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INTRODUCTION

Genomic selection (Meuwissen et al., 2001) has 
radically changed selection schemes in dairy cattle 
(Schaeffer, 2006; Wensch-Dorendorf et al., 2011) and 
is currently being studied in a number of species, such 
as pigs (Lillehammer et al., 2011), poultry (Preisinger, 
2010; Chen et al., 2011; Wolc et al., 2011), and sheep 

(Duchemin et al., 2012). In horse breeding, pedigree-
based EBV are commonly developed in horse popula-
tions, especially within Europe, but still scarcely used 
by breeders as a tool for selection (Thorén Hellsten et 
al., 2006; Dubois and Ricard, 2007). However, from 
the time of the appearance of the fi rst horse genome 
sequence (Wade et al., 2009), SNP genome markers 
have been used for marketing purposes in the trade of 
live animals (Hill et al., 2010, 2012). Genomic selec-
tion has potential interest in horse breeding: the cost of 
genotyping with the Equine SNP BeadChip assay is low 
compared with the value of the animal, the generation 
interval is long due to the late entrance in reproductive 
life of performer horses, the maternal way is underex-
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ABSTRACT: Genomic evaluations often use as pseudo-
phenotypes corrected means of progeny performances, 
like daughter yield deviations (DYD) in dairy species. 
In horse breeding, own performances are also available 
and performances from other relatives (as half sibs) 
may play an important part in the EBV because the 
number of progeny remains low, even for stallions. The 
fi rst step for genomic selection in horses is therefore 
to generate pseudo-phenotypes for genomic analysis 
when parental or own information is considered. This 
work presents an easy method to compute deregressed 
EBV from regular pedigree-based genetic evaluations 
(EBV, reliabilities) to be used in genomic evaluations. 
The proposed methodology builds deregressed proofs so 
that they combine own performances (from genotyped 
individuals) and performances of relatives (outside of 
the genotyped sample). An application to show jumping 
horse data is presented. A sample of 908 stallions 
specialized in show jumping [71% Selle Français (SF), 
17% foreign sport horses (FH), 13% Anglo Arab (AA)] 

were genotyped. Genotyping was performed using the 
Illumina Equine SNP50 BeadChip, and after quality 
tests, 44,444 SNP were retained. Two methods were 
used for genomic evaluation: GBLUP and BayesCπ, 
and 6 validation data sets were compared, chosen 
according to breeds SF + FH + AA or SF + FH, family 
structure (more than 3 half sibs), reliability of sires 
(>0.97) or sons (>0.72). In spite of a favorable genetic 
structure [linkage disequilibrium equal to 0.24 at 50 
kb pairs], results showed low advantage of genomic 
evaluation. On the validation sample SF + FH + AA, the 
correlation between deregressed proofs and GBLUP or 
BayesCπ predictions was 0.39, 0.37, 0.51 according to 
the different validation data sets, compared with 0.36, 
0.33, 0.53 obtained with BLUP predictions. Correlations 
were much lower on the SF + FH sample. Research is 
pursued to understand this low advantage of genomic 
selection and to improve the methodology for genomic 
evaluation in this context, which is less favorable than 
dairy cattle breeding.
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ploited, and other traits than performances are still dif-

et al., 2008).
Genomic evaluations often use as pseudo-phe-

notypes corrected means of progeny performances, 
like daughter yield deviations ( ) in dairy species 
(VanRaden and Wiggans, 1991). In horse breeding, own 
performances are also available, and performances from 
other relatives (as half sibs) may play an important part 
in the EBV because the number of progeny remains low, 
even for stallions. Therefore, the simple procedures of 
VanRaden and Wiggans (1991) or Garrick et al. (2009) 

-
tion in horses is therefore to generate pseudo-phenotypes 
for genomic analysis when parental or own information 
is considered. This is the aim of this study. As an appli-
cation, the reliability of genomic selection in the current 
breeding population of jumping horses in France was 

other species where the use of DYD is inappropriate, is 
to generate pseudo-phenotypes (unless the single step is 
used: Aguilar et al., 2010; Christensen and Lund, 2010). 
Deregressed EBV seem to be the right choice for the 
pseudo-phenotype to use all performances included in 

-
ing of stallions. More, use of deregressed EBV permits 
one to easily use multiple traits and nonlinear traits as 
single performance. To remain easy to use and general, 
we assume that the available data to compute pseudo-
phenotypes (i.e., deregressed proofs) are EBV and their 
associated reliabilities.

