Supplementary material for "Modelling forest management within a global vegetation model - Part 2: model validation"

1 Estimation method for variables not directly available from the raw data

Volume, standing biomass, and tree height are estimated from circumference measurements using the default allometric rules of ORCHIDEE-FM. For volume increment, we use the increment-specific biomass expansion factors of IPCC (2003). All equations and parameters values are fully described in Bellassen et al. (this issue).

Average yearly increase in aboveground woody biomass between two measurements n and $\mathrm{n}+1$ can be estimated from Eq. S1:
wood $_{\text {inc }}=\frac{\sum_{i=1}^{\text {ntrees }}\left(\text { biomass }_{i}(n+1)-\text { biomass }_{i}(n)\right)}{(\text { year }(n+1)-\text { year }(n)) \times \text { plot_size }}+\varepsilon$
where wood $_{\text {inc }}$ is the yearly increase in aboveground woody biomass between measurement n at year (n) and measurement $\mathrm{n}+1$ at year $(n+1)$ in $\mathrm{gC}^{2} \cdot \mathrm{~m}^{-2} \cdot \mathrm{yr}^{-1} ;$ ntrees is the number of trees still alive at measurement $\mathrm{n}+1 ; \operatorname{biomass}_{i}(n+1)$ is the aboveground woody biomass of tree i at year $(n+1)$ in gC ; and plot_size is the size of the plot in $\mathrm{m}^{2} . \varepsilon$ is the increase in aboveground woody biomass of the trees that died between the two measurements. A few percent (at most 15%) of trees commonly die between two measurements. They are usually smaller trees and not they do not all die right before the second measurement. Therefore, ε is much smaller than the wood increment of the trees that survived, and it is neglected in the calculations.

Finally, the average individual tree growth indicators σ and γ between two measurements can be estimated by fitting Equation 1 to the data using the Gauss-Newton non-linear algorithm. In other words, this estimation of σ and γ corresponds to a calibration of the growth individuation part of the FMM (distribution of NPP to each tree) on the permanent plot data.

This estimation of the individual tree growth parameters σ and γ is illustrated by

Figure S 1 . The fit of Equation 1 on the data is generally satisfactory $\left(r^{2}=0.75\right.$ in this example) and confirms the relevance of this equation which was established on similar data by Deleuze et al. (2004). Many observed data points are lined up, forming upward diagonal lines that reflect the limits in the tree circumference measuring accuracy (0.01 m): these data points with different initial circumference have the same measured increase in circumference. Their difference in basal area increase is, therefore, proportional to their initial circumference (see Eq. S 2).
$\delta b a_{i}=\frac{\delta \operatorname{circ}_{i}{ }^{2}+2 \times \operatorname{circ}_{i} \times \delta \operatorname{\delta irc}_{i}}{4 \pi}$
where $\delta b a_{i}$ and $\delta \operatorname{circ}_{i}$ are, respectively, the increment in basal area and circumference of tree i .

2 Uncertainty associated with validation data

Three sources of uncertainty undermine these validation datasets: measurement uncertainty, allometric uncertainty and sampling uncertainty (Phillips et al., 2000). All of the following estimates for uncertainty relate to a 90% or greater confidence interval.
\checkmark The measurement uncertainty comes from errors in the in situ measurement of tree characteristics such as diameter or height, with 0.5% and 10% uncertainty at tree level, respectively (USDA, 2007). This source of uncertainty applies to all datasets. It is intrinsically negligible for diameter and becomes negligible for height because we only use averages at plot or regional scales for permanent plots and yield tables, respectively.
\checkmark Allometric uncertainty relates to the discrepancy between a variable such as volume predicted by an allometric model and the actual value. This discrepancy can typically vary between 15% and 30% at tree level depending on the local relevance of the allometric model (Dhote et al., 2000; Zianis and Mencuccini, 2004; Newton and Amponsah, 2007). This source of uncertainty does not apply to permanent plots because the allometric model is the same for the in situ estimate and ORCHIDEE-FM. Assuming that the allometric model is not consistently biased, this uncertainty is reduced to below 5% when averaging at a plot or regional scale for the NFI and yield tables, respectively. This uncertainty estimate does not take into account the error arising from the use of a biomass expansion factor (BEF), which is necessary to compare the commercial volume of the NFI dataset to the total aboveground volume simulated by ORCHIDEE-FM.

