distribution, is inefficiently simulated by ORHCIDEE-FM, the process-based model 668 

outperforms simple statistical models for stand-level variables such as basal area and 669 

standing volume. A similar pattern is found for the stand-level FORSKA model (Lindner 670 

et al., 1997). This similarity suggests that a correct average representation of 671 

endogenous heterogeneity is better than none at all, even if it poorly matches the data 672 

on a plot per plot basis. Moreover, the process-based simulation of endogenous 673 

heterogeneity presents the possibility to assess the impact of concrete management 674 

decisions, such as short rotations, high thinning intensity, and high thinning frequency, 675 

on carbon stocks and fluxes at large scales.  676 
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4.3 Model strengths and limitations 677 

4.3.1 Model robustness for basal area and standing volume 678 

The validation results for the yield tables show that despite a significant impact of 679 

management styles in the data, the simulations are quite efficient and not strongly 680 

biased, in particular, for standing volume and basal area. Similar conclusions can be 681 

drawn from the NFIfmm simulations for broadleaf standing volume. The performance of 682 

ORCHIDEE-FM for basal area and standing volume probably has two explanations: first, 683 

the model is robust to changes in management parameters for these variables, as 684 

shown by the sensitivity analysis of Bellassen et al. (Bellassen et al., this issue), and 685 

second, basal area and standing volume are less heavily influenced by local conditions 686 

than other variables such as average diameter or tree density and, therefore, respond 687 

more directly to the large-scale climatic variations driving GVMs like ORCHIDEE (Wang et 688 

al., 2006). Overall, this robustness justifies the rationale for management simulation in 689 

GVMs, namely that simulating an “average” management is more realistic than not 690 

simulating management. 691 

4.3.2 Tree density and self-thinning curves 692 

The performance of ORCHIDEE-FM to simulate tree density and average diameter is 693 

much worse when the initial conditions and management style are unknown. The 694 

proportion of systematic error for these two variables is twice as high as for basal area 695 
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or standing volume in the YTf simulation, whereas they are comparable for all four 696 

variables in the PPf simulation. There are two likely reasons for this systematic error: 697 

 The self-thinning curves of ORCHIDEE-FM are not generic enough. Although 698 

Reineke (1933) originally thought that site or species productivity made no 699 

difference to his equations and would only accelerate the self-thinning process, 700 

this has recently been questioned (Yang and Titus, 2002; Vacchiano et al., 2008). 701 

Needleleaves tolerate higher densities than broadleaves, thus suggesting an 702 

effect of at least plant functional type, if not species, on self-thinning curves 703 

(Figure 14). For needleleaves, the default self-thinning curve of ORCHIDEE-FM 704 

seems to be generic enough because it encompasses yield table data for the 705 

entire productivity range (total volume produced at year 80). However, this is 706 

not the case for broadleaves, for which many productive yield tables lie above 707 

the curve: some broadleaf species may, thus, be more tolerant to crowding than 708 

the oaks and beeches on which the self-thinning curve was established (Dhôte, 709 

1999). 710 

 The management style varies with density. Indeed, Figure 14 suggests that 711 

management may be more intense when the stand is dense. For both plant 712 

functional types, the data-derived thinning curve cuts across the simulated 713 

values as the stand grows sparser. Different management styles and intensities 714 

between European countries could explain the important variability of the data. 715 
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These results highlight the important contributions that empirical studies of self-716 

thinning and thinning curves could make to the performance of ORCHIDEE-FM, which 717 

has already been shown to be very sensitive to these parameters (Bellassen et al., this 718 

issue). Another approach would be to construct a data assimilation framework for 719 

ORCHIDEE-FM to optimise the thinning and harvest parameters on existing wood 720 

production datasets. 721 

4.3.3 Bridging the gap with raw inventory data: basal area increment 722 

One of the original ideas in ORCHIDEE-FM is its ability to put a process-based GVM on 723 

par with forest inventory data. In terms of proxy variables for productivity, ORCHIDEE-724 