 The objective is to provide 
pseudo-phenotypes for genomic evaluation in such a 
way that these pseudo-phenotypes can be used in a sim-
ple genomic model, for instance this GBLUP:

(eq) (eq) (eq)
1 1 1      [1]

where the subscript 1 refers to the genotyped population; 
(eq)
1  is the vector of pseudo-phenotypes, which sum-

marizes all performances of ungenotyped relatives cor-
eq eq 2

1 eVar , where 
(eq)

the amount of information brought by these pseudo-
phenotypes (i.e., weights), 2

e  is the residual variance 

of the original pedigree-based genetic evaluation model, 
and (eq) stands for “equivalent” model. This model will 
be used with genomic data, where 2

1 11 uVar( )u G , with 
11G  the genomic relationship matrix between geno-

typed horses calculated from SNP genotypes. This was 
computed as

11 4444

1
2 1j j

j
p p

WWG  

(VanRaden, 2008), with W a centered incidence matrix 
of markers effects and pj the allelic frequency of SNP j.

The pseudo-performances and weights in Eq. [1] 
must provide the same breeding values when using ped-
igree-based relationships for genotyped individuals as 
the full pedigree-based genetic evaluations, so that EBV 

1û  must be the solution to

eq

eq

eq 1eq 1 eq 1 eq
1

eq 1 eq 1 1 eq 1
111 1

ˆ
û

with 2

1 t
h

, and t is the repeatability of the performances 
and 2h the heritability; and 1û  must also be the solution to

1

ˆ

û
,

with  =  + Zu + e, the original model used to calcu-
late EBV where  was the vector of raw performances 
of whole population, u the 
vector of breeding values for all the population, X and Z 
incidence matrices.

The objective is to calculate (eq) and (eq) from these 
2 expressions and available data: EBV estimates û  and 
their reliabilities, . The reduction of reliability due to the 

-
cused on the second line of regular BLUP equations:

1 ˆˆ . [2]

Partitioning the A matrix according to genotyped (1) and 
ungenotyped (2) individuals gives

11 12

21 22

A A
A

A A
, and let 

11 12

21 22

1 A A
A

A A

and 1 2Z Z Z .

The System [2] can be written as
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part of the reliabilities is due to M and which part to 1
11A ,  

that is, to know for each animal the reliability which 
would have been obtained had it no relatives genotyped. 
The Harris and Johnson (1998) formulae enable us to 
separate the reliabilities according to different sources: 
parent average, the record of the animal, and progeny re-
cords. But their algorithm, which cycles through a com-
plete pedigree, cannot be applied only in the genotyped 
population (1) because not all founders are genotyped; in 
practice, relationships are very diverse and not only par-

be easy to use if parents of the genotyped population 
were added to the system, and therefore genealogical 
paths between 2 (genotyped) relatives can be followed. 
So, the ungenotyped population (2) was divided between 
the subpopulation (2a) of ancestors of genotyped indi-
viduals (1), and the remaining subpopulation (2b). In that 
case, the original System [2] becomes:

11 12a 12b
1 1 1

2a1 2a2a 2a2b
2a 2a 2a

2b1 2b2a 2b2b
2b 2b 2b

1

2a

2b

ˆ
ˆ
ˆ

ˆ

ˆ

ˆ

Z Z A A A u
A Z Z A A u
A A Z Z A u

And the absorption of Population (2b) gives the System 
[4]:

 

1 112b 2b2b 2b1 11 12a 12b 2b2b 2b2a
1 1 2b 2b 2b 2b

1 12a1 2a2b 2b2b 2b1 2a2b 2b2b 2b2a 2a2a
2b 2b 2a 2a 2b 2b

1

2a

112b 2b2b
2b 2b 2

ˆ
ˆ

ˆ

Z Z A Z Z A A A A A Z Z A A

A A Z Z A A Z Z A Z Z A A A

u
u

b
12a2b 2b2b

2a 2b 2b 2b

ˆ

ˆ ˆ
     
[4]

In that system, let’s split the information due to re-
lationships inside Population (1+2a) and the remaining 
information. In fact, (1+2a) form a complete pedigree, 
smaller than (1+2a+2b). Let

 
12a11 11 12a

2a1 2a2a
2a1 2a2a

1A A

A A

the inverse of relationship matrix in Population (1) 
and (2a; matrix  is sparse and can be obtained using 
Henderson’s rules) and let

1 112b 2b2b 2b1 11 11 12a 12a 12b 2b2b 2b2a
1 1 2b 2b 2b 2b

1 12a1 21 2a2b 2b2b 2b1 2a2b 2b2b 2b2a 2 b2a 2b2a
2b 2b 2a 2a 2b 2b

. 