Sampling uncertainty arises at two levels. First, the sampled trees may not be representative of their plot, and second, the sample plot may not be representative of its region. The first level can be neglected due to the elaborate design of forest inventory sampling schemes (IFN, 2006). However, the second level can be quite high: although the regional average of aboveground biomass for 400,000 hectares of forested land is estimated to have only a 6% uncertainty (EPA, 2010), the sampling error of each plot is closer to 60\% (Waggoner, 2009; Bellassen et al., submitted). Assuming a Gaussian structure of these sampling errors, uncertainty is reduced to 20% when using averages of 10 NFI plots. Overall, the uncertainty related to datasets is low and is hereafter neglected in this study. The only exception is the maps of standing volume and volume increment interpolated from the NFI dataset, which carry a 20% uncertainty.

3 Stand-scale vs. tree-scale: which type of variable for validation?

3.1 Stand-scale volume increment vs. tree-scale basal area increase

NFI campaigns provide measured tree-scale variables such as tree basal area growth over the past five years, which can be directly compared to their counterparts simulated by ORCHIDEE-FM. The campaigns also estimate stand-scale variable such as volume increment by aggregating and extrapolating the tree-scale measures. These estimates can also be compared to their simulated counterparts. For validating a model representing the
$99 \quad S=\frac{1}{n-1} \sum_{j} \frac{V_{j}-\bar{V}}{\bar{V}}$
where S is the pixel average relative distance to the theoretical value of the volume increment, n is the number of plots in the pixel; V_{j} is the volume increment of plot j and \bar{V} is the theoretical value of the volume increment under the homogeneity assumption.
$T=\frac{1}{n-1} \sum_{j}\left[\frac{1}{m} \sum_{i} \frac{b a_{i j}-\overline{b a_{i j}}}{\overline{b a_{i j}}}\right]$
where T is the pixel average relative distance to the theoretical value of the volume increment; n is the number of plots in the pixel, $\mathrm{ba}_{\mathrm{ij}}$ is the basal area growth of tree i in plot j and $\overline{b a_{i}}$ is the theoretical value of the basal area growth of tree i in plot j under the homogeneity assumption.

For each pixel, the $\frac{S}{T}$ ratio thus determines which variable is closest to the homogeneity assumption. If $\frac{S}{T}<1$, then the stand-scale variable is more homogeneous than the treescale variable.

3.2Stand-scale variables: volume or basal area?

Having decided on stand-scale variables (because $\frac{S}{T}<1$), the options available for validation are: the volume increment and the basal area increment. In contrast to the basal area increment, the volume increment is not a directly measured variable on NFI plots: it requires the use of NFI allometric equations. However, the volume increment is a more direct output of ORCHIDEE-FM than the basal area increment, which rests heavily on the model's ability to simulate tree circumference distribution. Indeed, we find that the model simulates distributions that are more even than real distributions, often to the benefit of smaller circumference classes. For a given stand volume increment, the
increment in stand basal area simulated by the model is therefore consistently overestimated (data not shown). Thus, we chose to the use stand volume increment for validation.

Interestingly enough, the bias between the stand volume increment and s the tand basal area increment is systematic. This systematic bias means that when there is doubt about the allometries used in forest inventories, it is still of interest to compare them to ORCHIDEE-FM. For these comparisons however relative regional trends will be more trustworthy than absolute simulated values.

4 "Shadow models"

4.1 $P P_{f}$ simulation

4.1.1 Stand-scale variables

For stand-scale variables (tree density, basal area, standing volume, etc.), the "shadow model" uses three input variables:

$$
\begin{equation*}
\operatorname{mes}(i)=a+b \times \operatorname{vol}_{\text {tot }}(i)+c \times \text { med }_{\text {circ }}(i)+d \times r d i_{t a r g e t}(i)+\varepsilon(i) \tag{S6}
\end{equation*}
$$

where mes is the measured variable of interest; $\operatorname{vol}_{\mathrm{tot}}$ is the total volume of the stand at the last measurement; med $_{\text {circ }}$ is the median circumference of the stand at the first measurement; rdi $_{\text {target }}$ is the post-thinning relative density index; $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d are regression coefficients; and i is the permanent plot number.

4.1.2 Tree-scale variables

For the two tree-scale variables σ and γ, the current volume increment is added to the "shadow model":
$m e s(i)=a+b \times \operatorname{vol}_{\text {tot }}(i)+c \times$ med $_{\text {circ }}(i)+d \times r d i_{t \text { arget }}(i)+e \times \operatorname{vol}_{\text {inc }}(i)+\varepsilon(i) \quad(\mathrm{S} 7)$
where mes is the measured variable of interest; vol $_{\text {tot }}$ is the total volume of the stand at the last measurement; $\operatorname{med}_{\text {circ }}$ is the median circumference of the stand at the first measurement; rdi $_{\text {target }}$ is the post-thinning relative density index; vol $_{\text {inc }}$ is the volume increment during the last measurement period; $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, and e are regression coefficients; and i is the permanent plot number.