FM performs better for the volume increment than for the basal area increment. This is 725 

mainly due to the lack of performance of ORCHIDEE-FM at the tree scale: the basal area 726 

increment is very dependent on tree circumference distribution because many small 727 

trees will show a higher basal area increment than a few large trees for the amount of 728 

volume increment. Therefore in this study, we used the estimated volume increment 729 

from the French inventory instead of the measured basal area increment. If the same 730 

validation exercise was undertaken at the European scale, then the basal area 731 

increment might be the only option because the methods for estimating volume vary 732 

strongly between countries, and a comparison based on the compilation of European 733 

forest inventories by Schelhaas et al. (2006) would be challenging without full 734 

documentation of each inventory’s method. In this case, a possibility for improving the 735 

performance of ORCHIDEE-FM for the basal area increment would be to force the model 736 
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for its initial conditions. If the model were fed with the measured tree circumference 737 

distribution before the productivity measurement by surface coring, ORCHIDEE-FM 738 

would be more reliable in its simulation of the basal area increment and would, 739 

therefore, provide a meaningful comparison with direct measurements. 740 

5 Conclusion 741 

The double aim of this study was to validate ORCHIDEE-FM at the various temporal and 742 

spatial scales necessary for a GVM and to separate the modelling error due to the 743 

simulation of management from that due to the simulation of productivity. We showed 744 

that ORCHIDEE-FM performs reasonably well over long time-scales for most stand-level 745 

variables (tree density, basal area, standing volume, average height, and average 746 

circumference) and at spatial scales varying from local to continental with several 747 

degrees of continuity between measurements. The performance of ORCHIDEE-FM is, 748 

however, less satisfying for fine-scale processes such as competition between trees. In 749 

terms of error separation, we showed that when initial conditions and management 750 

style are controlled, the error from the FMM management component tends to be 751 

lower than that of the ORCHIDEE productivity component. However, the volume 752 

inventory data shows that both the management and the productivity components 753 

need to be calibrated if we want the model to finely reproduce the conditions of a 754 

specific region. 755 



40 

 

The validation of ORCHIDEE-FM also paves the way for its improvement. Specific 756 

attention should be paid to thinning parameters, either through more empirical studies 757 

or through an optimisation framework. The assimilation of initial conditions in the 758 

model could also present the possibility of a comparison with the raw measurements of 759 

forest inventories rather than the estimated volume and volume increment. Overall, 760 

ORCHIDEE-FM is deemed reliable enough to carry out prospective studies on the large-761 

scale impact of management on climate and on the impact of climate change on 762 

business-as-usual management. In these applications, ORCHIDEE-FM will provide a 763 

useful complement to inventory-based studies because it allows the separation of the 764 

effects of CO2, climate, and management on wood stocks and wood production. 765 
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Tables 960 

Simulation Dataset Model used
Source of 

woody NPP

Initial 

conditions
Time period Validated variables

PPf Permanent plots FMM Data Data
First measurement

 Last measurement

dens, ba, avcirc, circmin, 

circmax, distrib, σ, γ

PPc Permanent plots ORCHIDEE-FM Model Data
First measurement

 Last measurement

dens, ba, avcirc, circmin, 

circmax, σ, γ, voltot

PPic Permanent plots FMM Data Model
Year 0

 First measurement

dens, ba, avcirc, circmin, 

circmax

YTf Yield tables FMM Data Model Year 0  Year 80
dens, ba, domheight, 

avheight, avcirc, volmain, 

NFIstd

National Forest 

Inventory
ORCHIDEE Model Model 1876, 1916, 1956  2006 NPPwoody, volmain

NFIfmm

National Forest 

Inventory
ORCHIDEE-FM Model Model 1876, 1916, 1956  2006 NPPwoody, volmain

NFIopt

National Forest 

Inventory

ORCHIDEE-FM,

optimized photosynthesis
Model Model 1876, 1916, 1956  2006 NPPwoody, volmain

NFIst

National Forest 

Inventory

ORCHIDEE-FM,

self-thinning only
Model Model 1876, 1916, 1956  2006 NPPwoody, volmain

 961 

Table 1. Simulations summary 962 

Variable abbreviations: dens (tree density), ba (basal area), avcirc (average 963 

circumference), circmin (minimum circumference), circmax (maximum circumference), 964 

distrib (circumference distribution), σ (threshold circumference for basal area growth), γ 965 