11 12
11 1

21 22
22 2

1

2

ˆ
ˆ

ˆ

ˆ

uZ Z A A
uA Z Z A

Absorbing 2û ,

11 12
1 1

1122 21
2 2

12
1

122
2 2 2

ˆ

ˆ

ˆ

Z Z A A
u

Z Z A A

Let 
112 22

1 1 2 2

21 11 1
11

Z Z A Z Z A
M

A A A ,

and the system becomes

12
11

11 1 122
2 2 2

ˆ
ˆ

ˆ
M A u

. 
[3]

Let Md be a diagonal matrix giving the same solutions 
as M in Eq. [3]. In principle, for animals with a reasonable 
reliability, this matrix is very similar to the diagonal of M, 
and we will assume so. Setting Eq. [1] to be equivalent to 
Eq. [3] gives

eq 1
d = 

12
1eq 1

d 122
2 2 2

1 1
d d 11 1

ˆ

ˆ

ˆM M A u  

 
So, M (or more exactly its diagonal) has to be estimated 
from EBV and reliabilities (matrices in Eq. [2] are too 
large and, due to the nonlinearity of the rank evaluation 
in horses, not really sparse enough to be explicitly han-
dled). From the reliabilities ( ) the different PEV can be 
computed, and therefore the diagonal of 

11
11M A  can 

readily be formed. To obtain M, one needs to infer which 
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The System [4] may be written as:

11 12a
1 111 12a

2a1 2a2a
2a 2a2a1 2a2a

ˆ
ˆ
u w
u w . [5]

In these equations, the Harris and Johnson (1998, 
Appendix 1) formulae, reversed, enable us to compute 
the element of , a diagonal matrix such as [  + ]–1  

 + ]–1, 
which was not possible from Eq. [3]. So, Eq. [5] was 
replaced by

11 12a
1 111

2a1 2a2a
2a 2a2a2a

ˆ
ˆ
u w
u w . [6]

The vector w was easy to obtain from , and the re-
lationship matrix of the population of genotyped horses 
(1) and their ancestors (2a). This relationship matrix did 
not involve other horses.
Now,  and w were known, and Eq. [6] was equivalent to

112a 2a2a 2a1 11
11 2a2a

112a 2a2a
1 1 2a2a 2aˆ .

Note that 11 11 12a 2a2a 2a1
11 , so that the system 

was:

1 112a 2a2a 2a2a 2a1 1
11 2a2a 11

112a 2a2a
1 1 2a2a 2aˆ

of equations of Population (2a) were neglected and only 
11 – 12a (( 2a2a + 2a2a)–1 

+ ( 2a2a)–1) 2a1 were retained. This corresponds to the 
this diagonal matrix Mb sought after, then 

(eq)–1 = Mb,  

and the pseudo-phenotypes were 

(eq) = Mb
–1 [w1 – 12a( 2a2a + 2a2a)–1 w2a].

 The choice of the population to be 
genotyped was motivated by 2 criteria: the availability 
of a DNA sample, and the reliability of the estimated 
jumping breeding value of the stallion. In practice, only 

around 850 stallions are currently alive and used to pro-
duce sport horses, and conserved DNA samples of dead 

and quality. Putting together fresh blood samples and 
frozen semen of national stallions and privately owned 
stallions, as well as conserved DNA owned by the pater-
nity validation laboratory, 908 horses were genotyped.

