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  ABSTRACT 

  A genomic preselection step of young sires is now 
often included in dairy cattle breeding schemes. Young 
sires are selected based on their genomic breeding val-
ues. They have better Mendelian sampling contribution 
so that the assumption of random Mendelian sampling 
term in genetic evaluations is clearly violated. When 
these sires and their progeny are evaluated using BLUP, 
it is feared that estimated breeding values are biased. 
The effect of genomic selection on genetic evaluations 
was studied through simulations keeping the structure 
of the Holstein population in France. The quality of 
genetic evaluations was assessed by computing bias and 
accuracy from the difference and correlation between 
true and estimated breeding values, respectively, and 
also the mean square error of prediction. Different 
levels of heritability, selection intensity, and accuracy 
of genomic evaluation were tested. After only one gen-
eration and whatever the scenario, breeding values 
of preselected young sires and their daughters were 
significantly underestimated and their accuracy was 
decreased. Genomic preselection needs to be accounted 
for in genetic evaluation models. 
  Key words:    selection bias ,  genomic selection ,  BLUP , 
 dairy cattle 

  INTRODUCTION 

  In dairy cattle breeding, the recent development of 
genomic tools and methods has led to quick implemen-
tation of genomic selection. Due to a higher accuracy of 
evaluation at birth and a shorter generation interval, an 
increase of genetic gain is expected as well as a better 
management of genetic diversity. Efficiency of breed-
ing schemes is improved, whereas their costs could be 
reduced. However, the use of this new strategy may 
damage the quality of classical genetic evaluations. 

  In many countries, breeding values for dairy cattle 
are estimated based on an animal model using BLUP 
methodology. Under some hypotheses, BLUP estimates 
have desirable properties: they are unbiased in the 
sense that the expected value of the prediction is equal 
to the expected value of what is being predicted, and 
they are the best among the linear predictors in the 
sense that they have a minimum mean squared error 
of prediction (MSE). In the mixed model equations 
leading to BLUP, it has been shown that the additive 
genetic relationship matrix (A), assuming an infinitesi-
mal model, can accommodate changes in genetic means 
and variances due to selection (Sorensen and Kennedy, 
1983). This requires that A is complete and correct, 
that the model includes all records upon which selec-
tion is based and that pedigree is complete back to the 
base population. 

  Today, genomically enhanced breeding values 
(GEBV) are computed at the birth of candidates. It 
allows selection of animals not only with the highest 
GEBV but also with the highest Mendelian sampling 
contribution. This selection leads to a nonrandom set 
of candidates being recorded for the traits of interest. 
Hence, the usual assumptions on Mendelian sampling 
expected value and variance are no longer valid. The 
Mendelian sampling expected value is no longer zero 
so that the resulting relationship matrix is no longer 
the correct one. Two issues are involved. The first is 
selective information: data on culled animals, especially 
records on their daughters in the case of young sires, 
are missing. The second is sequential selection: selection 
decisions are based on GEBV, and this information is 
not included in the evaluation model. If the genetic 
evaluation model remains unchanged, when records 
of progeny from preselected sires are included in the 
model, it is feared that genetic evaluations will become 
biased. 

  The effect of genomic preselection on national and in-
ternational polygenic evaluations was first discussed by 
the Interbull Scientific Advisory Committee (Ducrocq 
et al., 2008) and by van der Beek (2007). Sires’ ranking, 
genetic parameters, and genetic trend are likely to be 
altered at national and international levels. The conse-
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quences of using breeding values of progeny-tested bulls 
on genomic prediction equations were also mentioned. 
Due to the rapid and widespread use of genomic evalu-
ations worldwide (11 countries were planning to start 
genomic evaluations in 2009–2010; Loberg and Dürr, 
2009), study of the short-term consequences on the 
conventional evaluation system is urgently needed.

The objective of this paper was to assess via simula-
tion the effect of a genomic preselection step on the 
quality of genetic evaluations. The latter is measured 
by the systematic estimation error (i.e., the bias), and 
by the accuracy of predicted genetic effects. Compari-
sons were made between 2 populations, one involving a 
genomic preselection step of young sires [genomic prese-
lected sires (GPS) population] and the other involving 
progeny testing only (control population). Sensitivity 
analysis was conducted with different levels of selection 
intensity, heritability, and accuracy of genomic evalua-
tion. The effect on the genetic parameter estimates was 
not investigated.

