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The Basal Ganglia (BG) is a central structure involved in multiple cortical and subcortical

loops. Some of these loops are believed to be responsible for saccade target selection. We

study here how the very specific structural relationships of these saccadic loops can affect

the ability of learning spatial and feature-based tasks. We propose a model of saccade

generation with reinforcement learning capabilities based on our previous BG and superior

colliculus models. It is structured around the interactions of two parallel cortico-basal loops

and one tecto-basal loop. The two cortical loops separately deal with spatial and non-spatial

information to select targets in a concurrent way. The subcortical loop is used to make

the final target selection leading to the production of the saccade. These different loops

may work in concert or disturb each other regarding reward maximization. Interactions

between these loops and their learning capabilities are tested on different saccade tasks.

The results show the ability of this model to correctly learn basic target selection based

on different criteria (spatial or not). Moreover the model reproduces and explains training

dependent express saccades toward targets based on a spatial criterion. Finally, the model

predicts that in absence of prefrontal control, the spatial loop should dominate.

Keywords: basal ganglia, superior colliculus, saccades, decision making, reinforcement learning

1. INTRODUCTION

The basal ganglia (BG) are a set of interconnected subcortical
nuclei (Redgrave, 2007), which are thought to be central in the
performance of action selection (Mink, 1996; Redgrave et al.,
1999).

The BG are traditionally described as being composed of vari-
ous parallel subcircuits with identical internal wiring, implied in
different functions (from motor to cognitive ones), and belonging
to a set of parallel cortico-baso-thalamo-cortical loops (Alexander
et al., 1986), as schematized in Figure 1A. However, the BG
also participate in purely subcortical loops (Groenewegen and
Berendse, 1994; McHaffie et al., 2005, 2006; May, 2006), which
are wired a bit differently as the input to the BG is relayed through
the thalamus and the BG output projects directly to the con-
sidered subcortical structures (Figure 1B), and which rely on
different thalamic nuclei (pulvinar, lateral posterior, rostral, and
caudal intralaminar). They do, in particular, participate in loops
with the superior colliculus (SC), well-known for its laminar
structure, its mapping of the visual field and its involvement in
gaze orientation movements, including saccadic eye movements
(Moschovakis et al., 1996; Lynch and Tian, 2006).

We propose here a computational model of the interac-

tions of subcortical and cortical BG loops in primates, pro-

cessing either target position (spatial) information or target
feature information, in the well investigated framework of sac-
cadic eye movements (Hikosaka et al., 2000). Indeed, cortico-
basal loops dealing with the location of potential targets in the
visual field, on the one hand, or with the detection of fea-
tures of potential targets, on the other hand, have long been

identified. The SC (and thus the tecto-basal loop) is a bottle-
neck receiving all this information for the final decision, however
it also receives target location information earlier than the corti-
cally processed information, through direct projections from the
retina.

We thus study the effects imposed by this hierarchical
structure—where the highest level modules have longer latencies,
while the lowest level module has a lower latency shortcut, but
specific to location information, Figure 1C—on performance
and saccadic reaction time in space-based and/or feature-based
selection tasks, in order to identify predictions specific to this
organization. These predictions stand for dorsolateral prefrontal
cortex (dlPFC) deprived animals as it is not included in our model
and as we can expect the inhibitory control from the dlPFC on
the SC to allow additional control on unwanted short-latency
saccades (Koval et al., 2011).

We show that the fact that a purely spatial selection and
learning system operate at the last level predicts that:

• in spatial tasks only should the saccadic reaction times decrease
with learning, allowing the generation of express saccades and
causing short latency activations in the FEF,

• performance in feature-based tasks should be lower than in
spatial tasks, because of the perturbations caused by the sub-
cortical spatial loop,

• in conjunction tasks, where spatial and feature-based informa-
tion determine the good choice, errors are unavoidable when
no choice should be made.

Frontiers in Computational Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 48 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/journal/10.3389/fncom.2014.00048/abstract
http://community.frontiersin.org/people/u/43463
http://community.frontiersin.org/people/u/112582
http://community.frontiersin.org/people/u/2369
mailto:steve.nguyen@college-de-france.fr
mailto:steve.nguyen@college-de-france.fr
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
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FIGURE 1 | (A) General organization for cortical loops. (B) General

organization for subcortical loops. Filled arrow heads are exitatory

connexions, empty arrow heads are inhibitory connexions. Dashed block

are inhibitory structures. Note that the concerned thalamus nuclei are

differents between (A) (ventral anterior, ventrolateral, medial dorsal) and

(B) (pulvinar, lateral posterior, rostral and caudal intralaminar). (A,B)

Adapted from McHaffie et al. (2005). (C) Schematic representation of

the relationships between the three modeled loops, note the type of

information processed (either location or features of targets) and the

delays (slow or fast).

2. MATERIALS AND METHODS

2.1. GLOBAL ARCHITECTURE

The subcortical loop (Figure 2, dotted circuit) has access to visual
inputs directly conveyed from the retina to the superficial layers
of the SC, with a low latency. These retinal projections provide
relatively rich visual information (Girman and Lund, 2007), but
no color information. As the SC layers are organized as piled
retinotopic maps of the visual field, and given the spatial receptive
fields of the BG output neurons projecting to the SC (Hikosaka
and Wurtz, 1983), it can be assumed that the competition among
targets is here based on spatial position. This loop is a good can-
didate neural substrate to explain the accumulating evidence [see
for example McPeek and Keller (2002); McPeek et al. (2003);
McPeek and Keller (2004), among many others since 2000] that
the SC performs target selection on its own, rather than solely
executing cortical decisions.