These horses were from these breeds: 71% Selle 
Français ( ), 17% foreign sport horses [ , most of 
them Koninklijk Warmbloed Paardenstamboek Nederland 
( ), Holsteiner, Belgian Warmblood, Hannovarian, 

Arabian (AA). Most horses were stallions; only 17 mares 
were included. They were mainly born from 1989 to 2005, 
equally distributed among these years (i.e., about 46 hors-
es per year). A few horses (14%) were born earlier, up to 
1974. Most horses had own performances in competition 
(92%). A majority of stallions were, in addition, sires of 
competing horses in jumping (61%). In the genotyped in-
dividuals, there were 78% of the SF stallions in reproduc-
tive activity in 2009, as were 45% of the FH stallions, and 
65% of the AA stallions. Therefore, these stallions i) are 
representative of the breeding population and ii) do have 
a sizeable amount of information. Thus, it would be dif-

Among these 908 horses, 127 were parents or grand-
parents of some other genotyped horse; conversely, 336 
horses had their sire genotyped. There were 342 geno-
typed half-sib families, with an average size of 2.7. The 
342 families included 204 families composed of a single 
couple father-son, 82 families with 3 half sibs or more, 
and 17 families of 10 half sibs or more (up to 39).

 Horse genotyping was per-
formed using the Illumina Equine SNP50 BeadChip 
assay at Labogena (Jouy en Josas, France), according 
to the manufacturer’s standard procedures. This array 
includes 54,602 SNP evenly distributed throughout the 
genome. Poor quality markers were discarded based on 
3 criteria: markers genotyped in less than 80% of the 
samples (call frequency < 80%), or having a minor al-
lele frequency ( ) under 5%, or strongly deviating 
from Hardy-Weinberg equilibrium (P-value < 10–8). 
The X chromosome was not included. Finally, 44,444 
SNP were retained on the 31 autosomal chromosomes. 
The mean distance between adjacent SNP was 50,256 bp 
(~0.05 cM); about half adjacent SNP (48%) were closer 
than 25,000 bp. The MAF was uniformly distributed be-
tween 5 and 50%.

 Two genomic 

detailed in the computation of pseudo-phenotypes. The 
second is the BayesC  (Habier et al., 2011), where the 
phenotypes 1

(eq) are a function of marker effects 
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4444
eq(eq) (eq)

1 1
1

1 ij j j
j

z a , 

where zij aj is the effect of 
marker j, and j is an indicator variable stating whether 
the marker j has any effect (1) or not (0), and (eq) and 
e1

(eq) are as previously noted. The distribution for  = ( 1 
 4444) is a multivariate Bernouilli such as P( 1 = 1| ) 

= , where  is the probability that the marker has an 
effect on the phenotype; 
previous experiences in dairy sheep (Duchemin et al., 
2012) and cattle (Colombani et al., 2013) which showed 
good accuracies for this value and a general robustness 
of BayesCPI to the exact value of . The prior distribu-
tion of marker effects was normal with a common vari-
ance after an inverted 2 distribution. Therefore, the 
marker variance a

2 is common to all loci. For details 
of the model, see Habier et al. (2011). Breeding val-
ues were obtained through GS3 software developed by 
Legarra et al. (2010) and were called BAYESCPI. The 
posterior distribution was computed using a full Monte 
Carlo Markov Chain of 50,000 iterations, with a burn-in 
of 200 iterations.

To compare genomic evaluation to traditional evalu-
ation, the Model [1] was also applied with genealogical 
data assuming Var(u1) = A11 u

2, with A11 the relation-
ship matrix between genotyped horses. This evaluation 
was called BLUP.

and Genealogy. The original EBV were based on a mul-
tiple-trait BLUP animal model with 2 highly (0.90) ge-
netically correlated criteria: logarithm of annual sum of 
points and an underlying variable responsible for ranking 
in each event (Ricard, 1997). The multiple trait model is 
used only to deal with special cases in phenotypes (e.g., 
horses with a low number of events). Because the 2 traits 
are highly correlated, in the remaining, the EBV will be 
considered as calculated from a single, repeatable com-
posite trait. The original EBV involved 242,620 horses 
with 1,006,414 annual performances and more than 14 
million events, and included 422,522 relatives.

To compute (eq), (eq), and A11, the genetic rela-
tionship matrix used for BLUP, the pedigree of geno-
typed horses up to all known ancestors (whatever the 

-
sented 6562 horses.

whatever the models to suppress the uncertainty in the es-
timations, due to the rather small data size. Heritability of 
jumping results in competition was 0.25 and repeatability 
of the trait between years 0.45, which gave  = 2.75. For 
BAYESCPI, the same genomic variance was obtained 
combining  = 9%, a

2 = 0.00014, and a
2 = 0.55.

