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Supplementary material for “Modelling forest management within a global vegetation 1 

model – Part 2: model validation” 2 

1 Estimation method for variables not directly available 3 

from the raw data 4 

Volume, standing biomass, and tree height are estimated from circumference 5 

measurements using the default allometric rules of ORCHIDEE-FM. For volume 6 

increment, we use the increment-specific biomass expansion factors of IPCC (2003). All 7 

equations and parameters values are fully described in Bellassen et al. (this issue). 8 

Average yearly increase in aboveground woody biomass between two measurements n 9 

and n+1 can be estimated from Eq. S1: 10 
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where woodinc is the yearly increase in aboveground woody biomass between 12 

measurement n at year(n) and measurement n+1 at year(n+1) in gC.m
-2

.yr
-1

; ntrees is the 13 

number of trees still alive at measurement n+1; biomassi(n+1) is the aboveground woody 14 

biomass of tree i at year(n+1) in gC; and plot_size is the size of the plot in m
2
. ε is the 15 

increase in aboveground woody biomass of the trees that died between the two 16 

measurements. A few percent (at most 15%) of trees commonly die between two 17 

measurements. They are usually smaller trees and not they do not all die right before the 18 

second measurement. Therefore, ε is much smaller than the wood increment of the trees 19 

that survived, and it is neglected in the calculations. 20 
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Finally, the average individual tree growth indicators σ and γ between two measurements 21 

can be estimated by fitting Equation 1 to the data using the Gauss-Newton non-linear 22 

algorithm. In other words, this estimation of σ and γ corresponds to a calibration of the 23 

growth individuation part of the FMM (distribution of NPP to each tree) on the 24 

permanent plot data. 25 

This estimation of the individual tree growth parameters σ and γ is illustrated by 26 

 27 

Figure S 1. The fit of Equation 1 on the data is generally satisfactory (r² = 0.75 in this 28 

example) and confirms the relevance of this equation which was established on similar 29 

data by Deleuze et al. (2004). Many observed data points are lined up, forming upward 30 

diagonal lines that reflect the limits in the tree circumference measuring accuracy (0.01 31 

m): these data points with different initial circumference have the same measured 32 

increase in circumference. Their difference in basal area increase is, therefore, 33 

proportional to their initial circumference (see Eq. S 2). 34 
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where δbai and δcirci are, respectively, the increment in basal area and circumference of 36 

tree i. 37 
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2 Uncertainty associated with validation data 38 

Three sources of uncertainty undermine these validation datasets: measurement 39 

uncertainty, allometric uncertainty and sampling uncertainty (Phillips et al., 2000). All of 40 

the following estimates for uncertainty relate to a 90% or greater confidence interval. 41 

 The measurement uncertainty comes from errors in the in situ measurement of 42 

tree characteristics such as diameter or height, with 0.5% and 10% uncertainty 43 

at tree level, respectively (USDA, 2007). This source of uncertainty applies to all 44 

datasets. It is intrinsically negligible for diameter and becomes negligible for 45 

height because we only use averages at plot or regional scales for permanent 46 

plots and yield tables, respectively. 47 

 Allometric uncertainty relates to the discrepancy between a variable such as 48 

volume predicted by an allometric model and the actual value. This discrepancy 49 

can typically vary between 15% and 30% at tree level depending on the local 50 

relevance of the allometric model (Dhote et al., 2000; Zianis and Mencuccini, 51 

2004; Newton and Amponsah, 2007). This source of uncertainty does not apply 52 

to permanent plots because the allometric model is the same for the in situ 53 

estimate and ORCHIDEE-FM. Assuming that the allometric model is not 54 

consistently biased, this uncertainty is reduced to below 5% when averaging at a 55 

plot or regional scale for the NFI and yield tables, respectively. This uncertainty 56 

estimate does not take into account the error arising from the use of a biomass 57 

expansion factor (BEF), which is necessary to compare the commercial volume 58 

of the NFI dataset to the total aboveground volume simulated by ORCHIDEE-FM. 59 
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 Sampling uncertainty arises at two levels. First, the sampled trees may not be 60 

representative of their plot, and second, the sample plot may not be 61 

representative of its region. The first level can be neglected due to the elaborate 62 

design of forest inventory sampling schemes (IFN, 2006). However, the second 63 

level can be quite high: although the regional average of aboveground biomass 64 

for 400,000 hectares of forested land is estimated to have only a 6% uncertainty 65 

(EPA, 2010), the sampling error of each plot is closer to 60% (Waggoner, 2009; 66 