Two cortical loops, projecting to the SC as a common output,
are considered. A first one (Figure 2, dashed circuit), comprising
the frontal eye fields (FEF), also operates on the spatial domain,
but contributes to saccade generation with longer latencies than
the SC. This loop is known to be a common pathway for “cog-
nitive” saccades, where working memory or sequence generation
are involved, however these are not included in the proposed
model (indeed no SEF and pre-SEF have been included). We
hypothesize that the BG subcircuit involved in this loop is shared
with the subcortical one (i.e., there is only one BG subcircuit ded-
icated to spatial selection of targets). This choice of converging
input has been made based on known anatomy as it seems that
FEF projects to the “Oculomotor Striatum” (central/longitudinal
Caudate) (Stanton et al., 1988).

The second one (Figure 2, dash-dot circuit) comprises V4 and
IT and deals with the selection of targets exhibiting specific fea-
tures (only color will be used here for simplicity). V4 is known
to be selective to shape and color (Ogawa and Komatsu, 2004)
and visuotopically organized (Gattass et al., 1988). Moreover,
this region exhibits strong recurrent connections with IT (in

particular the TE area) (Ungerleider et al., 2008). The TE region
of IT has been shown to be selective to features (and colors) and
not visuotopically organized (activity doesn’t depend on object
position) (Tompa and Sáry, 2010). More importantly, this TE area
forms a loop with the BG (Middleton and Strick, 1996), thus it
seems somewhat reasonable to hypothesize that colors and fea-
tures could be selected through a cortical IT-BG-Th loop in a
non-spatial fashion and then projected back to V4. In particular,
the TE region, projects to the “Visual Striatum” (tail of Caudate
and caudal/ventral portion of Putamen) (Middleton and Strick,
1996), supporting the separation between the spatial and the fea-
ture loop. The SC is known to receive numerous projections from
cortical areas amongst which V4 (Fries, 1984; Lock et al., 2003).
This mechanism is compatible with feature/color sensitivity with
a longer latency than luminance signal observed in intermediate
layers of SC (SCi) (White et al., 2009; White and Munoz, 2011).

So to summarize, in this model two parallel mechanisms com-
pete for target selection (Figure 1C). The first one is “location”
based and comprises two cooperating loops, both cortical and
subcortical. The second one is “feature” based and comprises one
cortical loop. The detail of the equations are given below.

2.2. MODEL DESCRIPTION

The proposed model is intended to learn to generate saccades
toward targets selected based on their color and location in the
visual field (cf. Figure 2), depending on the reward contingencies
experienced during interaction with the environment.

As said before, it is composed of three main loops going
through the BG, which interact in both competitive and coop-
erative ways. The subcortical one corresponds to the SC-Th-BG
circuit (dotted connexions on Figure 2), it gets its inputs from
the direct projections from the retina to the superficial layers of
the superior colliculus along with activity of deep layers, and it
selects among targets competing on a purely spatial dimension.
This loop passes through the Intralaminar nucleus (IL) thalamic
relay (McHaffie et al., 2005).
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FIGURE 2 | Structure of the model. BG, Basal ganglia; FEF, frontal eye

fields; SG, saccade generators; SC, superior colliculus; Th, thalamus; V4|IT,

Feature perception area including IT (TE region) interacting with V4 visual

cortex area. Dark gray shaded layers on BG modules are input layers with

reinforcement learning capabilities.

The cortical ones also comprise a circuit dedicated to spa-
tial competition (FEF-BG-Th, dashed connexions on Figure 2),
which shares its BG circuit with the subcortical loop but with
a different thalamic relay (the paralamellar portion of the
mediodorsal thalamic nuclei, MDpl) (Alexander et al., 1986; Tian
and Lynch, 1997) and another dedicated to features (namely
color) selection (IT-BG-Th, dot-dashed connexions on Figure 2)
via VAmc (Middleton and Strick, 1996).

Retinal information is transmitted to SC, FEF, and V4|IT with
different latencies according to the literature, SCs input latency
is fixed to 41 ms (type I neurons) (Rizzolatti and Buchtel, 1980).
FEF to 91 ms and IT to 122 ms (average over all TE sub-regions)
(Lamme and Roelfsema, 2000).

The FEF module contains an input and an output retino-
topic map sensible to luminance. The V4|IT module contains one
input and one output retinotopic maps for each color. SC mod-
ule also contains several retinotopic maps, dealing with direct
retinal input (SCs), FEF input, V4|IT input, summed activity
of SCs, FEF and V4|IT (SCi output) and motor activity (SCi
motor). For each of these structures a selection loop through BG
occurs.

We use rate-coding models of neurons [based on locally pro-
jected dynamical systems, lPDS, (Girard et al., 2008)], which are
defined as follows:

ẋ = �[0,max]

(
x(t),

I(t) − x(t)

τ

)
(1)

where I(t) represents the external inputs, τ the time constant, and
�[0, max] a projection operator ensuring that the neuron activity
x(t) will remain within [0, max].

The projection operator �[0, max] is simply an operator acting
on ẋ ensuring that the variable x remains within a specified range
of values. In our case (Euler integration with 1 ms timestep) we
end up with a discrete update operating as follows :

x(t + dt) = min

[
1, max

[
0, x(t) +

dt

τ
× (I(t) − x(t))

]]
(2)

This method is very similar to the classical way of converting the
computed activity x into a non-negative one y = max(0.0, x) but
here the non-linear “transfer function” is applied inside the dif-
ferential equation at the cost of making it a non-longer a classical
ordinary differential equation but with some over benefits such as
“contraction” i.e., stability.