 Usually, com-
parisons of genomic and pedigree-based evaluation use 
1 training and 1 validation data set which mimic the 
true accumulation of information across time (Hayes et 
al., 2009b). The predicted EBV of young bulls without 
progeny in the training data set are compared with the 
realized DYD obtained later. In absence of strong se-
lection, and with the equivalent model developed here, 
any kind of splitting of validation and training data sets 
could in principle be used, because information from re-
lationships in the genotyped sample was separated from 
all other information. However, as pointed out by Hayes 
and Goddard (2008), Goddard (2009), and Habier et al. 
(2010), the accuracies of GEBV depend on relationships 
between training and validation data set and reliability 
of breeding values in the training data set. Moreover, the 
correlation between EBV and pseudo-phenotypes in the 
validation data set depends on the accuracy of breeding 
values used to compute pseudo-phenotypes. Therefore, 
we constructed a validation data set which included stal-
lions meeting the following conditions: with sire geno-
typed in training data set, with weight > 3, and mean-
ing reliability > 0.52, to assure minimum links between 
training and validation data and minimum information 
about genetic value of the stallions in the validation data 
set. Then we tried different structures of validation data 
sets to highlight the genetic differences inside the popu-
lation detectable by genomics. We used 3 different vali-
dation data sets, including stallions: issued from fami-
lies with at least 3 half sibs (Data Set 1); with reliability 
of the sire of the stallion over 0.97 in training (weight > 
100; Data Set 2); and with reliability of the stallion over 
0.72 (weight > 7; Data Set 3). In each of these 3 cases, 

-
lions not included in the validation data set.

Two estimations were performed for each data set: 

and FH in both training and validation data sets. The 
comparison was made with correlation and regression 
between BLUP, GBLUP, BAYESCPI estimated EBV, 
and pseudo-phenotypes.

Figure 1 shows linkage disequilibrium ( ) mea-
sured by average r2 between syntenic SNP pairs against 
map distance up to 1 megabase according to the breed. 
All available pairs of SNP were used and grouped by 
steps of 5 kb. Linkage disequilibrium was 0.280 for AA, 
0.228 for FH, and 0.243 for SF at the mean distance (50 
kb) between adjacent markers. There were 216 mono-
morphic SNP in AA, and 1 in SF and FH. The corre-
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lation between r2 measured on adjacent SNP (44,001 
pairs) in each breed was 0.956 between SF and FH, 
0.918 between SF and AA and 0.907 between FH and 
AA. This implies a very strong concordance of phase 
across breeds and therefore a low divergence.

Figure 2 shows the 2 fi rst principal components of 
principal component analysis of the genomic relation-
ship matrix for all analyzed animals. The AA horses 
form a very different group from the others, whereas SF 
and FH tend to mixed together. For SF and FH, rules 
for assigning crossed horses to a breed have varied with 
time. By adding the percentage of thoroughbred in SF 
horses in the plot, 4 main axes were distinguished: FH, 
AA, Thoroughbred, and French saddle horse.

Pseudo-Performances and Weights
The equivalent performance was expressed in units 

of phenotypic SD. The distribution was nearly normal, 
the mean was 1.374 (SD = 0.743, with minimum of 
–0.898, and maximum of 3.949). The weights had mean 
16.869 (±31.563, with minimum of 1.150, and maxi-
mum of 341.609). These weights corresponded to the 
reliability of breeding values, corrected as if relation-
ships were unknown in the genotyped population. The 
average reliability was 0.67 (SD = 0.19, minimum of 
0.30, and maximum of 0.99).

Validation
The results of cross validation are shown in Table 1. 

The correlation between pseudo-phenotypes and ge-
nomic evaluation (GBLUP, BAYESCPI) is greater than 

Figure 2. Plot of the 908 genotyped horses in function of the fi rst 2 
principal components of the genomic matrix according to the breed (SF = 
Selle Français, FH = foreign sport horses, AA = Anglo-Arab). See online 
version for fi gure in color.

Table 1. Correlation and regression between pseudo-
phenotypes for show jumping and genetic evaluation 
from genealogy (BLUP), or from SNP using genomic 
BLUP method (GBLUP) or BayesCπ method 
(BayesCPI) in 3 different validation data sets.

