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11 Summary

12 For genomic selection methods, the statistical challenge is to estimate the effect of each of the available single-
13 nucleotide polymorphism (SNP)AQ1 . In a context where the number of SNPs (p) is much higher than the number of
14 bulls (n), this task may lead to a poor estimation of these SNP effects if, as for genomic BLUP (gBLUP), all SNPs
15 have a non-null effect. An alternative is to use approaches that have been developed specifically to solve the
16 ‘p>>n ’ problem. This is the case of variable selection methods and among them, we focus on the Elastic-Net
17 (EN) algorithm that is a penalized regression approach. Performances of EN, gBLUP and pedigree-based BLUP
18 were compared with data from three French dairy cattle breeds, giving very encouraging results for EN. We tried
19 to push further the idea of improving SNP effect estimates by considering fewer of them. This variable selection
20 strategy was considered both in the case of gBLUP and EN by adding an SNP pre-selection step based on
21 quantitative trait locus (QTL) detection. Similar results were observed with or without a pre-selection step, in
22 terms of correlations between direct genomic value (DGV) and observed daughter yield deviation in a validation
23 data set. However, when applied to the EN algorithm, this strategy led to a substantial reduction of the number
24 of SNPs included in the prediction equation. In a context where the number of genotyped animals and the
25 number of SNPs gets larger and larger, SNP pre-selection strongly alleviates computing requirements and
26 ensures that national evaluations can be completed within a reasonable time frame.

27 1. Introduction

28 The availability of dense single-nucleotide poly-
29 morphism (SNP) arrays has considerably changed the
30 landscape of dairy cattle selection worldwide. With
31 such chips, it is now possible to retrieve information
32 about quantitative trait locus (QTL) all over the ge-
33 nome. Genomic estimated breeding values (GEBV),
34 which correspond to a combination of the sum of
35 the effects of genetic markers (direct genomic value
36 (DGV)) and estimated breeding value (EBV), can be
37 used instead of the classical pedigree-based genetic
38 evaluations in selection programmes. Meuwissen et al.
39 (2001) envisioned the consequences on the estimation

40of breeding values of a high-density marker map
41covering the whole genome (see also Haley &Visscher,
421998; Andersson & Georges, 2004). Through simula-
43tions, they showed that the use of GEBV can greatly
44improve accuracy of genetic evaluation of animals
45with no recorded performances hence leading to
46higher genetic gain, particularly by shortening gener-
47ation intervals in dairy cattle. In dairy cattle, the use
48of GEBV is a promising alternative to the long and
49costly progeny test. Since 2007, the potential interest
50of genomic selection in dairy cattle has been
51clearly demonstrated in terms of accuracy of breeding
52values (Van Raden et al., 2009; Habier et al., 2011)
53and in terms of design of breeding programmes
54(Goddard & Hayes, 2007; Wensch-Dorendorf et al.,
552011). Recently, several countries (Australia, France,
56Germany, Netherlands, New Zealand, USA and
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57 others) implemented genomic selection for their
58 national evaluations (Hayes et al., 2009; Van Raden
59 et al., 2009; Boichard et al., 2010; Harris & Johnson,
60 2010; Liu et al., 2010).
61 Numerous methods have been proposed to per-
62 form genomic evaluations with variable resulting
63 accuracy depending on the underlying genetic as-
64 sumptions, on the trait, breed and reference popu-
65 lation size. For instance, Habier et al. (2010a) tested
66 a large panel of Bayesian approaches on a data set
67 from the Holstein breed and even though Bayes
68 A appeared to be a nearly optimal choice in their
69 study, they recommended determining the best
70 method for each quantitative trait separately. Indeed,
71 in another study on Australian Holstein Friesian
72 dairy cattle, Bayes A provided the lowest correla-
73 tion between predicted GEBV and breeding values
74 among the set of tested methods (Verbyla et al., 2009).
75 On French data that Legarra et al. (2011) conducted
76 for production traits, better predictions were ob-
77 tained for Bayesian LASSO than for genomic
78 BLUP (gBLUP). For other traits like fertility, it
79 was shown that gBLUP performed slightly better
80 than Bayesian LASSO (Hayes et al., 2009; Van Raden
81 et al., 2009).
82 Hence, it is still difficult to rank the large panel of
83 available genomic evaluation methods according to
84 their accuracy.
85 In a genomic evaluation procedure where the com-
86 plete set of SNP is used, the statistical challenge is
87 to evaluate effects attached to each of the available
88 SNPs. In a context where the number of SNPs (p) is
89 much higher than the number of bulls (n), this may
90 lead to a poor estimation of the SNP effects even
91 though the sum of genotypes time effects may be ad-
92 equate on this reference population. In a routine
93 evaluation with new animals, the best way to be con-
94 fident in DGV or GEBV is to attach an effect to SNP
95 in linkage disequilibrium with a QTL which reflects
96 the effect of the QTL and an effect regressed towards
97 zero to the others.
98 An alternative is to use approaches that have
99 been developed especially to solve the p>>n problem.
100 This is the case of variable selection methods and,
101 among them, we focused on the Elastic-Net (EN) al-
102 gorithm (Zou and Hastie, 2005) and we chose to
103 compare it to gBLUP, which is currently the most
104 used approach in practice. Secondly, a two-step ap-
105 proach was tested by adding an initial preparation
106 step consisting of an SNP pre-selection based on re-
107 sults from a QTL detection analysis. The second
108 step implements gBLUP or EN on this preselected
109 set of SNP with the hope that individual estimates
110 of effects of the retuned SNP would be more
111 accurate. To compare benefits and drawbacks of these
112 situations, a pedigree-based BLUP was used as the
113 reference.