The BG model we use here (Girard et al., 2008) was formulated
in this framework, so as to formally ensure its dynamical stability.
For the sake of consistency, we thus use it for the rest of the model
presented here. Only the external input part [I(t)] and the time
constant (τ ) of this equation have to be specified to define such
a neuron model. Thus, to simplify the writing, only I(t) will be
given in the next section providing a detailed description of the
model, while the time constants and other model parameters are
provided in supplemental data section.

The BG exert an inhibitory influence on their target circuits,
which prevents them from generating actions. Even without any
inputs, the BG converge to a given level of inhibition, GPi|SNrrest,
sufficient to enforce this control. As previously proposed in Arai
et al. (1994, 1999); Das et al. (1996), we modeled the effect of the
basal ganglia inhibition as modulating the excitatory inputs of the
targeted systems. To ensure that, at rest, no action can be gener-
ated, this inhibitory gain modulation is normalized with regards
to the GPi|SNrrest constant. Thus, the contributions of the BG
outputs to the circuits they target will take the general following
form in the equations of the next section:

WE × IE ×

(
1 −

GPi|SNr

GPi|SNrrest

)
(3)

Where IE is the excitatory input controlled by the BG inhibi-
tion, GPi|SNr is the output of the BG neurons projecting to the
considered circuit.

The feedback from the SC, which signals the end of the
execution of a saccade, is also modeled as modulating.

Most of the components of the model are 70 × 70 2D maps
of lPDS neurons for each hemifield, respecting the complex-
logarithmic geometry of the macaque SC, as modeled by Ottes
et al. (1986). Unless specified, neurons of one map project to
those of another map in a one-to-one manner. Visual inputs
are simulated as gaussian activities spreading over a hundred of
neurons.

2.2.1. Cortical and subcortical loops

Color information is processed by the cortical V4|IT-BG-Th loop.
As stated previously, the V4 structure contains several retinotopic
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FIGURE 3 | Selection loop for color channels. Black arrow heads are

exitatory connexions, empty arrow heads are inhibitory connexions.

maps each encoding for a specific color (3 are used here, red,
green, and blue). In order to deal with non-spatial color channels,
activity in each map is summed, providing a reduced number of
independent channel. These channels are amplified in an closed
loop manner by the interaction of IT with BG and Th (Figure 3).

Thus, the BG selection occurring in the V4|IT-BG-Th loop
deals with non-spatial color information only. Then these chan-
nels are transformed back into retinotopic maps (cf. Figure 4)
and the resulting map (V4 output map) is then projected to SCi.
Activity fed to the channels is computed as follows:

IT out
c = W IT out

ITin .ITin
c × (1 − WSGinhib

.SGinhib) (4)

+ W IT out

Th IT .Th IT
c

Th IT
c = IT out

c ×

(
WTh IT

IT out + WTh IT

GPi × (1 −
GPi|SNr color

c

GPi|SNrrest
)
)

(5)

− WTh IT

TRN IT .TRN IT + ITh

with c ∈ [red, green, blue], ITin
c the visual input channel for

color c, IT out
c the activity of the IT layer connected with Th IT

and SGinhib the ascending inhibition from saccade generators.
Thalamic activity depends on IT out

c and on BG output nuclei
GPi|SNrcolor . The BG output thus gates a part of the transmission
between IT out and Th IT with a modulating inhibition. TRN IT

is the activity of the globally inhibiting inputs from the thalamic
reticular nucleus and ITh a constant tonic activity. ITin

c is fed to the
reinforcement learning module for the color (ACcolor). Details of
the reinforcement learning are given below (Section 2.2.3). Then,
the resulting channels along with IT out

c are given as inputs to the
BG. For full details about Th and BG model see Girard et al.
(2008).

Spatial information is processed by two cooperating loops. In
the cortical FEF-BG-Th loop, FEF receives visual information in
its input map with a long latency (91 ms). This map is then fed
to the selection loop (cf. Figure 5) and the resulting activity is
computed as follows:

FEF out
i,j = WFEF out

FEFin .FEFin
i,j × (1 − WSGinhib

.SGinhib)

+ WFEF out

Th FEF .Th FEF
i,j (6)

Th FEF
i,j = FEF out

i,j ×

⎛
⎝WTh FEF

FEF out + WTh FEF

GPi|SNr × (1 −
GPi|SNr

spatial
i,j

GPi|SNrrest
)

⎞
⎠

− WTh FEF

TRN FEF .TRN FEF + ITh (7)

with (i, j) ∈ [0, n]2, FEFin the visual input and FEF out the activity
of the FEF layer connected with Th FEF .

The two maps (ThSC and FEFin) are concatenated and fed
to the reinforcement learning module. We decided to keep both
maps concatenated in order to preserve the full learning capabil-
ities and then to merge back the resulting weighted maps at the
BGspatial input level before BG selection.

The merge is done by summing and passing these maps
through a sigmoid (f (x) = 1

1 + e15.(0.95 − x) ), inducing a non-

linearity and a minimal salience threshold. Similarly to the color
loop, the resulting map along with FEFin are given as inputs to
the BG.