(competition index), voltot (total wood volume produced), volth (cumulated thinned 966 

wood volume), NPPwoody (annual wood increment), volmain (standing wood volume). 967 

 968 
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Validation Variable name EF EFstat AB ABstat RMSEs/RMSEu

PPf vs data

dens 0.6 0.40 18% 1% 0.40

ba 0.56 0.29 2% 10% 0.43

volmain 0.6 0.39 4% 9% 0.15

avcirc 0.53 0.77 -5% 6% 0.57

circmin -0.33 0.36 -25% 46% 1.30

circmax 0.36 0.67 10% -3% 0.67

σ -0.11 -0.14 16% 72% 0.69

γ -0.27 0.01 15% 4% 0.91

PPfi vs data

dens -0.33 -0.29 30% 2% 0.02

ba -0.15 -0.90 -12% 13% 0.13

volmain 0.09 -1.59 -9% 18% 0.18

avcirc 0.09 0.10 -3% 0% 0.10

circmin -0.22 0.05 45% 10% 0.30

circmax -0.45 -1.24 22% 30% 0.10

PPc vs PPf

dens 0.16 na -13% na 0.72

ba 0.19 na 1% na 0.68

volmain 0.57 na 6% na 0.77

voltot 0.08 na 22% na 0.85

avcirc 0.21 na 14% na 0.81

circmin 0.72 na 10% na 0.94

circmax 0.54 na 12% na 1.09

σ 0.22 na 10% na 1.05

γ -1.12 na 27% na 1.00

YTf vs data

dens -8 -0.08 161% 96% 0.83

avcirc -0.67 0.48 -18% -7% 0.78

ba 0.52 0.41 10% 13% 0.33

domheight 0.32 0.63 -9% 4% 0.62

avheight -0.85 0.60 -35% 0% 1.33

volmain 0.83 0.82 -2% 16% 0.44

volth 0.45 0.81 54% -3% 0.96  969 

Table 2. Efficiencies and average biases of PP and YT simulations 970 

Modelling efficiency of ORCHIDEE-FM (EF), modelling efficiency of the relevant 971 

statistical model (EFstat), average bias (AB), and systematic/unsystematic error ratio 972 

(RMSEs/RMSEu) for three validations. 973 

Variable abbreviations: dens (tree density), ba (basal area), avcirc (average 974 

circumference), circmin (minimum circumference), circmax (maximum circumference), 975 

distrib (circumference distribution), σ (threshold circumference for basal area growth), γ 976 
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(competition index), voltot (total wood volume produced), volth (cumulated thinned 977 

wood volume), NPPwoody (annual wood increment), volmain (standing wood volume). 978 

 979 

Variable ESfmm (%)

dens 32%

ba 35%

volmain 48%

avcirc 37%

circmin 83%

circmax 58%

σ 59%

γ 37%  980 

Table 3. The FMM share of the total modelling error based on the permanent plots 981 

dataset (ESfmm) 982 

For the definition of ESfmm, see Eq. 11. 983 

Variable abbreviations: dens (tree density), ba (basal area), volmain (standing wood 984 

volume), avcirc (average circumference), circmin (minimum circumference), circmax 985 

(maximum circumference), σ (threshold circumference for basal area growth), γ 986 

(competition index). 987 

 988 



49 

 

Measured Simulated Measured Simulated Measured Simulated Measured Simulated

Parisian Basin (1) 10.3 8.7 10% -12% 15.2 6.8 -10% -26%

Mediterranean (2) 3.8 6.2 -59% -37% 8.8 9.0 -48% -2%

Toulouse (3) 7.3 6.6 -21% -34% 16.1 7.1 -5% -23%

North-East (4) 12.7 12.0 36% 21% 23.0 11.3 36% 23%

Britanny (5) 9.2 14.2 -2% 44% 17.7 16.0 5% 74%

South-West (6) 10.8 9.0 15% -9% 12.6 8.8 -26% -4%

Mid-Atlantic (7) 8.3 8.6 -12% -13% 12.3 7.3 -27% -20%

France 9.4 9.9 0% 0% 16.9 9.2 0% 0%

Needleleaves

Volume increment

(m3.ha-1.yr-1)