1142. Materials and methods

115(i) Data

116The data sets consisted of 1172 Montbéliarde, 1218
117Normande and 3940 Holstein bulls, which were all
118progeny tested and genotyped with the Illumina Bov-
119ine SNP50 BeadChip1. With a minimumminor allele
120frequency of 3%, 38 460 SNPs were retained for the
121Montbéliarde breed, 38 534 SNPs for the Normande
122breed and 39 738 SNPs for the Holstein breed.
123Mendelian segregation was checked. The SNP pre-
124selection chosen in this study uses a QTL detection
125method based on haplotypes which requires phased
126data. To infer missing genotypes and phases, Dual-
127PHASE software was used (Druet & Georges, 2009).
128The data set was divided into a training data set
129to derive prediction equations and a validation data
130set where predictions were compared with observed
131phenotypes. Table 1 shows the size of training and
132validation data sets for the three breeds. To define the
133training and validation data sets, a cut-off date for
134the bulls ’ birth date was introduced so that 25% of
135the youngest genotyped bulls were included in the
136validation dataset. Bulls without genotyped sire in
137the training dataset were excluded. Animals from the
138training data set were born before June 2002, while
139animals from the validation data set were born be-
140tween June 2002 and 2004. This cross-validation
141design corresponds to the one used in studies of the
142EuroGenomics Consortium (Lund et al., 2010).
143Phenotypes used for this study were daughter yield
144deviations (DYD) corresponding to the average
145performance of a sire’s daughters, adjusted for fixed
146and non-genetic random effects and for the additive
147genetic value of their dam (Mrode & Swanson, 2004).
148To account for the varying accuracy of the DYD, they
149were weighted by their error variance, which is pro-
150portional to the sire’s effective daughters ’ contri-
151bution (EDC) (Fikse & Banos, 2001). DYD were
152included in the analysis if EDC exceeded 20.
153For the three breeds, 25 traits were available : five
154production traits, two conception rate traits, 16 mor-
155phological traits, somatic cell counts and milking
156speed. Initially, only six traits were chosen to com-
157pare the different approaches and for fine tuning of
158different parameters. These six traits were the five

Table 1. Number of animals genotyped per data set
for the three breeds studied

Breed

Montbéliarde Normande Holstein

Training data set 950 970 2976
Validation data set 222 248 964
Total 1172 1218 3940

P. Croiseau et al. 2
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159 production traits (Milk yield, Fat yield, Fat content,
160 Protein yield and Protein content) and cow concep-
161 tion rate (Boichard & Manfredi, 1994). Mean results
162 over the 25 traits will also be shown.