Genetic
  evaluation

Correlation Regression

All breeds SF + FH1 All breeds SF + FH
Validation set 12

   N 103 84 103 84
   BLUP 0.36 0.28 0.99 0.87
   GBLUP 0.39 0.30 0.77 0.72
   BayesCPI 0.39 0.29 0.74 0.69
Validation set 23

   N 98 89 98 89
   BLUP 0.33 0.30 0.97 0.89
   GBLUP 0.37 0.34 0.71 0.73
   BayesCPI 0.37 0.33 0.69 0.70
Validation set 34

   N 91 76 91 76
   BLUP 0.53 0.46 0.86 0.80
   GBLUP 0.51 0.47 0.64 0.68
   BayesCPI 0.51 0.47 0.62 0.66

1SF = Selle Français, FH = foreign sport horses.
2Horses with their sire genotyped in training data set, minimum reliability 

= 0.52, issued from families of at least 3 half sibs.
3Horses with their sire genotyped in training data set and minimum reli-

ability = 0.97, minimum reliability = 0.52.
4Horses with their sire genotyped in training data, minimum reliability = 0.72.

Figure 1. Linkage disequilibrium (r2) in Selle Français horses (SF), 
foreign sport horses (FH), and Anglo-Arab horses (AA) assessed by using 
908 samples from EquineSNP50 genotypes (each point is the mean of all SNP 
pairs over 5 kb pairs).

 at INRA Institut National de la Recherche Agronomique on July 19, 2013www.journalofanimalscience.orgDownloaded from 

http://www.journalofanimalscience.org/


Ricard et al.1082

the correlation with pedigree genetic evaluation (BLUP), 
except for the Validation Set 3 multibreed (validation 
stallions chosen based on their reliability). But this su-
periority was low, that is, from 0.01 to 0.04. The regres-

but much lower for the genomic 1, about 0.70.

 

Compared with DYD, the use of deregressed proofs 
has the same objective: to summarize performances from 
ungenotyped progeny to reach the genetic value of the 
genotyped horse, and getting rid at the same time of con-

course, deregressed proofs, as opposed to DYD, can in-
clude and properly weight performances from relatives 
other than progeny (e.g., own performances and half-sib 
performances). In the sample used, almost all stallions 
had own performances but only 61% had progeny, allow-
ing a larger data set than if using only progeny-tested sires 
and more information for each horse to be included in the 
analysis. Moreover, the use of deregression clearly sepa-
rates the information inside and outside of the genotyped 
sample meaning that, if a female created a link inside the 
genotyped sample (e.g., as mare of stallion) and is also 
used as mate of other stallions, these 2 functions are dis-
tinguished. This is not the case when using DYD, where 
the full EBV of the dam is included in the correction of the 
performances of daughters, whatever the links with other 
bulls. This split between covariances inside and outside 
the genotyped sample gave formulae (not shown) which 
showed a clear relationship of our deregressions with the 
single step method (Aguilar et al., 2010, Christensen and 
Lund, 2010) as introducing the same deviation of the rela-
tionship matrix from the expected one based on pedigree. 
However, the computations needed in our deregression 
assume matrices (e.g., M) close to diagonal and, there-
fore, are valid for animals with relatively large informa-
tion, which was the case of our sample.

Garrick et al. (2009) proposed 2 notions to correctly 
use deregressed proofs: i) removing parent average ef-
fects, and ii) weighting deregressed information accord-
ing to the percentage of genetic variance explained by 
SNP. For removing parental effects ( ), their arguments 
are based on the possibility of the effect of a major gene. 
In that case, the EBV of the genotyped individual will be 
shrunken toward the parent average whatever the allele 

-

large gene segregating, the same will be true for all the 
process involving generation of DYD: wrong estimation 

the bull (thus, the accuracy of the DYD is overestimated). 
Anyhow, major gene or not, DYD will be unbiased [e.g., 
E DYD =E DYD ], and deregressed proofs will be un-
biased as well. The argument of Garrick et al. (2009) seem 
to rely more on the difference between expected and real-
ized transmission from parents to progeny, which cannot 
be accounted for in regular pedigree-based evaluations 
(but it is, for instance, in Fernando and Grossman, 1989). 
It has to be kept in mind that PA includes all information 
from relatives which are not progeny (e.g., half- and full-
sibs). Therefore, the option is to throw away parental in-
formation (which might be serious for certain species or 
traits) or to include it, knowing that there is a risk that the 
polygenic model might be wrong, but the practice shows 
that this is rarely the case. Anyhow, this risk occurs every-
where in genomic or pedigree-based evaluations. And at 
any rate, PA are explicitly included in the process of esti-