4.2 $P P_{\text {ic }}$ simulation

For the $P P_{i c}$ simulation, the "shadow model" uses two input variables:
$m e s(i)=a+b \times \operatorname{vol}_{\text {tot }}(i)+c \times r d i_{\text {target }}(i)+\varepsilon(i)$
where mes is the measured variable of interest; vol $_{\text {tot }}$ is the total volume of the stand at the last measurement; $\mathrm{rdi}_{\text {target }}$ is the post-thinning relative density index; a, b, and c are regression coefficients; and i is the permanent plot number.

4.3 $Y T_{f}$ simulation

The "shadow model" of $Y T_{f}$ uses the only input variable of ORCHIDEE-FM, the total volume:
mes $(i)=a+b \times \operatorname{vol}_{\text {tot }}(i)+\varepsilon(i)$
where mes is the measured variable of interest; vol $_{\text {tot }}$ is the total volume of the stand at the last measurement; a and b are regression coefficients; and i is the permanent plot number.

$5 P P_{i c}$ simulation - Detailed model-data comparison

 See Figure S 2.
6 Datasets and their use

See Figure S 3, Figure S 4, Figure S 5,

Figure S 6, Figure S 7, Figure S 8 and Figure S 9 .

7 R outputs

7.1 Linear mixed model of equation 4

$$
\begin{equation*}
\operatorname{vol}_{t o t}(i, j, k)=\alpha+\beta_{i}+\gamma_{j}+\varepsilon(i, j, k) \tag{1}
\end{equation*}
$$

where α is the intercept, β_{i} and γ_{j} are respectively the coefficients associated with plant functional type (PFT) i and country j , and $\operatorname{vol}_{\text {tot }}(i, j, k)$, and $\varepsilon(i, j, k)$ are respectively the total volume produced at year 80 and the error term associated with yield table k of PFT i and country j .

```
lm_voltot<-lme(vol_tot~Country+PFT,data=yt100a,random=~0|old_ID)
anova(lm_voltot)
        numDF denDF F-value p-value
(Intercept) 1 697 1359.4204<.0001
Country }21\quad162 6.1517<.000
PFT 1 162 47.6980<.0001
r2<-1-sum((yt100a$vol_tot-fitted(lm_voltot)}\mp@subsup{)}{}{\wedge}2)/sum((yt100a$vol_tot-mean(yt100a$vol_tot,na.rm=T))^2
r2
[1] 0.6446316
```


7.2 Linear mixed model of equation 5

$$
\begin{equation*}
\operatorname{dens}(i, j, k)=\alpha+\beta_{i}+\gamma_{j}+\delta \times \operatorname{vol}_{\text {tot }}(i, j, k)+\varepsilon(i, j, k) \tag{2}
\end{equation*}
$$

where α is the intercept, β_{i}, γ_{j} and δ are respectively the coefficients associated with plant functional type (PFT) i, country j , and total volume produced at year 80 , dens (i, j, k), $\operatorname{vol}_{\text {tot }}(i, j, k)$ and $\varepsilon(i, j, k)$ are respectively the density, the total volume produced at year 80 and the error term associated with yield table k of PFT i and country j .

```
lm_dens<-lme(dens~Country+PFT+vol_tot,data=yt100a2,random=~0|old_ID)
anova.lme(lm_dens)
    numDF denDF F-value p-value
(Intercept) 1 676456.7740<.0001
Country 21 145 5.0263<.0001
PFT 1 1 145 6.7864 0.0101
vol_tot 1 676 336.1248<.0001
r2<-1-sum((yt100a2$dens-fitted(lm_dens))^2)/sum((yt100a2$vol_tot-mean(yt100a2$vol_tot,na.rm=T))^2)
r2
[1] 0.4674039
```