163 (ii) Methods

164 The first method used was gBLUP (Van Raden et al.,
165 2008) which uses the genomic relationship matrix,
166 G (Habier et al., 2007; Van Raden, 2008), instead of
167 the pedigree-based relationship matrix

G=ZZk=2 g
m

i=1
pi(1xpi),

168 where m corresponds to the number of loci con-
169 sidered, pi is the frequency of an allele of the locus
170 i and Z is the incidence matrix of SNP (genotype
171 scores) on individuals, coded as in Van Raden (2008).
172 The model is therefore: y=Xb+g+e, where g is a
173 vector of breeding values whose covariance matrix is
174 described by Gsu

2, where su
2 is the polygenic variance.

175 Van Raden (2008) and Goddard (2009) showed
176 that this model is equivalent to a mixed model fitting
177 the effect of the genotype score of each SNP, all SNPs
178 having a priori the same variance equal to s2

a=
179 s2

u=2gpi(1xpi), where su
2 is the polygenic variance

180 used in regular genetic evaluation and pi is the fre-
181 quency of an allele of the locus i (Gianola et al., 2009).
182 The EN algorithm (Zou & Hastie, 2005; Croiseau
183 et al., 2009) corresponds to a combination of the ridge
184 regression (RR) and LASSO procedures. The differ-
185 ence between RR b̂RR= argmin {gn

i=1(yixxib)
2+

186 lg
j
b2
j } and LASSO b̂LASSO=argmin{gn

i=1(yixxib)
2+

187 lg
j
jbjj} estimates lies in the form of the penalty term.

188 In both equations, b is the vector of SNP effects bj, yi
189 is the phenotype of animal i and xi is its vector of
190 genotypes. The l parameter corresponds to the in-
191 tensity of the penalty. In the EN algorithm, a second
192 parameter a, taking a value in [0, 1] is used to weight
193 the RR and LASSO penalties.

b̂EN= argmin g
n

i=1
(yixxib)

2

�

+l (1xa)g
j

b2
j+ag

j

jbjj
� ��

194 With a=1, a LASSO model is defined, whereas with
195 a=0, a full RR model is chosen. Zou and Hastie
196 (2003, 2005) showed that in the presence of correlated
197 explanatory variables (e.g. effects corresponding to
198 SNP in linkage disequilibrium in our case), RR re-
199 tains all predictors and their corresponding coeffi-
200 cients tend to be equal and no variable selection is
201 performed. On the other hand, LASSO retains only
202 one predictor and removes the others (Zou & Hastie,
203 2003, 2005). Hence, by including RR and LASSO as
204 extreme cases, the EN algorithm provides a more
205 flexible tool.

206In this study, EN procedures were used using an
207R package named ‘glmnet’ (http://cran.r-project.org/
208web/packages/glmnet/index.html) implemented by
209Friedman et al. (2008). They proposed a fast im-
210plementation of EN using cyclical coordinate descent,
211computed along a regularization path.

212(iii) Pre-selection of the SNP

213For most traits, not all SNPs on the SNP chip are
214likely to be close to a QTL. In other words, the as-
215sumption that effects attached to each of the SNPs are
216non null is unrealistic. Consequently, our conjecture is
217that whatever the genomic evaluation method used,
218a pre-selection of the SNP with an attached non-null
219effect may help to improve the quality of genomic
220prediction. This was tested in the situation where pre-
221selection is based on QTL detection. QTL detection
222was performed using a combined linkage dis-
223equilibrium and linkage analysis (LDLA) (Druet
224et al., 2008; Meuwissen & Goddard, 2001). First, the
225existence of a single QTL was tested in the training
226data set at all positions along the chromosomes de-
227fined by haplotypes of six SNPs, with a sliding win-
228dow of two SNPs. From this LDLA, a value of the
229likelihood ratio test (LRT) was obtained for each
230haplotype. Positions where a potential QTL is located
231were defined as haplotypes each time an LRT peak
232higher than a threshold value of 3 or 5 was found.
233These values were quite arbitrary at this stage and
234low enough to catch any potential QTL that can be
235identified through this analysis. An LRT peak was
236defined as the position where the highest LRT value
237was found within a window of 25 or 50 SNP upstream
238and downstream of the current haplotype.
239Then, the 50 SNPs around each detected LRT peak
240(¡25) were included in a pre-selected set of SNPs
241used for genomic evaluation using either a gBLUP or
242EN approach. The choice of the number of SNPs to
243retain was based on a preliminary study where this
244value of 50 gave the best results (data not shown).