In the SC-Th-BG loop, SCi receives inputs from V4|IT, FEF
and retina (via SCs). These inputs are weighted summed and
fed to the selection loop (cf. Figure 6). As stated previously the
BGspatial module is the same than in the FEF-BG-Th loop. The
resulting activity is computed as follow:

SCi out
i,j =

[
(W SCi

SCs .SCsi,j + W SCi
FEF.FEF out

i,j + W SCi
V4|IT .V4|IT out

i,j )
]

×

[
W SCi

SCiin
+ W SCi

BGamp
× (1 −

SNri,j

SNrrest
)

]
(8)

× (1 − WSGinhib
SGinhib)

ThSC
i,j = SCi out

i,j ×

⎛
⎝WThSCi

SCi out + WThSCi

GPi|SNr × (1 −
GPi|SNr

spatial
i,j

GPi|SNrrest
)

⎞
⎠

− WThSCi

TRNSCi .TRNSCi + ITh (9)

with (i, j) ∈ [0, n]2, SCs the visual input from the superficial layer
of SC, GPi|SNr the inhibition from the output nucleus of BG
projecting to SC.

2.2.2. Basal ganglia

The BG model used here was first described in Girard
et al. (2008) and is depicted in Figure 7A for cortical
loops. Notice that for the subcortical loop the connectiv-
ity is slightly different for the position of the Thalamus (cf.
Figure 7B).
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FIGURE 4 | Spatial-color transformation.

FIGURE 5 | Closed loop selection-amplification of spatial FEF map.

Black arrow heads are exitatory connexions, empty arrow heads are

inhibitory connexions.

The parameters of the BG circuit involved in the spatial loop
have been adapted so as to cope with the selection of 630 channels
(see Supplemental Data).

The n × n inputs from the spatial maps (here with n = 70 for
each hemifields) converge on the m × m inputs (here m = 18 for
each hemifield) by the Gaussian Pyramids method. Input map
size is reduced by first convolving it with a 5 × 5 gaussian kernel:

BG
spatial
i,j = (In ∗ G)i,j (10)

with In the input map, G the normalized gaussian kernel and
(i, j) ∈ [0, n]2. Then it is 2 × 2 binned in order to divide dimen-
sions by 2.

This operation is repeated 2 times in order to reduce the
input map by a factor 16. The opposite operation is computed
to upscale the output activity of BG in order to match the pro-
jection toward other structures. This dimensionality reduction is

FIGURE 6 | Closed loop selection-amplification of spatial SC map.

Black arrow heads are exitatory connexions, empty arrow heads are

inhibitory connexions.

inspired by the anatomy of cortico-striatal connections (Zheng
and Wilson, 2002).

As seen on Figure 4, the color BG circuit receives the sums of
the activity of the color maps, and thus operates selection among
three channels:

BGcolor
c = WBG

ITc

∑

i,j

ITci,j
(11)

with WBG
ITc

a normalization constant. The output of the same
circuit thus affects the whole color maps in the following manner:

V4 out
ci,j

= V̂4ci,j
.IT out

c (12)

with V̂4ci,j
the normalized activity of the input map for color

c, V̂4ci,j
= V4in

ci,j
/max(V4in

c ) and IT out
c the output activity for a

whole channel c.
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2.2.3. Actor critic

The input to the BG circuits is biased by reward using the
classical “Actor-Critic” TD(λ) learning algorithm (Sutton, 1988;
Montague et al., 1996; Sutton and Barto, 1998).

TD-error δ is computed according to

δ = Rt + (γ × Vt) − Vt−1

with (13)

Vt = WCritic · Inputt

Rt being the reward at time t, Vt the estimated value function,
WCritic the learned weights of the Critic, Inputt the input matrix
(spatial or color) and γ the discount factor.

Critic’s weights are then updated using eligibility traces ECritic:

WCritic ← WCritic + η × δ × ECritic

with

ECritic ← λ × ECritic + Inputt−1

(14)

η being the learning rate and λ the “forgetting” factor of eligibil-
ity traces. The size of the Critic’s weights vector is N, the same
as Input so here connexions are “all-to-one” type. Actions vector
(weighted inputs) is computed as following:

At = WActor · Inputt (15)

and Actor’s weights are computed as following:

WActor ← WActor + η × δ × EActor

with

EActor ← α × EActor + Inputt−1 ⊗ A′
t−1

and

A′
t−1 = GPit−1

(16)

Actor’s weights matrix is of size N × N so here, connexion are
“all-to-all” type.

Compared to classical reinforcement learning (cf. Figure 8,
left) we can see that “States” are inputs to be selected and
“Actions” are weighted inputs. Here, the BG compute a selec-
tion of these weighted inputs – thus playing the role of the
“winner-takes-all” (cf. Figure 8, right) – and then disinhibit some
structure (i.e., SC) which eventually will trigger a real action.

Actor’s weights are initialized to an identity matrix in order
to allow for an initial “standard” behavior (direct unweighted
projection). A minimum value for Actor’s weights diagonal has
been implemented (WActormin

= 0.6) in order to prevent the sys-
tem to from losing the ability to trigger saccades. Critics weights
are initialized to a random matrix with values ∈ [0, 0.01].

The exploration, which is important for RL convergence , is
caused here by a perceptual noise only. This perceptual noise is
implemented in the following manner: one input has an ampli-
tude of 1 and the other of 0.95. This 5% difference is sufficient
for the system to select the most “intense” input, before learning
adds its own biases to the selection, and is randomly alternated
between cues in order to ensure the absence of a systematic bias.

2.2.4. Spatio-temporal transformation

In order to compute the so-called “spatio-temporal transforma-
tion” (STT) required to convert a spatially coded target into a
saccade burst generators (SBGs) temporal sequence, we used the
model first described in Tabareau et al. (2007) (cf. Figure 9). This
model includes a visual map (SCi output map described above)
and a motor map (SC motor map) with a log-complex map-
ping along with colliculi gluing mechanism. The motor layer is
projected to the saccade generators and both are controlled by a
strong inhibition from omnipause neuron (OPN).