-
uation). Thus, it is not because we do not add PA to DYD 

argue that neither DYD nor deregressed proofs are cor-
rect, because they rely in estimates of the breeding value 
of parents and mates which are shrunken, and therefore 
one should work with crude phenotypes (e.g., as in a sire 

-
lection exists. Therefore, in our opinion, there is no really 
valid argument to reject the use of PA in either pedigree-
based or genomic-based models, besides the good compu-
tational properties of DYD and their ease of interpretation 
(i.e., the phenotype of a bull, had it been a cow).

Composite Performances against  

-
ever the performances of relatives used to create the 
pseudo-performance of a genotyped individual (DYD or 
deregressed proofs as here), this information is obtained 
using genealogical rules, not any marker-based (genom-
ic) rule, due to the lack of other information (e.g., the 
probabilities of transmission in Fernando and Grossman, 
1989). So, in a sense, creating pseudo-performances 
ought to favor the genealogical evaluation compared 

our opinion, the correct strategy is to distinguish infor-
mation inside and outside the genotyped sample. This 
is what we did in this work. The pseudo-phenotypes 
were thus more correct than DYD, because i) we used 
all available information, and ii) the amount of infor-
mation from progeny was correctly separated into pa-
ternal and maternal path for genetic and genomic evalu-
ation, so that none of it had advantages. Nevertheless, 
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this was not the limiting aspect of the study. And better 
results obtained in dairy cattle with DYD than in jump-
ing horses with deregressed proofs must be explained in 
another way. The theoretical model used in GBLUP is 
not different from that used in classical breeding evalu-
ation, except that the covariance between genetic values 
are different (one from genealogy, the other from mark-
ers). Our deregression method is equivalent to an acyclic 
graph (i.e., there is no notion of “time”). Therefore, in 
principle, any partition in training and validation is valid 
for crossvalidation (with the proviso that selection does 
not occur or it is of low intensity). This is not the case 
with DYD where, for instance, performances of grand-
daughters must not appear in the genetic evaluation of 
the training data set. Therefore, cross validation in dairy 
cattle is always performed including a notion of “time” 
in the choice of training (reduced data set) and a valida-
tion sample (full data set), with 4 more years of cumu-
lated data (Mantysaari et al., 2010). By doing so, as a 
consequence, selection of sires is also taken into account 
as almost 1 generation includes testing and service bulls. 
In our sample, males with performances not taken for 
reproduction were not genotyped and never included in 
the analysis. Thus, the whole sample was selected, with 
no genomic information indicating the selection process. 
This may explain partly the results obtained in jumping 
horses, even with deregressed proofs.

Results on Horse Data: What Could Be Expected for 
the Effi ciency of Genomic Selection Knowing the 
Population Structure?

The level of LD in the French horse population was 
comparable to other species where genomic selection 
was effi cient. McKay et al. (2007) studied LD in 5 bo-
vine breeds and found mean r2 equal to 0.50 at 5 kb and 
0.22 at 199 kb, so slightly greater than SF measurements 
(respectively, 0.47 and 0.20). The situation in sheep was 
more unfavorable, with r2 between 0.12 and 0.19 at 50 
kb (Kemper et al., 2011) against 0.24 for the same dis-
tance in SF. This relatively high LD is in principle fa-
vorable to genomic selection, as the SNP used might be 
linked to genes. On the other hand, the high LD on a 
long distance could have been unfavorable due to lack 
of accuracy in the localization of genes of interest and 
misattribution of such genes to correct horses.

The analysis of the genomic relationship matrix G 
revealed a clear difference between AA horses and the 
other sport horses. This is unfavorable for genomic eval-
uation (Hayes et al., 2009a) because only weak links be-
tween these 2 populations exist; therefore, genes spotted 
through SNP in 1 population are not useful for another 
population. But, because there was a difference for jump-
ing abilities between AA and SF, the genomic evaluation 
tended to estimate the difference between breeds, rath-

er than differences between horses inside breeds. One 
choice would have been a model with the fi xed effect of 
the breed, but it was not possible because the number of 
AA horses in the validation set was too small (from 9 to 
15, depending on data set). So, we preferred to restrict 
the analysis to SF + FH, closer breeds. However, at fi rst 
sight, the high correlation between LD observed for the 
same pairs of SNP in the different breeds could have 
been a favorable situation for the multibreed purpose.