MATERIALS AND METHODS

Overview

Bias and accuracy of genetic evaluations were mea-
sured in the GPS and control populations. The control 
population was expected to provide unbiased prediction 
and, consequently, a higher accuracy. To demonstrate 
bias due to genomic preselection, breeding values (true 
and genomically enhanced) and performance were simu-
lated based on a real data set coming from the Holstein 
population in France, which included pedigree, records, 
and genetic parameters of the traits under consider-
ation. Type traits were chosen for convenience (simple 
model, no repeated observations).

Implementation Steps

The first key element of the chosen strategy was the 
identification of the candidate bulls; these consisted of 
the cohort of young sires (YS) that had only one crop of 
daughters in the real data set. A first BLUP evaluation 
based on a single trait animal model provided EBV and 
fixed effects estimates in the initial conditions. These 
EBV were used to reduce the cohort of young sires to 
the most promising ones on the basis of their pedigree 
index. Indeed, these are more likely to be genotyped by 
the breeding companies implementing genomic prese-
lection. Their daughters (D) were then identified and 
their performance was deleted from the record file to 
mimic the data structure before a genomic preselection 
step. From this new data set, a second BLUP evaluation 
was run to obtain EBV and reliabilities (R), especially 

of young sires’ parents. The EBV and R2 were used to 
simultaneously simulate genomically enhanced breed-
ing values and true breeding values (TBV) for the 
young sires and potential candidate full siblings. When 
genomic preselection was mimicked (GPS population), 
YS were selected among their full siblings, choosing 
the one with the highest GEBV. In both cases (with 
or without genomic preselection), consistent daughter 
records (i.e., new records) were generated, and a new 
BLUP evaluation was performed. As a result, EBV and 
TBV of the young sires and their daughters were avail-
able for bias and accuracy assessment in the 2 simu-
lated populations. The simulation of GEBV, TBV, and 
daughter records, as well as the final BLUP evaluation, 
were repeated 50 times to measure the bias variability. 
Evaluations on real or simulated data were all run using 
an in-house BLUP software, GENEKIT, developed by 
the second author. The different steps of the simulation 
are summarized in Table 1.

Simulation of Breeding Values  
and Records: Principle

Let aYS  be the simulated TBV of a young sire and 

âYS  its EBV, solution of the animal mixed model equa-

tions. Let âYS+  be the GEBV of a young sire combining 

direct genomic value and pedigree information. A selec-
tion on this GEBV mimicked the genomic preselection 
of young bulls before collection of phenotypic records 
from daughters. If GS and GD refer to the sire and 
dam of a young sire YS, respectively, and  σa

2  is the 
genetic variance of the trait, we have
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The GEBV reliability RYS+( ),  is a combination of the 

pedigree reliability RPED( ),  and the direct genomic reli-
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much as n additional daughter records (Van Raden et 
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Table 1. Summary of the simulation strategy and the analyses performed: description of preliminary and iterative (replicated 50 times) steps in the different populations (control, 
GPS)1 

Step Input data Implementation Output data of interest

Preliminary (1) Data set 1: pedigree file + whole record file BLUP 1 Initial EBV ( â0 ) + fixed effects estimates ( β )

Preliminary (2) Pedigree file + â0
Identification of all the 
YS and their D

Target cohorts: YS (size = n) and D

Preliminary (3) Data set 2: pedigree file + record 
file, cohort D removed

BLUP 2 EBV and reliabilities (â, R) of the YS parents 

(GS, GD): ˆ , ˆ , ,a a R RGS GD GS GD

Iterative (1) control Data set 2 + ˆ , ˆ , ,a a R RGS GD GS GD
Simulation of breeding 
values for n YS

True breeding values of the YS: aYS
C

Iterative (2) control Data set 2 + β + +â aYS
C Simulation of D records Data set 3: including the new records (true D 

records are replaced by the simulated ones)

Iterative (3) control Data set 3 BLUP 3 ˆ ,a RYS
C

YS
C

Iterative (4) control ˆ ,a aYS
C

YS
C Bias assessment Δ(Breeding values) = â aYS

C
YS
C−

Iterative (1) GPS Data set 2 + ˆ , ˆ , ,a a R RGS GD GS GD
Simulation of breeding values 
for m YS × n GS-GD pair