Bellassen et al., submitted). Assuming a Gaussian structure of these sampling 67 

errors, uncertainty is reduced to 20% when using averages of 10 NFI plots. 68 

Overall, the uncertainty related to datasets is low and is hereafter neglected in this 69 

study. The only exception is the maps of standing volume and volume increment 70 

interpolated from the NFI dataset, which carry a 20% uncertainty. 71 

3 Stand-scale vs. tree-scale: which type of variable for 72 

validation? 73 

3.1 Stand-scale volume increment vs. tree-scale basal area 74 

increase 75 

NFI campaigns provide measured tree-scale variables such as tree basal area growth over 76 

the past five years, which can be directly compared to their counterparts simulated by 77 

ORCHIDEE-FM. The campaigns also estimate stand-scale variable such as volume 78 

increment by aggregating and extrapolating the tree-scale measures. These estimates can 79 

also be compared to their simulated counterparts. For validating a model representing the 80 
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“average stand” over a 0.25° resolution, the most suitable variables would be 81 

homogeneous at this spatial scale. 82 

To determine the most homogeneous type of variables between the tree-scale tree 83 

circumference growth and the stand-scale volume increment, we applied a 0.25° 84 

resolution grid to the French territory and selected the pixels containing more than 20 85 

measured plots. A perfectly homogeneous pixel would have a single volume increment 86 

value V . The tree basal area growth would still be variable because it is a function of 87 

both the plot conditions and the initial tree circumference (see Equation S 3 from Deleuze 88 

(2004)). However, the plot-specific σ, γ, and m parameters of Equation S 3 would be 89 

fixed, yielding one theoretical value per tree circumference 
iba . 90 
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where δbai is the annual increase in the basal area of tree i in square meters; circi is the 92 

circumference of tree i in meters; and σ, γ, and m are parameters. 93 

V is estimated by the pixel average for the volume increment and 
iba  by fitting Equation 94 

S 3 for each pixel, using the assumption that all of the trees of one pixel belong to a 95 

single homogeneous plot. The average relative distances S and T to the theoretical 96 

variable value is then determined by Equations S 4 and S 5 for the stand-scale volume 97 

increment and the tree-scale basal area growth, respectively. 98 
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where S is the pixel average relative distance to the theoretical value of the volume 100 

increment, n is the number of plots in the pixel; Vj is the volume increment of plot j and 101 

V  is the theoretical value of the volume increment under the homogeneity assumption. 102 
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where T is the pixel average relative distance to the theoretical value of the volume 104 

increment; n is the number of plots in the pixel, baij is the basal area growth of tree i in 105 

plot j and 
iba  is the theoretical value of  the basal area growth of tree i in plot j under the 106 

homogeneity assumption. 107 

For each pixel, the 
T

S
 ratio thus determines which variable is closest to the homogeneity 108 

assumption. If 
T

S
 < 1, then the stand-scale variable is more homogeneous than the tree-109 

scale variable. 110 

3.2 Stand-scale variables: volume or basal area? 111 

Having decided on stand-scale variables (because 
T

S
 < 1), the options available for 112 

validation are: the volume increment and the basal area increment. In contrast to the basal 113 

area increment, the volume increment is not a directly measured variable on NFI plots: it 114 

requires the use of NFI allometric equations. However, the volume increment is a more 115 

direct output of ORCHIDEE-FM than the basal area increment, which rests heavily on 116 

the model’s ability to simulate tree circumference distribution. Indeed, we find that the 117 

model simulates distributions that are more even than real distributions, often to the 118 

benefit of smaller circumference classes. For a given stand volume increment, the 119 
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increment in stand basal area simulated by the model is therefore consistently 120 

overestimated (data not shown). Thus, we chose to the use stand volume increment for 121 

validation. 122 

Interestingly enough, the bias between the stand volume increment and s the tand basal 123 

area increment is systematic. This systematic bias means that when there is doubt about 124 

the allometries used in forest inventories, it is still of interest to compare them to 125 

ORCHIDEE-FM. For these comparisons however relative regional trends will be more 126 

trustworthy than absolute simulated values. 127 

4 “Shadow models” 128 

4.1 PPf simulation 129 

4.1.1 Stand-scale variables 130 

For stand-scale variables (tree density, basal area, standing volume, etc.), the “shadow 131 

model” uses three input variables: 132 

)()()()()( arg iirdidimedcivolbaimes ettcirctot     (S 6) 133 

where mes is the measured variable of interest; voltot is the total volume of the stand at 134 

the last measurement; medcirc is the median circumference of the stand at the first 135 

measurement; rditarget is the post-thinning relative density index; a, b, c, and d are 136 

regression coefficients; and i is the permanent plot number. 137 
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4.1.2 Tree-scale variables 138 