245(iv) Quality assessment of the genomic prediction

246To measure the quality of prediction equations
247(derived from the training set), the equations were
248applied to the animals of the validation data set to get
249DGVs. Then, the weighted correlation between DGV
250and observed DYD was computed using EDC as
251weights. The weighted Pearson product moment cor-
252relation coefficient is calculated as (Peers, 1996) :

r(x, y)=
gwi(xixx̄w)(yixȳw)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gwi(xixx̄w)
2gwi(yixȳw)

2
q

253where x̄w=
gwixi
gwi

, ȳw=
gwiyi
gwi

and wi is the EDC weight
254of yi.

Fine tuning genomic evaluations in dairy cattle 3
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255 The aim was to measure the accuracy of the
256 different methods to predict DYD using genomic in-
257 formation (DGV). Since GEBV combine the infor-
258 mation available from DGV and EBV, it is not
259 possible to know if an observed gain in accuracy is
260 due to the prediction equation or to a good combi-
261 nation of DGV and EBV. This is why the correlation
262 between DGV and observed DYD was preferred in
263 this study (see e.g. Guillaume et al., 2008).

264 (v) Parameters used for the different methods

265 For the pedigree-based BLUP, genetic parameters
266 were estimated using an AI-REMLAQ2 approach (Jensen
267 et al., 1996). For the LDLA, it is necessary to incor-
268 porate IBDAQ3 matrices among QTL allelic effects.
269 Software of Misztal et al. (2002) was modified ac-
270 cordingly. Heritability estimates used in pedigree-
271 based BLUP and gBLUP were those used in routine
272 genetic evaluations.
273 For EN, values for the a and l penalization para-
274 meters needed to be chosen and there is currently no
275 way to predict which range of values is the most ap-
276 propriate for each parameter. Consequently, a large
277 range of combinations of a and l was tested by grid
278 search to find the optimal values. The search aimed at
279 finding the maximum correlation between DGV and
280 observed DYD in the validation data set. The vali-
281 dation data set is consequently used to identify the
282 optimal set of parameters. This can be an advantage
283 in comparison with other methods with respect to the
284 accuracy of GEBV if this set of parameters is specific
285 to this training and validation data sets. However, by
286 looking at reference populations of increasing sizes,
287 we found that these parameters were breed- and trait-
288 specific with a rather large range of combinations
289 giving similar results (data not shown). The EN ap-
290 proach appears robust to moderate departures from
291 the optimal combination of parameters. To define the
292 optimal a parameter, a dichotomous search was per-
293 formed on the [0, 1] interval. Initially, a values of 0, 1
294 and 0.5 were tested. If a=0 provided the best corre-
295 lation, at the second iteration, the interval was re-
296 duced to [0, 0.5]. If the best correlation was found

297with a=1, the new interval was [0.5, 1]. If the best
298correlation was found with a=0.5, the new interval
299was [0.25, 0.75]. We applied this method until the
300difference between two tested a was lower than 0.02.
301The dichotomous approach requires a unimodal dis-
302tribution for these correlations which is not guaran-
303teed. Nevertheless, after testing a large panel of a
304values for some traits (data not shown), this unimodal
305distribution seems to be the rule.
306For each a, 500 values of the penalty intensity l
307were tested in the interval [0–max(b)], where max(b)
308corresponds to the absolute value of the highest esti-
309mate when no penalization is applied.
310This research of optimal values for a and l was
311performed separately for the pre-selected and the full
312data sets. The search for the optimal a parameter is
313the most time-consuming step of the glmnet package
314and takes around 2 CPU minutes in Holstein for each
315tested a.