GEBV + TBV of the YS: ˆ ,a aYS
GPS

YS
GPS

Iterative (2) GPS âYS
GPS

+
Selection of the YS based on GEBV Cohort of genomically selected YS

Iterative (3) GPS Data set 2 + β + +â aYS
GPS Simulation of D records Data set 3′: including the new records (true D 

records are replaced by the simulated ones)

Iterative (4) GPS Data set 3′ BLUP 3′ ˆ ,a RYS
GPS

YS
GPS

Iterative (5) GPS a aYS
GPS

YS
GPS, ˆ Bias assessment Δ(Breeding values), comparison of reliabilities

1GPS = genomic preselection of young sires; YS = young sire; D = daughter; GS = sire of a YS; GD = dam of a YS; GEBV = genomically enhanced breeding value; TBV = true 
breeding value.



h2 the heritability of the trait. Using Harris and John-
son’s (1998) method to approximate reliability coming 
from different sources of information, the combined re-

liability RYS+( ),  was computed as

 R
R R R R

R R
YS

PED GEN PED GEN

PED GEN
+ =

+ −

−

2

1
.  

In the same way, the genomically enhanced reliabilities 
RGS+  and RGD+  were computed at the GS and GD 

level, respectively. For example,

 R
R R R R

R R
GS

GS GEN GS GEN

PED GEN
+ =

+ −

−

1
4

2
1
4

1
.  

It was assumed that each GS–GD pair has only one 
selected progeny. This is clearly not true, but this sim-
plification avoids extra assumptions without inflating 
the importance of the son’s GEBV on parental EBV. 
For young sires and their parents, all the breeding val-
ues (true, estimated, and genomically enhanced) may 
be defined together as coming from the following mul-
tivariate normal distribution:
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Using Pearson’s results (Pearson, 1903) for multivariate normal distributions, GEBV and TBV were jointly 
simulated conditionally on the GS and GD EBV. These 2 EBV and their associated reliabilities were computed 
from the second BLUP evaluation on the real data set (i.e., in absence of progeny information of their sons). It 
follows that:
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with δ = −1 R  and Δ = −+R R;  R represents the reliability based on records and relationships information only, 

whereas R+ refers to the genomically enhanced reliability. In practice, using a Cholesky decomposition of the 
variance-covariance matrix V, simulated GEBV and TBV were obtained as linear combinations of 6 random 
standard normal variables. Consistent simulation of GEBV and TBV of full siblings was guaranteed through an 



adequate repetition of the relevant random variables. 
Finally, the control and GPS populations differed in 
the way the breeding values of young sires were distrib-
uted. In the control population, random variables were 
drawn only once in such a way that the young sires’ 
GEBV were normally distributed. No preselection ex-
isted. In contrast, in the GPS population, a genomic 
preselection step was implemented using a given selec-
tion rate defined as the proportion of retained candi-
dates, say 1/m. In practice, TBV and GEBV were 
generated, on average, m times for each YS, hence 
mimicking genomic evaluation of m full siblings. In or-
der to be as realistic as possible, the number of full 
siblings within a family i (mi) was varied from one fam-
ily to another. To ensure an expected number of m 
candidates with a minimum number of 1, a random 
number ui was generated from a Poisson distribution 
P(λ) with λ = m − 1, and the size of the full-sibling 
cohort was set to ui + 1. Among these full siblings, the 
highest GEBV was assigned to the YS undergoing 
progeny test, whereas the remaining full siblings were 
culled.

Performances for the daughters of each YS were 
simulated in the 2 populations. From the animal model 
equations, these records were computed as the sum of 
fixed and random effects. Without loss of generality, 
the only fixed effect (β) considered was a contemporary 
group effect. In other words, data of the initial evalua-
tion were precorrected for all nongenetic (fixed) effects 
and a contemporary group effect was estimated for 
each group of identified daughters. The breeding value 
of any daughter was generated as the sum of its average 
parental breeding value and a Mendelian sampling term 
(φ) drawn from a normal distribution with zero mean 
and a variance equal to half the genetic variance of the 
trait. The TBV for the sire was available as described 
above, whereas the TBV for the dam was generated 
on the basis of her EBV and reliability computed from 
the second BLUP evaluation when no YS progeny per-
formances were available. A normal random variable ε 
was, thus, added to dam EBV to get TBV. Finally, a 
residual e was drawn from a normal distribution with 
zero mean and a variance equal to the residual variance 
of the trait. Let y be the record of a daughter:
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Numerical Applications