For the two tree-scale variables σ and γ, the current volume increment is added to the 139 

“shadow model”: 140 

)()()()()()( arg iivoleirdidimedcivolbaimes incettcirctot    (S 7) 141 

where mes is the measured variable of interest; voltot is the total volume of the stand at the 142 

last measurement; medcirc is the median circumference of the stand at the first 143 

measurement; rditarget is the post-thinning relative density index; volinc is the volume 144 

increment during the last measurement period; a, b, c, d, and e are regression coefficients; 145 

and i is the permanent plot number. 146 

4.2 PPic simulation 147 

For the PPic simulation, the “shadow model” uses two input variables: 148 

)()()()( arg iirdicivolbaimes etttot     (S 8) 149 

where mes is the measured variable of interest; voltot is the total volume of the stand at the 150 

last measurement; rditarget is the post-thinning relative density index; a, b, and c are 151 

regression coefficients; and i is the permanent plot number. 152 

4.3 YTf simulation 153 

The “shadow model” of YTf uses the only input variable of ORCHIDEE-FM, the total 154 

volume: 155 

)()()( iivolbaimes tot     (S 9) 156 

where mes is the measured variable of interest; voltot is the total volume of the stand at the 157 

last measurement; a and b are regression coefficients; and i is the permanent plot number. 158 
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5 PPic simulation – Detailed model-data comparison 159 

See Figure S 2. 160 

6 Datasets and their use 161 

See Figure S 3, Figure S 4, Figure S 5, 162 

 163 

Figure S 6, Figure S 7, Figure S 8 and Figure S 9. 164 

7 R outputs 165 

7.1 Linear mixed model of equation 4 166 

   kjikjivol jitot ,,,,     (1) 167 
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where α is the intercept, βi and γj are respectively the coefficients associated with plant 168 

functional type (PFT) i and country j, and  voltot(i,j,k), and ε(i,j,k) are respectively the 169 

total volume produced at year 80 and the error term associated with yield table k of PFT i 170 

and country j. 171 

lm_voltot<-lme(vol_tot~Country+PFT,data=yt100a,random=~0|old_ID) 172 

anova(lm_voltot) 173 

            numDF denDF   F-value p-value 174 

(Intercept)     1   697 1359.4204  <.0001 175 

Country        21   162    6.1517  <.0001 176 

PFT             1   162   47.6980  <.0001 177 

r2<-1-sum((yt100a$vol_tot-fitted(lm_voltot))^2)/sum((yt100a$vol_tot-mean(yt100a$vol_tot,na.rm=T))^2) 178 

r2 179 

[1] 0.6446316 180 

7.2 Linear mixed model of equation 5 181 

     kjikjivolkjidens totji ,,,,,,    (2) 182 

where α is the intercept, βi, γj and δ are respectively the coefficients associated with plant 183 

functional type (PFT) i, country j, and total volume produced at year 80, dens(i,j,k), 184 

voltot(i,j,k) and ε(i,j,k) are respectively the density, the total volume produced at year 80 185 

and the error term associated with yield table k of PFT i and country j. 186 

lm_dens<-lme(dens~Country+PFT+vol_tot,data=yt100a2,random=~0|old_ID) 187 

anova.lme(lm_dens) 188 

            numDF denDF  F-value p-value 189 

(Intercept)     1   676 456.7740  <.0001 190 

Country        21   145   5.0263  <.0001 191 

PFT             1   145   6.7864  0.0101 192 

vol_tot         1   676 336.1248  <.0001 193 

r2<-1-sum((yt100a2$dens-fitted(lm_dens))^2)/sum((yt100a2$vol_tot-mean(yt100a2$vol_tot,na.rm=T))^2) 194 

r2 195 

[1] 0.4674039 196 
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7.3 Example of shadow model (equation 8) 197 

)()()()()( arg iirdicimedbivolaimes ettcirctot     (S 10) 198 

where mes is the measured variable of interest (eg. tree density, standing volume, ...), 199 

voltot is the total volume of the stand at the last measurement, medcirc is the median 200 

circumference of the stand at the first measurement, rditarget is the post-thinning relative 201 

density index, a, b, c, and d are regression coefficients, and i is the permanent plot 202 

number. 203 

# Dataset split in half: sub2 for calibration, sub3 for validation 204 

lm_data_sub2<-subset(stats_all,stats_all$ID<=30) 205 

lm_data_sub3<-subset(stats_all,stats_all$ID>30) 206 

simple_lm<-207 
lm(lm_data_sub2[,var_no]~lm_data_sub2$vol_totth+lm_data_sub2$med_circ_init+lm_data_sub2$rdi) 208 