7.3 Example of shadow model (equation 8)

$m e s(i)=a \times \operatorname{vol}_{\text {tot }}(i)+b \times$ med $_{\text {circ }}(i)+c \times r d i_{\text {target }}(i)+\varepsilon(i) \quad(\mathrm{S} 10)$
where mes is the measured variable of interest (eg. tree density, standing volume, ...),
$v o l_{t o t}$ is the total volume of the stand at the last measurement, $\operatorname{med}_{c i r c}$ is the median circumference of the stand at the first measurement, $r d i_{\text {target }}$ is the post-thinning relative density index, a, b, c, and d are regression coefficients, and i is the permanent plot number.
\# Dataset split in half: sub2 for calibration, sub3 for validation
lm_data_sub2<-subset(stats_all,stats_all\$ID<=30)
lm_data_sub3<-subset(stats_all,stats_all\$ID>30)
simple_lm<-
lm(lm_data_sub2[,var_no]~lm_data_sub2\$vol_totth+lm_data_sub2\$med_circ_init+lm_data_sub2\$rdi)
fix_coef<-coefficients(simple_lm)
gamma_fitted<-fix_coef[1]+fix_coef[2]*lm_data_sub3\$vol_totth+
fix_coef[3]*lm_data_sub3\$med_circ_init+fix_coef[4]*lm_data_sub3\$rdi
r2_stat[which(y_ab==var)]<-1-sum((gamma_fitted-
lm_data_sub3[,var_no])^2)/sum((lm_data_sub3[,var_no]-mean(lm_data_sub3[,var_no]) $)^{\wedge} 2$)
ab_stat[which(y_ab==var)]<-mean((gamma_fitted-lm_data_sub3[,var_no])/
abs(lm_data_sub3[,var_no]))

Figure captions

Figure S 1. Validation method for individual tree growth - example of plot 56 at last measurement

Each data point (cross) represents the average annual increment in basal area of one tree between the last two consecutive measurements (age 118 and age 123). Equation 1 is fitted on this data set to estimate σ and γ, respectively the threshold and slope of increase in basal area as a function of circumference (green curve). The simulated tree growth curve (red curve) is drawn from the average simulated σ and γ for the corresponding period of simulation 1. Vertical lines mark the average circumference of the data set (full green), of the simulation (full red), and the minimum and maximum simulated circumferences (dotted red).

Figure S 2. Validation of stand characteristics - $\mathrm{PP}_{\mathrm{ic}}$ simulation
Each blue dot corresponds the state of one permanent plot at its last measurement. The dotted blue line represents their linear regression. AB and EF are respectively average relative bias and model efficiency. A "*" indicates that AB is significantly different from 0 with a 95% confidence interval.

Figure S 3. Location of broadleaf permanent plots
Eight French forests contain 1 to 10 permanent plots with broadleaves, amounting to 58 plots over the metropolitan territory.

Figure S 4. Permanent plots: summary of measurements, simulations and validated variables

Figure S 5. Yield tables: summary of measurements, simulations and validated variables

Figure S 6. National Forest Inventory (NFI) broadleaf plots of age class 80-100 years

Figure S 7. French "regions" for which an average is calculated and discussed

Figure S 8. Relative density index of needleleaf plots of the 40-60 age class

Figure S 9. NFI plots: measurements, simulations and validated variables

Bellassen, V., Le Maire, G., Dhote, J.F., Viovy, N. and Ciais, P., this issue. Modeling forest management within a global vegetation model - Part 1: model structure and general behaviour. Ecological Modelling.
Bellassen, V., Le Maire, G., Luyssaert, S., Schelhaas, M.J., Ciais, P. and Viovy, N., submitted. Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Global Change Biology.
Deleuze, C., Pain, O., Dhote, J.F. and Herve, J.C., 2004. A flexible radial increment model for individual trees in pure even-aged stands. Annals of Forest Science, 61:327335.

Dhote, J.F., Hatsch, E. and Rittie, D., 2000. Stem taper curves, volume tables and volume yield compartments in Sessile Oak. Annals of Forest Science, 57:121-142.
EPA, 2010. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2008, United States Department of Energy, Washington DC, USA, 457 p.
IFN, 2006. Observer la forêt française : mission première de l'IFN. L'IF:12.
IPCC, 2003. Good Practice Guidance for Land-Use, Land-Use Change and Forestry, Intergovernmental Panel on Climate Change, Kanagawa, Japan, 534 p.
Newton, R.F. and Amponsah, I.G., 2007. Comparative evaluation of five height-diameter models developed for black spruce and jack pine stand-types in terms of goodness-of-fit, lack-of-fit and predictive ability. Forest Ecology and Management, 247:149-166.

Phillips, D.L., Brown, S.L., Schroeder, P.E. and Birdsey, R.A., 2000. Toward error analysis of large-scale forest carbon budgets. Global Ecology and Biogeography, 9:305313.

USDA, 2007. Forest Inventory and Analysis National Core Field Guide, Volume I: Field Data Collection Procedures for Phase 2 Plots, United States Department of Agriculture Forest Service, Washington DC, USA, 224 p.
Waggoner, P.E., 2009. Forest Inventories - Discrepancies and Uncertainties, Resources For the Future, Washington DC, USA, 45 p.
Zianis, D. and Mencuccini, M., 2004. On simplifying allometric analyses of forest biomass. Forest Ecology and Management, 187:311-332.