The simulations were first done following the national 
data set for a conformation trait, udder depth (UD), 
for the Holstein breed in France. A total of 4,110,229 
records were available, and the pedigree file included 
5,917,739 animals. The young sires were chosen among 
those born in 2001, 2002, and 2003, having more than 
10 and fewer than 150 recorded daughters. In all, 1,875 
sires fulfilled these criteria. Among them, 799 young 
sires were selected with their 40,222 daughters. Selec-
tion bias was first assessed for the UD trait with a 
heritability of 0.36, assuming that the top 25% (propor-
tion, p = 0.25) of the young sires were selected after ge-
nomic evaluation. The GEBV simulations also required 
choosing the number of daughters that would provide 
the same increase in reliability as that of the genomic 
evaluation. In the North American Holstein population, 
Van Raden et al. (2009) reported 9 daughter equiva-
lents from genomic prediction for body depth with a 
heritability of 0.37. Here, an initial value of 10 genomic 
equivalent daughter contributions (gEDC) was chosen, 
which is equivalent to a reliability of genomic evalua-
tion of 50%. This set of parameters (gEDC = 10, p = 
0.25, h2 = 0.36) defines the udder depth trait reference 
scenario, UD_REF.

Sensitivity Analysis

In order to assess the magnitude of the bias due to 
genomic preselection and to understand the role of 
parameters such as the heritability of the trait, inten-
sity of genomic selection, and reliability of genomic 
evaluations, various scenarios were implemented. Com-
pared with that of the UD_REF scenario, the value 
of heritability was decreased (h2 = 0.14): simulations 
were performed for another conformation trait, foot 
angle (FA). Notice that decreasing heritability makes 
the genomic evaluation less accurate if gEDC is kept 
equal to 10. The gEDC was increased to 26, which is 
possibly optimistic but made to maintain the same 
level of genomic accuracy. Even then, the cohorts of 
YS were no longer the same for FA. To keep fairly 
comparable scenarios, whereas handled traits are dif-
ferent, the YS for the FA trait were chosen so that 
the same average pedigree index was observed in both 
situations. A total of 601 young sires were, thus, identi-
fied with their 31,976 daughters. It defined the scenario 
hereafter called the foot angle trait reference scenario, 
FA_REF. Then the proportion of selected animals 
was decreased from 0.25 to 0.10 for both traits, defining 
scenarios udder depth trait and foot angle trait, each 
with proportion of selected animals at 0.10 (UD_p 
and FA_p, respectively). Finally, for the FA trait, 2 

1015EFFECTS OF GENOMIC SELECTION ON GENETIC EVALUATIONS

Journal of Dairy Science Vol. 94 No. 2, 2011



levels of genomic accuracy were compared. In the sce-
nario called FA_gEDC, gEDC was decreased from 26 
(in FA_REF) to 10. Reliability of direct genomic values 
decreased from 50% to 27%. In order to sum up (see 
Table 2), UD_REF and FA_REF were compared to as-
sess the effect of heritability change. Having UD_REF 
and UD_p on one side, and FA_REF and FA_p on the 
other side, highlighted the effect of selection intensity. 
The comparison of FA_REF with FA_gEDC showed 
the importance of genomic accuracy.

Criteria for Assessing the Quality  
of the Genetic Evaluations

Bias was measured as the difference between TBV 
and EBV. Many criteria exist to assess the precision of 
evaluations; we retained 2 of them. The mean square 
error of prediction was preferred to the prediction 
error variance, as used in other studies on selection 
processes (Sorensen and Kennedy, 1984; Van Vleck, 
1987; Schenkel et al., 2002). Hickey et al. (2008) and 
L. R. Schaeffer (Department of Animal and Poultry 
Science, University of Guelph, Canada, personal com-
munication) considered the computation of the cor-
relation between true and EBV. We decided to use the 
squared correlation to compare it to the approximate 
reliability, a byproduct of the mixed model equations. 
This reliability is computed using the standard devia-
tion in the base population. Statistics were averaged 
over 50 replicates. Definitions of all criteria assessing 

the quality of genetic evaluations are summed up in 
Table 3.

RESULTS

The results are first presented for the reference 
scenario (UD_REF). To facilitate the interpretation, 
breeding values are expressed in genetic standard de-
viation of the trait.