We can notice than we slightly modified the “integrating-
saturating” mechanism (Int and Sat in Figure 9). This mecha-
nism no longer inhibits the whole motor map in a subtractive
manner, but now modulates the visual map to motor map pro-
jection in a multiplicative manner:

Imotor
i,j = SCi out

i,j × (1 − W SCi
BGinhib

× SNri,j)

× (1 − WMot
Sat .Sat) − WMotor

OPN .OPN
(17)

with Imotor the input activity of motor layer, SCi out the activity of
SCi out map described in section 2.2.1, OPN the output activity of
the OPN and (i, j) ∈ [0, n]2.

This modification has the advantage of generating more real-
istic burst activities, more similar to the gamma functions used in
van Opstal and Goossens (2008).

Notice that Sat is used as the ascending inhibitory signal
SGinhib in other structures, which signals the execution of a
saccade (Sommer and Wurtz, 2002) .

2.2.5. Model parameterization

The parameters of the model were hand-tuned, these tuning oper-
ations were performed, as much as possible, by considering the
various subsystems (BG models, generation of the motor com-
mand, convergence of the inputs on the SC, and reinforcement
learning) in isolation and enforcing their correct operation.

The parameters of the spatial BG loop had to be modified com-
pared to the initial parameterization of (Girard et al., 2008), as
the number of competing channels is much higher. This drasti-
cally affects the effects of diffuse projections, like those of the STN
on the GPe and GPi. When 630 channels are exciting the GPi,
rather than 6, the strength of this excitation has to be reduced,
so as to avoid saturating the GPi neurons, and so as to allow
one-to-one inhibitions from the Striatum to be strong enough to
conteract excitation and thus allow selection. These modifications
were made as follows: the BG model was isolated from the rest
of the system, and provided with 2D Gaussian inputs similar to
those used in the tasks, with varied amplitudes. The parameters
were adjusted until the selection of a single target with an ampli-
tude between 0.6 and 1 was restored. Finer adjustment were then
made so that one or two distractors of inferior amplitudes would
not disturb the selection process, and that the simultaneous selec-
tion of multiple targets occurred only when they have very close
amplitudes.

The parameters of the motor layers of the SC, and of the
saccade generators, which operate the spatio-temporal trans-
formation, were almost identical to those of (Tabareau et al.,
2007), except slight modifications in the integration rate of the
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FIGURE 7 | (A) Details of the BG model in the cortical loop (here, IT-BG-Th is

shown but an identical structure is used for FEF-BG-Th). Only 3 channels are

represented, the middle one being the most salient. SNr/GPi and GPe are

color inverted as channels activity in these structures are opposed (middle

channel which is the most activated in input, is the weakest in these

structures). Thalamus structure (Th) is composed of a ventral anterior nucleus

and of reticular nucleus (TRN) which constitute a population without

segregated channels. Striatum is composed of D1 and D2 types of

dopaminergic neurons and of a population of fast discharge inter-neurons

(FS). Filled arrow heads are exitatory connexions and empty arrow heads are

inhibitory. Filled lines represents one-to-one connexions and dotted lines

represents one-to-all connexions. Adapted from Girard et al. (2008). (B)

Details of the BG model in the subcortical loop (SC-Th-BG). Same model than

in (A) except for the position of the Thalamus.

FIGURE 8 | Schematic representation of the Actor-Critic reinforcement learning algorithm. Left: classical Actor-Critic, involving a winner-takes-all (WTA)

selection mechanism. Right: Actor-Critic with BG as selection mechanism.

saturating mechanism, so as to adjust the duration of the motor
bursts to more realistic values.

The parameters adjusting the strength of the contributions of
all the different maps to the final SCi layer were adjusted so that:
(1) imposing an input from the spatial system only, or from the
color one only, would generate the corresponding saccade, and

(2) simultaneously imposing a given target position in the spatial
system and another one in the color system, would result in an
averaging saccade.

Finally, the parameters driving the temporal integration of
reward in the learning modules –namely the discount factors γ

and the eligibility trace λ– had to be large enough, so that learning
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could occur despite the relatively long delay between the appear-
ance of a target and the effective reward delivery (≈500 ms). The
learning rates were adjusted so that the learning would converge
to the best possible level of performance in approximately 20–25
sessions. The relative difference between ηspatial and ηcolor has to
be considered in the light of: 1) the huge difference in the num-
ber of input weights to be adjusted in each system (1587600 in
the spatial domain vs. 9 in the color one), and (2) the different
extent of the input stimulations corresponding to one target (a
2D Gaussian input spreading over a hunded of channels in the
spatial domain vs. one single channel in the color domain).

2.3. SIMULATED TASKS

We simulated 3 target selection tasks where the system has to trig-
ger a saccade toward one of the two displayed cues (cf. Figure 10).

A “spatial task” is aimed at verifying its ability to learn to
choose a target based on spatial information only. A “color task”
for color information only. And a “conjunction task” to study
interactions between these two. 10 runs were done and each
experimental run is composed of 40 sessions of 12 trials.

3. RESULTS

3.1. SPATIAL TASK

In the spatial task, the rewarded cue only depends on its position
on the visual field. So the system has to learn to ignore the color
information and to favor the spatial one.