3163. Results

317Table 2 shows the optimal set of EN parameters for
318the six traits initially studied. Depending on the trait
319and breed, the optimal set of parameters differed. For
320instance, a complete RR approach gave the best re-
321sults for Milk and Protein yield in the Montbéliarde
322breed, while optimal a values of 0.25 for Milk yield in
323Holstein and of 0.37 for Protein yield in Normande
324were found, which correspond to a general EN model.
325Moreover, there was a strong impact of both a and l
326on the number of SNPs included in the regression
327model. When a is near a complete LASSO procedure
328(a=1), there were many fewer SNPs retained com-
329pared with a complete RR procedure (a=0). Also, for
330a given a, high values of l led to a high intensity of
331penalization and consequently to a lower number of
332SNP (results not shown).
333In the second analysis, the SNP pre-selection based
334on QTL detection was performed. As indicated be-
335fore, this SNP pre-selection relied on two criteria : a
336given LRT threshold and a given window size. Table 3
337reports the effect of both criteria on the number of
338LRT peaks identified in the case of milk yield.

Table 2. Optimal a and l parameters and corresponding number of SNPs with non-null effect for the six traits
studied and for the three breeds using the EN procedure on the complete set of SNPs

Montbéliarde Normande Holstein

a l SNP a l SNP a l SNP

Milk yield 0 267.17 24 037 0.09 25.25 1529 0.25 15.18 1355
Protein yield 0 12.31 23 044 0.37 0.24 866 0.01 5.79 5648
Fat yield 0.01 6.71 5444 0.13 0.58 1474 0.25 0.65 1271
Protein content 0.13 0.01 1776 1 0.005 737 0.25 0.01 2297
Fat content 1 0.01 723 0.59 0.06 403 0.65 0.02 1351
Conception rate 0 120.41 8215 0.02 4.33 2879 0 17.49 20 904

P. Croiseau et al. 4
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339 Table 4 presents for the three breeds the results
340 obtained with the classical pedigree-based BLUP and
341 the two genomic selection methods (gBLUP and EN)
342 when either the whole set of SNP which passed the
343 quality control was used or after a pre-selection of the
344 SNP based on the LDLA approach.
345 All genomic methods improved the correlation
346 between DGV and observed DYD compared with
347 pedigree-based BLUP and the genetic architecture of
348 the trait seemed to play an important role on the gain
349 in correlation: for traits where some QTLs explain a
350 large part of the variance, such as protein content and
351 fat content (where DGAT1 gene is present), a mean

352gain in correlation over the three breeds of +0.22
353and +0.23, respectively, was observed. In contrast,
354when the trait background appears to be polygenic
355with many QTLs explaining only a small part of the
356variance each, as for conception rate, the observed
357mean gain in correlation was more limited (+0.06).
358Between the two genomic approaches, EN gave better
359results with a mean gain (compared with pedigree-
360based BLUP) over the six traits of 0.15, 0.13 and 0.20
361for Montbéliarde, Normande and Holstein, respect-
362ively, compared with 0.12, 0.08 and 0.18 with gBLUP.
363When an SNP pre-selection was applied, the gain
364in correlation using gBLUP and EN was very similar
365to the one observed using the complete set of SNP.
366Again, among the two different genomic approaches,
367the best results were obtained with EN. Compared
368with the pedigree-based BLUP, the mean gains
369over the six traits were 0.14, 0.15 and 0.20 for
370Montbéliarde, Normande and Holstein, respectively,
371compared with 0.12, 0.11 and 0.18 with gBLUP.
372Table 5 shows the slope of the regression of ob-
373served DYD on DGV for Holstein. A value close to 1
374is expected. In dairy cattle, genomic evaluations are
375validated by Interbull if the slope of regression is in-
376cluded between 0.8 and 1.2 (Interbull, 2011). Over the
377three tested methods, similar ranges of values were
378observed for pedigree-based BLUP and EN. The
379slope for gBLUP deviated more from 1 than for the
380two other methods (on average, 0.22 for gBLUP
381compared with 0.11 for pedigree-based BLUP and
3820.12 for EN). The same analysis was performed for
383the approach with SNP pre-selection. For EN, the
384SNP pre-selection had no impact on the slope.
385Table 6 presents the number of SNPs with a non-
386null effect retained by EN algorithm without or with
387a pre-selection of SNP in the Holstein breed. Similar
388results were obtained in Montbéliarde and Normande
389(data not shown). The results for the six traits are
390given, as well as the average of the number of SNPs
391over the 25 traits available for the three breeds. The
392number of SNPs retained was dependent on the
393genetic architecture of the trait. Traits such as Fat