Relative difference

to national average

Region

(label of Figure 

9d)

Volume increment

(m3.ha-1.yr-1)

Relative difference

to national average

Broadleaves

 989 

Table 4. Regional breakdown of the measured and simulated (IFNfmm50) annual volume 990 

increment 991 

The exact boundaries of these regions are given in Figure 6 of the supplementary 992 

materials. 993 

 994 

Plant functional 

type
Study Improved Vcmax

Vcmax change from 

standard value

Temperate 

needleleaves

This study (ORCHIDEE model) 41.7 19%

Kattge et al., 2009 (BETHY) 62.5 116%

Temperate 

broadleaves

This study (ORCHIDEE model) 55.0 0%

Kattge et al., 2009 (BETHY) 57.7 65%  995 

Table 5. Improved average vcmax values 996 

997 
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Annexes 998 

AB: Average Bias 999 

EF: Modelling Efficiency 1000 

FMM: Forest Management Module 1001 

GPP: Gross Primary Productivity 1002 

GVM: Global Vegetation Model 1003 

HR: Heterotrophic Respiration 1004 

LAI: Leaf Area Index 1005 

NEP: Net Ecosystem Productivity 1006 

NFI: National Forest Inventory 1007 

NPP: Net Primary Productivity 1008 

ORCHIDEE-FM: Name of the new version of the ORCHIDEE GVM, which includes a forest 1009 

management module 1010 

PFT: Plant Functional Type 1011 

PP: Permanent Plot 1012 

YT: Yield Table 1013 

Annex 1. List of abbreviations 1014 

 1015 
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ID Departement Species

Age at last 

measurement 

year

First 

measurement 

year

Last 

measurement 

year

Post thinning 

relative 

density index

Size 

(ha)