Validation of the Approach

When the selection scheme involves progeny testing, 
information is collected for the whole population of 
selection candidates so that the estimation of the Men-
delian sampling term is consistent with the hypotheses 
underlying the BLUP methodology. In particular, the 
expected value of the Mendelian sampling term is sup-
posed to be zero. For both populations simulated in 
the UD_REF scenario, Table 4 displays genetic values 
(TBV, EBV, MS) and the difference between EBV 
and TBV. In the control population, EBV are not 
significantly different from TBV and the MS term is 
not significantly different from 0. Hence, the consid-
ered population structure and estimation method lead 
to unbiased evaluations in classical conditions. And, 
in the GPS population, TBV are indeed significantly 
larger than the TBV observed in the control population 
(Table 4), illustrating the fact that genomic preselec-
tion was effective.
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Table 2. Parameters for the different studied scenarios 

Scenario1

Proportion  
of selected  
candidates Heritability

Genomic  
equivalent  
daughter  

contribution

Young  
sires  
(n)

UD_REF 0.25 0.36 10 799
UD_p 0.10 0.36 10 799
FA_REF 0.25 0.14 26 601
FA_p 0.10 0.14 26 601
FA_gEDC 0.25 0.14 10 601

1UD = udder depth trait; FA = foot angle trait; REF = reference; p = proportion of young sires retained; 
gEDC = genomic equivalent daughter contribution. 

Table 3. Definitions of the criteria for assessing quality of genetic evaluations with replicate r and 

a TBV a EBVr r= =, ˆ 1 

Bias (Δ)
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=
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1TBV = true breeding value; E = expected value; Var = variance.



Bias Evidence

Table 4 indicates that the MS term in the GPS popu-
lation is significantly larger than zero, whereas the vari-
ance has decreased compared with that in the control 
population. From this first scenario, the basic hypoth-
esis on the MS distribution is shown to be no longer 
consistent with the observed distribution. Finally, the 
difference between EBV and TBV is significant and 
negative (Δ = −0.146), indicating that evaluations are 
biased when genomic preselection is implemented. Fur-
thermore, the expected value of the bias (Δ) between 
the 50 replicates presents a low variability in the control 
(standard deviation, σΔ = 0.016) and in the GPS (σΔ 
= 0.014) populations, showing that the results on bias 
are not random.

Distribution of the Bias in Genetic Evaluations

Under the classical selection scheme, the difference 
between EBV and TBV is distributed around a mean 
value of 0 with a standard deviation within replicate of 
0.427, as indicated in Tables 4 and 5. This is a symmet-
ric distribution where mean and median are superposed, 
the distance between third and second, and second and 
first quartiles are the same (Table 5). It displays the 
distribution of the prediction error which is minimized 
with BLUP. When genomic preselection is implemented, 
such a type of distribution is also observed, but values 

are systematically translated into more negative values. 
On average, bias is equal to −0.146 with a standard 
deviation between replicates of 0.014 in the YS cohort 
and bias is equal to −0.044 with a standard deviation 
between replicates of 0.006 in the cohort of their daugh-
ters. Hence, EBV underestimate TBV.

Effect on the Accuracy of Evaluations

By construction, the BLUP solutions should maxi-
mize the correlation between TBV and EBV and mini-
mize the mean square error of prediction. The MSE 
increased in the GPS population compared with those 
of the control population. Similarly, the squared cor-
relation between TBV and EBV was lower in the GPS 
population than that in the control population (Table 
6), whereas the amount of information was identical, 
as indicated by the value of the approximate reliability 
(REL). All of the indicators show that the genomic 
preselection step decreased the accuracy of the estima-
tions compared with that of the control population, 
with a diluted effect on daughters compared with that 
of young sires.

Sensitivity Analysis

Table 7 indicates that all parameters (intensity of 
selection, heritability, and accuracy of genomic evalua-
tion) induced changes in the mean bias and mean MSE 
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Table 4. Mean (first line) and standard deviation within replicate (second row, in italics) of genetic values and 
bias (Δ) in the cohort of selection candidates when genomic selection is implemented (GPS) or not (control)1  

Population TBV EBV MS Δ = −EBV TBV

Control 0.931 0.933 −0.001 (NS) 0.002 (NS)
0.864 0.742 0.630 0.427

GPS 1.384 1.238 0.304*** −0.146 ***
0.781 0.694 0.578 0.409

1TBV = true breeding value; MS = Mendelian sampling contribution. Values are averaged over 50 replicates. 
Tested the null hypothesis H0, where the mean of MS or mean of bias equal zero.
***P < 0.001.