Table 3. Number of LRT peaks identified for milk
yield as a function of LRT threshold and window size
in the Montbéliarde, Normande and Holstein breeds

SNP
window
size

LRT threshold

3 5

Montbéliarde 25 432 265
50 273 180

Normande 25 363 197
50 219 142

Holstein 25 481 350
50 268 204

Table 4. Weighted correlation between DGV and
observed DYD for the three breeds obtained using
pedigree-based BLUP, gBLUP and EN on the
complete set of SNP (54 K) or after a pre-selection
of the SNP (PS)

Pedigree-
based
BLUP

gBLUP EN

54 K PS 54 K PS

Montbéliarde
Milk yield 0.28 0.44 0.43 0.45 0.42
Fat yield 0.40 0.50 0.50 0.50 0.51
Protein yield 0.27 0.46 0.47 0.46 0.47
Fat content 0.40 0.51 0.56 0.59 0.59
Protein content 0.25 0.44 0.42 0.44 0.42
Conception rate 0.43 0.43 0.42 0.47 0.48

Normande
Milk yield 0.30 0.34 0.38 0.41 0.42
Fat yield 0.27 0.39 0.38 0.41 0.41
Protein yield 0.23 0.31 0.33 0.37 0.40
Fat content 0.58 0.61 0.63 0.71 0.75
Protein content 0.33 0.50 0.55 0.54 0.53
Conception rate 0.24 0.27 0.30 0.31 0.31

Holstein
Milk yield 0.38 0.56 0.56 0.57 0.57
Fat yield 0.40 0.59 0.59 0.63 0.63
Protein yield 0.44 0.55 0.54 0.57 0.57
Fat content 0.44 0.72 0.74 0.80 0.79
Protein content 0.47 0.73 0.73 0.75 0.73
Conception rate 0.29 0.35 0.33 0.33 0.33

Table 5. Slope of the regression of observed DYD on
DGV for the Holstein breed obtained using pedigree-
based BLUP, gBLUP and EN on the complete set of
SNP (54 K) or after a pre-selection of the SNP (PS)

Holstein

Pedigree-
based
BLUP

gBLUP EN

54 K PS 54 K PS

Milk yield 0.80 0.68 0.68 0.80 0.80
Fat yield 0.96 0.80 0.61 1.06 1.05
Protein yield 0.86 0.65 0.76 0.80 0.78
Fat content 0.98 0.87 0.89 0.95 0.98
Protein content 0.94 0.90 0.83 0.93 0.92
Conception rate 0.80 0.78 0.69 0.84 0.84

Fine tuning genomic evaluations in dairy cattle 5
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394 content where DGAT1 explains a very high part of
395 the variance required fewer SNPs than conception
396 rate. The mean number of SNPs over the 25 traits
397 illustrates the impact of pre-selection on the number
398 of retained SNPs.
399 For the six presented traits, pre-selection led to a
400 reduction of the number of SNPs needed in the pre-
401 diction equation. Among these traits, conception rate
402 is the one with the highest polygenic part as the
403 number of SNPs included in the EN model shows.
404 Production traits required between 1271 and 5648,
405 which is much less than the 20 904 SNPs required for
406 conception rate. The highest reduction of the number
407 of SNPs retained was for conception rate (from 20 904
408 to 9677 SNPs, which corresponds to a reduction of
409 54%).
410 The impact of this SNP pre-selection on correla-
411 tions was an absolute decrease limited to 1–2% and
412 was relatively limited. For the 25 available traits,
413 the average number of SNPs used in the prediction

414equation derived from the EN algorithm applied on
415the whole set of SNPs was 16 334. After pre-selection,
416this number declined to 10 059. This important de-
417crease in the number of SNPs used was obtained while
418correlations remained relatively stable (loss of 1% on
419average). Surprisingly, for some traits, the number of
420SNPs retained by EN after pre-selection was higher
421than when EN was applied to the whole set of
422SNPs. This was the case for body depth, chest width
423and milking speed for Holstein. Nevertheless, this
424phenomenon was marginal and, for most traits, pre-
425selection allowed a large decrease in SNP numbers.
426The results presented in Table 6 correspond to the
427optimal a and l values. During the EN procedure, a
428large number of parameter combinations were tested
429and some suboptimal combinations required an even
430smaller number of SNPs. Table 7 presents, for the
431Holstein breed and for the six initial traits, the highest
432correlations that were observed when the total num-
433ber of SNPs with non-null effect was limited to a value