fix_coef<-coefficients(simple_lm) 209 

gamma_fitted<-fix_coef[1]+fix_coef[2]*lm_data_sub3$vol_totth+ 210 

fix_coef[3]*lm_data_sub3$med_circ_init+fix_coef[4]*lm_data_sub3$rdi 211 

r2_stat[which(y_ab==var)]<-1-sum((gamma_fitted-212 
lm_data_sub3[,var_no])^2)/sum((lm_data_sub3[,var_no]-mean(lm_data_sub3[,var_no]))^2) 213 

ab_stat[which(y_ab==var)]<-mean((gamma_fitted-lm_data_sub3[,var_no])/              214 
abs(lm_data_sub3[,var_no])) 215 

 216 

217 
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Figure captions 218 

 219 

Figure S 1. Validation method for individual tree growth – example of plot 56 at last 220 

measurement 221 

Each data point (cross) represents the average annual increment in basal area of one tree 222 

between the last two consecutive measurements (age 118 and age 123). Equation 1 is 223 

fitted on this data set to estimate σ and γ, respectively the threshold and slope of increase 224 

in basal area as a function of circumference (green curve). The simulated tree growth 225 

curve (red curve) is drawn from the average simulated σ and γ for the corresponding 226 

period of simulation 1. Vertical lines mark the average circumference of the data set (full 227 

green), of the simulation (full red), and the minimum and maximum simulated 228 

circumferences (dotted red). 229 

 230 
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 231 

Figure S 2. Validation of stand characteristics – PPic simulation 232 

Each blue dot corresponds the state of one permanent plot at its last measurement. The 233 

dotted blue line represents their linear regression. AB and EF are respectively average 234 

relative bias and model efficiency. A “*” indicates that AB is significantly different from 235 

0 with a 95% confidence interval. 236 
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 237 

 238 

Figure S 3. Location of broadleaf permanent plots 239 

Eight French forests contain 1 to 10 permanent plots with broadleaves, amounting to 58 240 

plots over the metropolitan territory. 241 

 242 
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simulations: inputs and settings validated variablesmeasured and 
estimated variables

Measured

stand age

tree circumferences

plot size

Estimated

tree density

basal area

standing volume

circumference distribution

average circumference

minimum circumference

maximum circumference

mean annual increment

thinning intensity

PPf simulation – NPPwoody forced
(first measurement until last measurement)

FMM

mean annual increment

tree circumferences at 
first year

thinning intensity

PPic simulation – NPPwoody forced
(first year until first measurement)

FMM

average mean 
annual increment
thinning intensity

data ORCHIDEE

PPc simulation – NPPwoody coupled
(first measurement until last measurement)

FMM

tree circumferences
at first year

thinning intensity

mean annual 
increment

tree density

basal area

standing volume

circumference distribution

average circumference

minimum circumference

maximum circumference

+

σ, circumference threshold for 
growth (simulation 1 only)

γ, slope of growth-circumference 
relationship (simulation 1 only)

+

total volume produced 
(simulation 1 – coupled only)

tree circumferences 
at first year

 243 

Figure S 4. Permanent plots: summary of measurements, simulations and validated 244 

variables 245 

 246 

validated variablesmeasured variables

stand age

tree density

basal area

dominant or average height

standing volume

thinned volume

average circumference

mean annual increment

data ORCHIDEE

YTf simulation – NPPwoody coupled
(first year until last measurement)

FMM

mean annual 
increment

tree circumferences 
at first year

tree density

basal area

dominant or average height

standing volume

thinned volume

average circumference

simulations: inputs and settings

 247 

Figure S 5. Yield tables: summary of measurements, simulations and validated variables 248 
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 249 

 250 

Figure S 6. National Forest Inventory (NFI) broadleaf plots of age class 80-100 years 251 

 252 

Figure S 7. French “regions” for which an average is calculated and discussed 253 

 254 

Figure S 8. Relative density index of needleleaf plots of the 40-60 age class 255 

 256 
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validated variablesmeasured and 
estimated variables

Measured (sample)

stand age

tree circumference

tree height

tree ring increment over 

the last 5 years

Estimated

tree density

basal area

standing volume

mean annual increment

mean annual increment

standing volume

ORCHIDEE

NFIstd simulation

NFIfmm simulations

FMM

ORCHIDEE

simulations: inputs and settings

NFIopt simulations

FMM

ORCHIDEE
optimized photosynthesis

NFIst simulations

FMM
self-thinning only

ORCHIDEE

 257 

Figure S 9. NFI plots: measurements, simulations and validated variables 258 
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