Table 5. Quartiles and first moments of the difference between EBV and true breeding values for the young 
sires (YS) and their daughters (D) when genomic selection is implemented (GPS) or not (control)1 

Item

Control population GPS population

YS D YS D

Minimum −2.249 −3.523 −2.598 −3.655
First quartile −0.272 −0.486 −0.406 −0.539
Median 0.004 0.011 −0.138 −0.043
Mean 0.002 (NS) 0.011** −0.146*** −0.044***
SD between replicates 0.016 0.006 0.014 0.006
Third quartile 0.278 0.508 0.127 0.454
Maximum 2.195 3.700 1.915 3.608
SD within replicate 0.427 0.737 0.409 0.736

1 Tested the null hypothesis H0, where the mean of MS or mean of bias equal zero.**P < 0.01; ***P < 0.001. 



of the BLUP evaluations compared with those of the 
reference scenario, UD_REF. When genomic selection 
intensity increased, the magnitude of the bias also rose 
and the accuracy of the estimations decreased. This is 
verified for UD and FA traits when the proportion of 
selected candidates decreased from 25 to 10% (scenario 
UD_REF compared with UD_p and scenario FA_REF 
compared with FA_p). The same trends were observed 
when the precision of the genomic evaluation decreased 
(FA_gEDC compared with FA_REF). Finally, scenar-
ios UD_REF and FA_REF were compared, with the 
same proportion of selected candidates and the same 
amount of genomic information. When the heritability 
was lower, genetic evaluations were more affected: the 
magnitude of the bias was larger and the accuracy of 
the estimations was lower.

DISCUSSION

Simulating data such as TBV and phenotypic values 
has many advantages. Compared with studies on real 
data, the only relevant source of bias is isolated and 
the mechanisms underlying bias are controlled so that 
it is then easy to vary parameters of interest and better 
understand mechanisms underlying bias. In the litera-
ture, several methods were proposed to systematically 
detect bias in prediction procedures. They involved 
assessing the change between estimates of 2 sets of se-
lected and unselected data to study sequential selection 
(Mallinckrodt et al., 1995) or between 2 consecutive 
predictions (Reverter et al., 1994). However, by access-
ing true genetic values, the actual properties of BLUP 
solutions may be contrasted with their expectation 
of unbiasedness and of minimum error variance. The 
major limitation with this method is that it cannot 
be used to check routinely if classical evaluations are 
biased by genomic preselection.

The approach in our study was designed to be realis-
tic. It is based on real data with large numbers of herds 
and young sires promoting genetic and environmental 
diversity. Moreover, the choice of paternal families and 
their composition (number of siblings) tried to mimic 

the strategies implemented by breeding companies 
when genotyping candidates. However, only one data 
structure was considered with type traits. Repeated or 
longitudinal data, for example, for which evaluation 
models are different, were not investigated.

Genomic selection can be seen as a missing data 
process where only progeny of selected animals are re-
corded. These were selected based on GEBV; however, 
this information was not included in the evaluation. Ac-
tually, whatever the scenario, it is always observed that 
under genomic selection, bias is significant and breeding 
values of selected young sires and their daughters are 
underestimated. Mixed model equations assume that 
selected young sires have a Mendelian sampling term 
with zero expectation, whereas the MS contribution is 
now, on average, positive. The accuracy of evaluations 
is also always lower when a genomic preselection step 
is implemented. The magnitude of the bias and the 
accuracy loss are even greater when the intensity of 
genomic selection is increasing. This is not surprising, 
because the proportion of missing data is indeed rising. 
We observe the same trends when the accuracy of the 
genomic evaluations is decreasing, when the correlation 
between GEBV and the trait is in the same way declin-
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Table 7. Mean bias (Δ), standard deviation (σΔ), and mean squared 
error (MSE) over 50 replicates when the heritability, the proportion of 
selected candidates, and the reliability of genomic evaluation vary 