Table 6. Correlation and number of SNP used in the prediction equation using the EN algorithm on the whole
set of SNP (54 K) or after a pre-selection of the SNP (PS) for the Holstein breed

Traits

Holstein

54 K PS

Impact on
CorrelationCorrelation

Number
of SNPs Correlation

Number
of SNPs

Milk yield 0.57 1355 0.59 1329 0.02
Fat yield 0.63 1271 0.62 1211 x0.01
Protein yield 0.57 5648 0.56 1098 x0.02
Fat content 0.79 1351 0.78 1087 x0.01
Protein content 0.75 2297 0.73 1742 x0.02
Conception rate 0.33 20 904 0.34 9677 0.01
Mean over the 6 traits – 5471 – 2691 x0.01
Men over 25 traits – 16 334 – 10 059 x0.01

Table 7. Highest correlation and corresponding number of selected SNPs when using the whole set of SNP
(54 K), after a pre-selection of the SNP (PS) or when the number of selected SNPs is limited to 2500, 1500
or 1000 in the Holstein breed

54 K PS 2500 SNPs 1500 SNPs 1000 SNPs

Milk yield Correlation 0.569 0.573 0.573 0.569 0.551
SNP 1328 2752 2422 1328 955

Fat yield Correlation 0.631 0.626 0.631 0.631 0.624
SNP 1273 1126 1273 1273 991

Protein yield Correlation 0.573 0.568 0.568 0.565 0.561
SNP 21 716 2390 2120 1448 959

Fat content Correlation 0.795 0.791 0.795 0.795 0.791
SNP 1364 1068 1364 1364 985

Protein content Correlation 0.748 0.731 0.748 0.696 0.694
SNP 2368 3684 2368 1419 996

Conception rate Correlation 0.335 0.328 0.320 0.307 0.301
SNP 20 853 9144 2379 1141 850

P. Croiseau et al. 6
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434 between 2500 and 1000 SNPs. An option of the R
435 package glmnet allows the maximum number of
436 variables to be set. This option acts on the intensity of
437 the penalization to validate this constraint.
438 Obviously, this limitation in the number of SNPs
439 led to a decrease in correlation, but this was relatively
440 limited: between 0 and 3.4% depending on the trait
441 and the maximum number of SNPs defined. In com-
442 plement to this table, Figure 1 presents the mean
443 change in correlation over the 25 traits for the three
444 breeds according to the number of selected SNPs.
445 The breed found to be the most sensitive to the
446 limitation of selected SNP in EN was the Holstein
447 breed, but this is also the breed in which, on average,
448 the largest number of SNPs without pre-selection are
449 retained (17 341 selected SNPs in this situation against
450 11 526 in Normande and 12 939 in Montbéliarde).
451 When the number of selected SNPs was limited to
452 2500, the average absolute loss in correlation over the
453 25 traits ranged from 1 and 1.7%. This average loss in
454 correlation changed to 2.3 and 4.5% with a limit to
455 1000 selected SNPs.

456 4. Discussion

457 As for many previous studies, genomic evaluations
458 with gBLUP and EN substantially improved the
459 quality of prediction of observed DYD in the vali-
460 dation data set compared with pedigree-based BLUP
461 (Hayes et al., 2009; Wolc et al., 2011). Between these
462 two genomic evaluations, gBLUP has the advantage
463 of being conceptually simpler in the sense that there is
464 no extra parameter to define or to optimize. In theory,