We can see that the model is able to learn the task with a per-
formance reaching ≈90–95% (Figure 11A), this means that it is
possible to find a parameterization of the model allowing for a
good level of performance after learning

The distribution of SRT is bimodal, with a very sharp
peak of low latency (≈88 ms) and a second bump centered
around ≈200 ms (cf. Figure 11B). This behavior is very similar
to that of “express saccades” for short latencies and “regular sac-
cades” for longer ones described in Fischer and Weber (1993).
Looking at details of the evolution of these SRT, it appears that
for the first half of the experiment (first 20 sessions = first 240
trials) saccade latencies mainly fall within the 200 ms mode (cf.
Figure 12). These saccades reflect the baseline timings of the
system without any selection bias from learning.

For the second half of the experiment (where performance is
close to 90%), saccade latencies fall within the 88 ms mode.

Associated weights for the color loop (Figure 11D) indicates
that the colors of targets (red or green) have not been learned:
they have similar weights values of ≈0.8 in the diagonal.

In contrast, the weights of the spatial loop (Figure 11C) show a
strong bias toward the right target (the rewarded one), especially
in the weight map corresponding to the SC (≈5.5, while the FEF
ones are around 1.1). These weights causes a strong activity on the
spatial loop with a quick disinhibition from the SNr as soon as the
direct retina-to-SC signal appears. Then, activity is transmitted to
the motor layer even before visual information reaches the corti-
cal visual areas and rapidly triggers a saccade. This kind of saccade
thus differs from “standard” ones as they only rely on the direct
retina-to-SC pathway. Indeed, before learning, the retina-to-SC
input is not sufficient to trigger a saccade alone in our model and
needs either FEF or V4|IT input, thus explaining the longer SRT.

FIGURE 9 | Architecture of the motor layer of SC. Only one colliculus

(right hemifield) and two SBG are represented (without cross projections)

along with two neurons by map (V1 and V2 in the SCi output map, M1 and

M2 in the motor map). Gray discs represents gaussian activity produced by

a visual target (coordinate (10 ◦,10 ◦), thus R = 10 ◦, θ = 45 ◦), insets in the

saccade generator represent the temporal coding in EBNs generated to

control muscles. Filled triangles are for excitatory connexions, empty

triangles are for inhibitory connexions. Bold connexion affect the whole

map. Adapted from Tabareau et al. (2007).

If we look at the details of neural activity in normal and
express saccades (Figure 13), what appears for the spatial task
(after learning) is that direct retinal input induces activity in the
spatial loop, which is quickly dis-inhibited by the BG (thanks to
the strong weights) and activates the SCi motor map. Moreover,
as the same BG module is shared between the subcortical and the
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FIGURE 10 | Simulated sequence of visual stimuli. A black screen of

50 ms is followed by a fixation cue for 800 ms. Then a random gap time

(between 150 and 250 ms) is followed by the two cues. The cues are

displayed for a maximum of 600 ms and loops back. During this interval, if a

saccade of sufficient amplitude (> 2.5 ◦ from the center) is detected, the

trial ends and loops back. Rewards are given when the trial ends, which

may be triggered by the timer or a saccade depending on the task.

cortical loops, this dis-inhibition also affects the cortical loop and
thus induces activity in FEF before visual information reaches it.
This induced activity depends in facts on the baseline level of the
Thalamus and is a prediction of the model due to our choice of
a single shared spatial BG module. The activity in the SC causes
a disinhibition in the spatial BG circuit, which then disinhibits
also the thalamo-FEF loop. As this loop is auto-excitatory and
as the thalamus has a baseline activity, this trigger a resonance
between Cortex and Thalamus. Thus the observed short latency
activity in FEF is not caused directly by visual input but indirectly
by subcortical visual activity.

Yet, express saccades depend only on the SC loop and FEF
only has a marginal impact on it. Nevertheless, simulations with a
FEF inactivation (after learning) extends SRT of ≈15 ms, this FEF
resonant activity thus contributes to the global behavior.

Notice that Figure 13 also exhibits some very short bursts of
post-saccadic visual activity (better seen for SCs but the mecha-
nism is the same for all the structures). These bursts are provoked
by the residual retinal activity reaching each visual region due to
the latencies, whereas eyes have already moved. This behavior is
probably not significant as it may be canceled by a different choice
of parameters for SGinhib for example.

3.2. COLOR TASK

In the color task, the rewarded cue only depends on its color. So
the system has to learn to ignore the spatial information and to
favor the color one.

Here, the average performance only reaches about 75% (cf.
Figure 14A), so the system can learn the task but errors are still
made at a rather consistent rate. The performance is thus lower
that in the spatial task, an effect which is most probably caused
by the structure of the BG loops themselves, a point we discuss
further in section 4.2.

Color learning is very sensitive to noise in the spatial domain.
Indeed, most of the time (≈95%) these errors occur when the
distractor (object with the wrong color) is the most intense
(“intensity” is imposed to be 1.0 or 0.95 by the perceptual noise).
It means that even with learned weights favoring the good color
in average (cf. Figure 14D) and spatial ones almost symmetric (cf.
Figure 14C, the intensity scale indicates very small variations),
the color loop is sometimes unable to impose its choice when a
competition occurs between the spatial and the color loop. This
is explained by the fact that the subcortical circuit, which oper-
ates exclusively on spatial information, can take decisions faster
than the color loop. It thus can impose a choice based on spa-
tial information even before the cortical color loop converges to a
decision.

The SRT for this task mainly consists on a single mode his-
togram centered around 200 ms, easily explained by the longer
latency of the color loop (122 ms). No reduction of these latencies
by learning were to be expected, as no faster pathway operating
on colors is available.