1 Loir-et-Cher oak 201 1927 2006 0.8 1

2 Allier oak 153 1931 2003 0.5 1

3 Allier oak 153 1931 2003 0.8 1

4 Meurthe-et-Moselle
mixed 

oak/beech
151 1904 2006 0.7 1

5 Meurthe-et-Moselle oak 122 1959 2007 0.5 0.5

6 Meurthe-et-Moselle oak 122 1959 2007 0.8 0.5

7 Seine-Maritime beech 124 1931 2004 0.35 1

8 Seine-Maritime beech 124 1931 2004 0.5 1

9 Seine-Maritime beech 124 1931 2004 0.35 1

10 Seine-Maritime beech 124 1931 2004 0.7 1

11 Orne oak 165 1934 2005 0.8 1

12 Orne oak 165 1934 2005 0.5 1

13 Meurthe-et-Moselle beech 140 1904 1995 0.8 0.2

14 Meurthe-et-Moselle beech 140 1904 1995 0.5 0.2

15 Meurthe-et-Moselle beech 142 1904 1997 0.8 0.25

16 Meurthe-et-Moselle beech 142 1904 1997 0.5 0.25

17 Meurthe-et-Moselle beech 151 1904 2006 1 0.25

18 Aisne beech 118 1922 1978 0.4 0.25

19 Aisne beech 118 1922 1978 0.8 0.25

20 Aisne beech 118 1922 1978 1 0.25

21 Aisne beech 118 1922 1978 0.6 0.5

22 Allier oak 183 1931 2003 0.7 1

23 Orne oak 145 1933 2005 0.4 1

24 Meurthe-et-Moselle beech 151 1904 2006 0.7 0.25

25 Meurthe-et-Moselle
mixed 

oak/beech
151 1904 2006 0.5 0.25

26 Meurthe-et-Moselle beech 151 1904 2006 1 0.25

27 Aisne beech 121 1922 2006 0.5 0.2

28 Aisne beech 121 1922 2006 0.5 0.2

29 Aisne beech 121 1922 2006 0.5 0.2

30 Aisne beech 121 1922 2006 0.5 0.2

31 Vosges beech 202 1923 1962 0.7 1

32 Meurthe-et-Moselle oak 137 1928 2007 0.5 1

33 Meurthe-et-Moselle oak 137 1928 2007 0.8 1

34 Meurthe-et-Moselle beech 142 1904 1997 0.7 0.25

35 Orne oak 113 1951 2005 0.8 1

36 Orne oak 113 1951 2005 0.6 1

37 Orne oak 113 1951 2005 0.4 1

38 Orne oak 138 1934 2005 0.8 1

39 Orne oak 138 1934 2005 0.5 1

40 Orne oak 200 1934 1960 0.7 2

41 Loir-et-Cher oak 181 1928 2006 0.8 1

42 Loir-et-Cher oak 181 1928 2006 0.5 1

43 Loir-et-Cher oak 146 1928 2006 0.8 1

44 Loir-et-Cher oak 146 1928 2006 0.5 1

45 Allier oak 98 1992 2003 0.8 0.5

46 Allier oak 98 1992 2003 0.5 0.5

47 Aisne beech 173 1922 1968 0.5 1

48 Aisne beech 146 1922 2006 0.5 0.53

49 Allier oak 203 1931 2003 0.7 2

50 Loir-et-Cher oak 116 1966 2006 0.4 0.83

51 Loir-et-Cher oak 116 1966 2006 0.4 0.47

52 Loir-et-Cher oak 116 1966 2006 1 0.47

53 Loir-et-Cher oak 116 1966 2006 0.8 1

54 Loir-et-Cher oak 116 1966 2006 0.6 1

55 Orne oak 188 1934 2005 0.9 1

56 Allier oak 123 1959 2003 0.9 1

57 Allier oak 123 1959 2003 0.7 1

58 Allier oak 123 1959 2003 0.5 1  1016 

Annex 2. Summary of permanent plot characteristics 1017 
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Annex 3. Details on the estimation of individual tree growth variables (σ and γ) 1018 

 1019 

 1020 

1021 
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Figure legends 1022 

 1023 

Figure 1. ORCHIDEE-FM: coupled or forced with field measurements 1024 

Wood increment can be simulated by the core of ORCHIDEE or derived from site 1025 

measurements. The management module simulates its allocation to individual trees in 1026 

the stand and computes mortality (self-thinning, anthropogenic thinning or clear-1027 

cutting) based on a density index. 1028 
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 1029 

Figure 2. Characteristics of the three datasets used 1030 

Eight French forests containing 1 to 10 permanent plots with broadleaves, amounting to 1031 

58 plots over the metropolitan territory. 1032 

 1033 
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 1034 
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Figure 3. Validation of stand characteristics: PPf simulation 1035 

Each blue dot corresponds the state of one permanent plot at its last measurement. The 1036 

dotted blue line represents their linear regression. AB and EF are average relative bias 1037 

and model efficiency, respectively. An “*” indicates that the systematic error is higher 1038 

than the unsystematic error (RMSEs > RMSEu). 1039 

 1040 

 1041 

Figure 4. Summary diagrams of model performance for PP simulations 1042 

These diagrams represent model efficiency and average bias for a selected set of stand 1043 

variables. Red circles indicate the ability of the FMM forced with the local wood 1044 

increment to reproduce data (PPf vs. data and PPfi vs. data), whereas black diamonds 1045 
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indicate the ability of the FMM coupled with the wood increment from ORCHIDEE to 1046 

reproduce the “forced” simulation (PPc vs. PPf). An “*” indicates that the systematic 1047 

error is higher than the unsystematic error (RMSEs > RMSEu). 1048 

1. tree density / 2. basal area / 3. standing volume / 4. total volume / 5. average 1049 

circumference / 6. minimum circumference / 7. maximum circumference / 8. sigma / 9. 1050 

gamma 1051 

 1052 

 1053 

Figure 5. Country productivity index based on the European yield table dataset 1054 
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The “average relative productivity” index corresponds to the country-specific coefficient 1055 

of the linear mixed model of Equation 4. The studied variable is the volume increment at 1056 

the age of 80, and the two explanatory variables are country and plant functional type. 1057 