465a method that estimates all SNP effects should ensure
466that false-positive or uninformative effects are re-
467gressed towards zero, but in practice, these false
468positive or uninformative effects are not strictly equal
469to zero. EN, which shares some variable selection
470properties with other methods (like Bayes B, Cp, …)
471limits the number of SNPs with non-null estimated
472effects in the model. This property can be an advan-
473tage because it alleviates the p>>n problems, in par-
474ticular for smaller breeds. Limiting the number of
475SNP effects to estimates becomes important for an
476accurate prediction equation.
477Since this study shows that EN provides better re-
478sults than gBLUP for most traits in the three breeds
479studied, we tried to push further the idea of variable
480selection both in the case of gBLUP and EN by ad-
481ding an SNP pre-selection step based on QTL detec-
482tion. The resulting correlations between DGV and
483observed DYD and also the slopes of the regression of
484observed DYD on DGV were similar to the ones ob-
485tained using the complete set of SNPs. Moreover,
486both the EN algorithm and the pre-selection of the
487SNP led to a reduction of the number of SNPs in-
488cluded in the prediction equation with a minor effect
489on the quality of prediction. This procedure seems
490particularly relevant in the genomic selection context
491for two reasons:

492’ From a genetic standpoint, it is consistent with the
493assumption that not all SNPs are required to ex-
494plain the genetic architecture of a given trait. Some
495of them, with non-significant effects, can still carry
496genetic information and particularly on genetic

Fig. 1. Mean change in correlation (dashed lines) over the 25 traits for Montbéliarde (&), Normande (’) and Holstein (m)
when the maximum number of SNPs selected by EN is restricted to the value indicated on the x-axis. Continuous lines
represent the actual number of selected SNPs.

Fine tuning genomic evaluations in dairy cattle 7
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497 relationships (Habier et al., 2007, 2010b). However,
498 since very similar correlations were obtained using
499 the complete set of SNPs or a fraction of them after
500 pre-selection, it means that a subset of SNPs in-
501 cluded in the model was not really informative for
502 the trait and pre-selection avoids including in the
503 prediction equation these uninformative SNPs.
504 ’ Furthermore, it is expected that in the near future
505 the number of genotyped animals and the number
506 of SNPs will get larger and larger. This will rep-
507 resent a major challenge for genomic evaluations
508 from a computing point of view. The SNP pre-
509 selection implemented here requires an LDLA
510 approach and a detection of the LRT peak, which
511 is based on two parameters (windows of SNP to
512 consider and an LRT threshold). The LDLA ap-
513 proach requires phasing the data which, depending
514 on the methodology used, could be computation-
515 ally time consuming. However, the LDLA ap-
516 proach does not have to be performed at each
517 genomic evaluation because animals that are added
518 between two genomic evaluations are young and
519 their performances have a very low weight com-
520 pared with older ones. Moreover, as mentioned
521 before, the time-consuming step is to phase the
522 data. Actually, this step is not required for all
523 the genomic selection methods used in national
524 evaluation and consequently, constraints due to
525 phasing data are not encountered. But if an ad-
526 ditional imputation step is required to mix dif-
527 ferent versions of chips (Illumina Bovine SNP50
528 BeadChip1 V1 and V2 for example) or different
529 sizes of chips (3, 50 and 777 K), this phasing step is
530 routinely needed anyway. Then, SNP pre-selection
531 strongly alleviates computing requirements and
532 consequently ensures that national evaluations can
533 be completed within a reasonable time frame.
534

535 In this study, we focused on one variable selection
536 method that is the EN and one pre-selection method
537 that is LDLA. Obviously, other genomic selection
538 methods (Bayesian methods for instance) and other
539 pre-selection approaches (based on ‘pure’ association
540 studies instead of LDLA for instance) should be also
541 tested to complete this study. EN provided better
542 results in our study and our model assumed that all
543 genetic variation was explained by SNP. The latter
544 may be true if all causal mutations are bi-allelic and
545 if SNPs are in strong linkage disequilibrium with all
546 causal mutations. If causal mutations are multi-allelic
547 or if SNPs are in weak linkage disequilibrium with
548 this causal mutation, model based on haplotypes
549 could be more advantageous. The current French
550 genomic evaluation (Boichard et al., 2010) combines
551 MASAQ4 on QTL followed through haplotypes and geno-
552 mic selection based on SNP detected with the EN
553 algorithm. EN was used as a variable selection

554method and prediction equations were generated for
555the French genomic MAS.
556In conclusion, the EN algorithm appears to be a
557very flexible and promising tool in the genomic selec-
558tion framework that can be used for genomic evalu-
559ation or as a variable selection device to provide SNP
560of interest to a marker-assisted evaluation method.
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