3.3. CONJUNCTION TASK

In the conjunction task, the rewarded cue depends on both posi-
tion and color (e.g., red disk at the right position). When this
conjunction is not presented (No conjunction case), the system is
rewarded only if the eye position stays within a 2.5◦ circle around
the center (“Good average” behavior).

Here, the average performance for the conjunction case
reaches levels similar to those of the spatial task (around 95%,
Figure 15A) but for the “No conjunction case” the rewarded
behavior (“Good average”) is rarely performed. We can see that
the errors made in this case tend to be mostly “color errors” i.e.,
a saccade toward the good location but with the wrong color
(around 90% of errors at the end of the experiment). “Spatial
errors” occurred when a saccade is triggered toward the good
color but at the wrong position. However, we can see that at the
beginning of the learning and until half of the experiment, the
system is still able to produce a small number of “good average”
(≈15%). This behavior progressively disappears as the spatial
loops learn and become faster, thanks to its subcortical compo-
nent, making it more difficult for the color loop to select due to
its longer latency.

What appears at the end of the experiment is that the behavior
of the system is mainly dominated by the spatial loop with almost
no weighting from the color loop.

The learned weights correspond well to the task as the right
position is favored compared to left one with (cf. Figure 15C)
but the red color is only slightly favored compared to green (cf.
Figure 15D).

The saccade reaction time is more complicated here. In fact we
can see three modes (≈88 ms, ≈140 ms and ≈220 ms). These three
modes are in fact explained by the respective latencies imposed for
the three pathways, SC (41 ms), FEF (91 ms), and V4|IT (122 ms).
Similarly to the spatial task, most of the 88 ms saccades occurred
on the second half of the experiment reflecting the specializa-
tion toward spatial selection. In fact, saccade latencies shift from
the 220 ms mode roughly at the first tier of the experiment, to
the 140 ms mode at the second tier and then to the 88 ms mode.
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FIGURE 11 | Results of the spatial task. The rewarded cue is the right one

regardless its color. (A) Performance across sessions (bold line is the mean

performance of the 10 runs represented with dotted lines). (B) Distribution of

saccadic reaction time (SRT) for the whole experiment. (C) Learned weights

(averaged over 10 runs) for the Actor part of the spatial loop; for readability

reasons, the multidimensional weight matrix has been projected on the

output: it represents, for each unit, the sum of the input weights coming

from the whole map, for the SC (top) and the FEF (bottom), note also the

different intensity scale between SC and FEF. (D) Learned weights (averaged

over 10 runs) for Actor part of the color loop.

This gradual shift of timing thus explains the lack of influence
of the color loop, whose pathway latency is of 122 ms. A saccade
may be triggered by the spatial loops before feature information
even reaches the color loop. Again, this effect is not specific to
a given parameterization: the advantage of the spatial decisions,
caused by a subcortical circuit with earlier access to information,
and thus with faster learning, is structural. It is to be noted that
the 140 ms peak did not appear in the spatial task, as the learn-
ing is fast enough to allow the system to quickly switch to an
“express saccade expert.” This is also explained by the informa-
tion “redundancy” in our model between SC and FEF, the latter
dealing with the same spatial information only with a longer
latency. In the conjunction task, this peak appears as the “diffi-
culty” slows down the learning, and thus the shift to an “express
saccade expert.”

4. DISCUSSION

We described a model of the saccadic system with some very
specific structural features:

• the cortico-basal circuits operate in various dimensions (selec-
tion based on spatial position, or on target features), with
sensory inputs provided with a given latency,

• the subcortico-basal circuit operates on spatial information
only, and with a shorter latency,

• all these circuits are subject to reinforcement learning at the
level of the input of the BG,

We claim that this structure predicts very specific behaviors, espe-
cially in feature-based and space-and-feature-based decisions:
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FIGURE 12 | Spatial task reaction time histogram with separated first

half of the experiment (top) and second half (bottom).

• In the spatial decision task, an ability to switch, from long-
latency to short latency saccades (thanks to the learning of
the subcortical circuit). An effect experimentally described in
Fischer et al. (1984).

• In this task, after the learning of the subcortical shortcut, an
early burst of activity in the FEF appears, caused by resonant
activity in the spatial circuit. This burst slightly contributes to
the reduction of the saccade latency.

• In the color decision task, the concurrently learning subcortical
circuit reduces the efficiency of learning, when compared to the
spatial task. In normal animals, this effect could be canceled by
a external cognitive brake, for example the dlPFC, acting on the
subcortical circuit. Thus we predict that this deficit observed in
simulation should be observed only in animals with prefrontal
cortex deactivation.

• In the conjunction color-and-space-based task, again with
the same prefrontal cortex deactivation, space should domi-
nate in the sense that when the cunjunction is not presented,
(1) inhibiting the response should be difficult and disappear
with learning, (2) the resulting errors should be preferen-
tially directed toward the correct position in space rather than
toward the target with the correct color, (3) the saccade laten-
cies should decrease as in the purely spatial task, a clear clue
that the subcortical spatial circuit has taken full control of the
decisions.

4.1. PREVIOUS MODELS

Very few models have investigated the operation of multiple basal
ganglia circuits in saccadic decision and learning (Girard and
Berthoz, 2005), and even fewer took into account the existence
of a purely subcortical loop.