Scenario1 Δ,σΔ MSE

UD_REF −0.146 ± 0.014 0.188
UD_p −0.227 ± 0.016 0.217
FA_REF −0.214 ± 0.021 0.305
FA_p −0.155 ± 0.020 0.299
FA_gEDC −0.249 ± 0.025 0.364

1UD = udder depth trait; FA = foot angle trait; REF = reference; 
p = proportion of young sires retained; gEDC = genomic equivalent 
daughter contribution; UD_REF = 36% of heritability, 25% of young 
sires retained, 10 EDC from genomic evaluation; UD_p = 36% of 
heritability, 10% of young sires retained, 10 EDC from genomic evalu-
ation; FA_REF = 14% of heritability, 25% of young sires retained, 26 
EDC from genomic evaluation; FA_p = 14% of heritability, 10% of 
young sires retained, 26 EDC from genomic evaluation; FA_gEDC = 
14% of heritability, 10% of young sires retained, 10 EDC from genomic 
evaluation.

Table 6. Mean squared error (MSE) and reliability measures [ρ2(EBV, TBV), REL] in control and GPS 
populations for udder depth trait and 25% selection rate1 

Population MSE ρ2 (EBV, TBV) REL

Control
 Young sires 0.183 0.756 0.815
 Daughters 0.544 0.414 0.476
GPS
 Young sires 0.188 0.727 0.815
 Daughters 0.544 0.394 0.476

1ρ2 = squared correlation; TBV = true breeding value; REL = approximate reliability; GPS = genomic pre-
selected sires.



ing. Finally, Sorensen and Kennedy (1984) reported 
that the magnitude of a selection bias also depended on 
heritability. The coefficients of the relationship matrix 
being incorrect and even combined with the variance 
ratio in the mixed model equations may explain how 
bias and MSE vary with heritability.

The magnitude of the bias was significantly different 
from zero under genomic selection in all of the studied 
scenarios. Over one generation only, the bias comprises 
between 4 and 11% of genetic standard deviation 
for the daughters of the young sires, and between 15 
and 25% for the young sires. For the same range of 
heritability and selection intensity, such magnitude 
was never reported in studies assessing bias in genetic 
evaluations. As genomic evaluations are predicted to be 
the future dominant selection tool (progeny testing is 
already being abandoned in some breeding programs), 
the preselection intensity, which is not yet accounted 
for in classical models, may become large, and clearly 
biased evaluations are to be feared. Henderson (1990a, 
b) reported that a biased predictor may exist that has a 
smaller mean squared error than an unbiased predictor. 
Indeed, Gianola et al. (1988) and L. R. Schaeffer (De-
partment of Animal and Poultry Science, University 
of Guelph, Canada, personal communication) used this 
argument to stress that the most important aspect to 
increase genetic gain is the increase of EBV accuracy. 
However, our results indicate an increase of the MSE. 
Assuming genomic preselection of the young sires only, 
genetic progress may then be decreased by 3 to 4%, if 
25 or 10% of YS are retained. It means that an uncon-
trolled loss of accuracy can actually threaten the effec-
tiveness of a breeding program and have large genetic 
and then economic effects. It seems essential to take 
into account this bias. To assess the bias magnitude 
over more generations, a fully stochastic study would 
have to be used. Considering previous studies, we ex-
pect that effect on genetic evaluations would increase. 
For example, Schenkel et al. (2002) found that the bias 
increased over generations in the case of missing pedi-
gree information. In fact, direction and amplitude of 
the bias may particularly become unpredictable when 
daughters of selected young sires are mated to other 
preselected young sires.

CONCLUSIONS

This study presents evidence that national genetic 
evaluations are biased once young sires are preselected 
based on genomic breeding values. The challenge is 
now to account for genomic preselection in the clas-
sical evaluation models. Understanding why evalua-
tions are biased leads us to propose the inclusion of, 
in the classical evaluation, performance obtained from 

deregressed GEBV of culled and selected candidates, 
whereas Misztal et al. (2009) proposed a single-step 
genetic evaluation combining pedigree-based informa-
tion with genomic data. All information upon which 
selection has been based would then be included. In 
addition, genomic and polygenic information would 
be naturally combined so that the level of accuracy 
of national evaluations would be increased. However, 
a correction, at a national level, would be even more 
relevant for international evaluations where breeding 
practices strongly differ between countries. At least, a 
validation test would be required to check that national 
evaluations are still unbiased despite genomic preselec-
tion to ensure the quality of international evaluations.
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