 1058 

 1059 

Figure 6. Validation of stand characteristics: YTf simulation 1060 

Each blue dot corresponds the state of one permanent plot at its last measurement. The 1061 

dotted blue line represents their linear regression. AB and EF are the average relative 1062 

bias and model efficiency, respectively. An “*” indicates that the systematic error is 1063 

higher than the unsystematic error (RMSEs > RMSEu). 1064 

 1065 
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 1066 

Figure 7. Summary diagrams of model performance for the YTf simulation 1067 

This diagram represents the model efficiency and average bias for a selected set of 1068 

stand variables. An “*” indicates that the systematic error is higher than the 1069 

unsystematic error (RMSEs > RMSEu). 1070 

1. tree density / 2. basal area / 3. standing volume / 5. average circumference / 10. 1071 

dominant height / 11. average height / 12. thinned volume 1072 
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 1073 

 1074 

Figure 8. Validation of the volume increment at a regional scale 1075 

“Interpolated data” maps (a and c) are derived from National Forest Inventory plots, and 1076 

“NFIfmm50 simulation” maps (b and d) represent the output of ORCHIDEE-FM simulations 1077 

for 50-year-old stands. 1078 

 1079 
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 1080 

Figure 9. Model fit for the volume increment: evolution with age 1081 

These 6 maps represent the model fit 






 

data

dataNFI fmm  for the volume increment for 1082 

three age classes of needleleaves (a, b, c) and broadleaves (d, e, f). White areas 1083 
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represent less than 10 data plots within a 55-km radius. Thus, the interpolation is 1084 

considered too weak to assess model fit. 1085 

 1086 

 1087 

Figure 10. Standing volume of 50-year-old broadleaf stands 1088 

The “interpolated data” map (a) is derived from National Forest Inventory broadleaf 1089 

plots of the 40-60-year age class and the “NFIfmm50 and NFIstd50 simulation” maps (b and 1090 

c) represent the output of ORCHIDEE-FM and ORCHIDEE simulations for 50-year-old 1091 

broadleaf stands. 1092 

 1093 
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 1094 

Figure 11. Model fit for standing volume of 50-year-old needleleaf stands 1095 

These four maps represent the model fit 






 

data

dataNFI fmm  for standing volume for four 1096 

different simulation options: ORCHIDEE-FM (a), ORCHIDEE-FM with optimised 1097 

photosynthesis efficiency (b), ORCHIDEE-FM without anthropogenic thinning (c) and 1098 

ORCHIDEE-FM both with optimised photosynthesis efficiency and without 1099 

anthropogenic thinning (d). White areas represent less than 10 data plots within a 55-1100 

km radius, and the interpolation is, therefore, considered too weak to assess model fit. 1101 
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 1102 

Figure 12. Validation of individual tree growth variables (σ and γ): PPf simulation 1103 

Each blue dot corresponds to the state of one permanent plot at its last measurement. 1104 

The dotted blue line represents their linear regression. AB and EF are average relative 1105 

bias and model efficiency, respectively. An “*” indicates that the systematic error is 1106 

higher than the unsystematic error (RMSEs > RMSEu). 1107 

 1108 
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 1109 

Figure 13. Validation of circumference distribution: PPf simulation 1110 

The different hues indicate the repartition of trees between 11 circumference classes 1111 

(ordinates) for the last measurement of each permanent plot (abscissa). Permanent 1112 

plots were sorted by increasing the simulated proportion of trees in the greater than 1113 

1.4-m category. 1114 

 1115 
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 1116 

Figure 14. Self-thinning curves based on yield tables 1117 

Full dots represent values of tree density against the total volume produced from the 1118 

YTf simulation (orange for a “managed” scenario and red for a “self-thinning only” 1119 

scenario). Empty blue dots represent the corresponding data from yield tables, with a 1120 

dashed line for the log-log linear regression. 1121 