Results on Horse Data: Is Finally the Genomic 
Selection Reliable for Jumping Horses?

Finally, the reliability of genomic selection on this 
data set for jumping horses was very low compared with 
what has been obtained in other species. The problem 
was not the trait studied, jumping ability, as the results of 
cross validation for BLUP were as good as, for example, 
in dairy cattle, considering the differences in reliabilities 
of the 2 pseudo-phenotypes (Hayes et al., 2009b; Olson et 
al., 2011). And the slope of the regression in that case was 
1. Use of jumping performance in BLUP animal model 
was validated a long time ago in France (Tavernier, 1994), 
showing correlations between performances and genetic 
evaluation at birth between 0.31 and 0.36 (according to 
age at performance) and regression slopes between 0.80 
and 1.14. The problem was the low difference between 
genomic (whatever the method) and genetic evaluations. 
Several factors already highlighted in literature may 
explain these results. First of all, the small sample size 
(Luan et al., 2009; VanRaden et al., 2009), but also the 
low level of relationships between training and validation 
samples (Habier et al., 2007, 2010; Goddard et al., 2011), 
the small accuracy of pseudo-performances (Goddard, 
2009; Hayes et al., 2009b), and fi nally, the use of a multi-
breed sample (Hayes et al., 2009a).

Greater correlations are expected whenever sires 
of validation data will have more progeny, producing 
perhaps better results for genomic evaluations. But, in 
fact, the data structure that we used is similar to what 
will exist in real life, except that “old” information will 
cumulate throughout the years; but “old” information is 
not very useful for prediction of young born.

In practice, for selection of the youngest candidates, 
the pedigree-based BLUP, as well as the genomic evalu-
ation, will have lower accuracies than those observed in 
this work. The reason is that both evaluations included 
information from pedigree which may not always be 
available in reality at the fi rst stage of selection (but 
that was available in the cross validation). For example, 
grandchildren from other sons of the sire of the candi-
date might not yet be born when the candidate would 
be selected; however, they have been included in the 
evaluation of the sire in this cross validation. But this 
effect should remain low because the validation data set 
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was mostly built with young sires. This effect infl uenced 
both pedigree and genomic evaluation.

The performance of genomic selection in dairy cattle 
is empirically rather well understood. This is so because 
of the large number of studies and the excellent struc-
ture of the data set (accurate DYD, neat cut-offs between 
training, and validation samples). However, this is not 
the case for other kinds of populations, where there is not 
much experience or data are more complicated. Goddard 
et al. (2011) have outlined methods to estimate “a priori” 
accuracy of genomic selection. These methods consider 
existing LD in the population (which is actually a mea-
sure of realized historical co-ancestry), as well as the rel-
ative weights of genomic and pedigree relationships. It 
is our intention to extend this line of research to estimate 
whether our results make sense or not, and under which 
condition genomic selection would be promising.

In addition, our pseudo-phenotypes rely on assump-
tions of the infi nitesimal model; therefore, it is likely 
that they favor this same infi nitesimal model. It is not 
the case in dairy cattle, where DYD for production traits 
are extremely accurate. This hypothesis remains as well 
to be investigated.

Conclusion 
In this paper, accuracy of genomic evaluation for 

show jumping was obtained from an almost exhaustive 
sample of living stallions in France. To do so, a spe-
cifi c deregression procedure was necessary to take into 
account own performances and performances of vari-
ous relatives (not only progeny) outside the genotyped 
sample. This deregression procedure was easy to imple-
ment from offi cial EBV, reliabilities, and pedigrees. 
Unfortunately, the accuracy of genomic evaluation, 
measured by cross-validation on different validation 
samples, was not suffi ciently greater, to suggest at pres-
ent an application in breeding plans for jumping horses. 
But this conclusion is only related to accuracy and po-
tential benefi ts from greater selection intensity; shorter 
generation interval and lower inbreeding in the long 
term have also to be taken into account when planning 
genomic selection in horses. Research will be pursued to 
improve this result.
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