The seminal model of Dominey and Arbib (1992, 1995) is
quite complete, with memory and sequence learning that we
have not yet replicated. Nevertheless, some of its aspects seem
now rather outdated. First, their model lacks the subcortical

FIGURE 13 | Activities of different neurons of the target channel in the

spatial task. Target appears at t = 0. Dashed line: before leaning. Solid line:

after learning. SCs input, FEF input and V4 input represent the presence of

the visual cue in the receptive field before learning (gray) and after learning

(black). 1: Visual activity reaching SCs. 2: Beginning of the express saccade

(after learning). 3: Visual activity reaching FEF. 4: Visual activity reaching

V4|IT. 5: Beginning of the saccade before learning. 6: Indirect short latency

activity in FEF provoked by SC activity. 7: Small burst of post-saccadic visual

activity provoked by the end of inhibition from SGinhib.

SC-Th-BG loop which is now clearly identified: they only inte-
grated cortical loops. This subcortical loop can operate faster
than the cortical circuit and one aim of our work is to explore
their interactions. Second, the BG model they used is oversimpli-
fied. Indeed it is only based on the direct/indirect interpretation
of the BG connectivity, from which they keep the direct path-
way only. Consequently, concurrent channels cannot interact
in the BG circuitry which make target selection problematic.
Their SC motor layer thus requires an ad hoc winner-takes-all
mechanism, where our more complete BG model solves these
problems.
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FIGURE 14 | Results of the color task. The rewarded cue is the red one regardless its position. (A–D) Same as Figure 11.

The model proposed in Brown et al. (2004) includes a corti-
cal loop dedicated to saccade strategy selection, and a subcortical
loop dedicated to target selection. They also include a working
memory mechanisms we have not yet included. Their cortical
“strategy” loop explicitly selects whether the target of a saccade
will be based on the fixation cue, target position or target feature.
Their subcortical loop lacks any thalamic relay and is entirely con-
trolled by the cortical loop, making it unable to learn and make
saccades without it. Finally, the details of their BG circuitry suf-
fer from limitations, discussed in details in Girard and Berthoz
(2005).

Chambers et al. (2005) proposed a model integrating both the
subcortical and cortical pathways without learning capabilities,
where a single up-to-date BG model dedicated to location-based
selection integrates FEF and SC inputs. Using the various posi-
tive feedback loops of this circuitry, they show that manipulating
the level of dopamine in their BG model generate reaction time
and saccade size modifications reminiscent of Parkinson’s disease

patient behavior. This model is equivalent to our spatial circuits,
and does not explore learning and competition between cortical
loops.

The model described in Guthrie et al. (2013) integrates two
cortical loops (“cognitive” and “motor”) interacting through dif-
ferent associative structures at both cortical and striatal level.
They store in a sub-part of the Striatum all the possible spatial
and feature combinations, which could create an obvious com-
binatorial problem in a realistic model with a full field of view
representation and a rich feature space. This model has shown
the ability to learn to select targets based on conjunction of infor-
mation between the two loops but does not include SC and does
not specify how the selection in the BG is transformed in a
motor command. The associative striatal structure is dependent
on the associative cortical one and provides a mean of informa-
tion transfer between loops. However, the BG architecture used is
quite simplified, lacking GPe and GPe-STN connectivity. Finally
this model does not include any subcortical loop and thus did
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FIGURE 15 | Results of the conjunction task. The rewarded cue is the right

red one; if not present, reward is given for fixating the center area. (A)

Average choices, in the conjonction (top) and no conjunction (bottom) case. In

the conjunction case, “conjunction” represents the good choice, “spatial and

color error” a movement toward the wrong cue, “bad average” an averaging

saccade (both targets selected simultaneously) and “bad saccade” (saccades

that fall neither within a 2.5 radius from the center or any cue). In the no

conjunction case, “good average” is a rewarded saccade keeping the eyes on

the fixation point, “spatial” and “color” errors respectively represent

movements to the green target on the right and to the red target on the left,

and “bad saccade” in any other position (generally between fixation and cue

but outside the 2.5 radius). (B–D) Same as Figures 11, 14.

not study possible interactions between cortical and subcortical
loops.

4.2. SPATIAL DOMINANCE

Our results show that the system is able to learn basic behav-
iors such as the “spatial task” and the “color task.” Moreover,
we observed quite different abilities for these tasks. A first dif-
ference appeared on the color task performance which only
rises to about 75%. This difference can be explained by the
very structure of the model where the spatial loop intrinsically
dominates the system as it includes the SCi output map and
has access to information before the color one. Thus, it can
learn before the color loop processes information and, has the

last word on selection. This characteristic is confirmed in the
“conjunction task” where the system finally learned a “spatial
task.” What is quite clear with this architecture is that sub-
cortical spatial choice should prevail when opposed to a color
one. This characteristic was also observed in a previous work
with a simpler model without the cortical spatial loop (N’Guyen
et al., 2010) and seems to be a prediction of this architecture.
Such a prediction could be tested on animals with dlPFC inac-
tivation in a task where both a spatial and feature criterion
contradict each other as we expect the dlPFC to inhibit impul-
sive subcortical behavior. This prediction wouldn’t be hold for
the model proposed by Guthrie et al. (2013) as they explic-
itly represent conjunction information in the Striatum, and
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this allows for an experimental discrimination between the two
models.

4.3. EXPRESS SACCADES

Moreover, another stable outcome of this model relates to the
saccade reaction time. We observed what resembles to “express
saccades” for the spatial task. These short latency saccades
occurred only after a period of learning in our case. This training
dependent behavior is in accordance with previous observations
on monkeys (and humans) (Fischer et al., 1984; Fischer and
Ramsperger, 1986). However it appears that monkeys are also able
to trigger some rare and spontaneous express saccades without
learning that our model cannot reproduce. This behavior may be
viewed as a kind of exploratory one, clearly lacking in our model.

These express saccades are only performed toward learned
locations and never toward learned features. This suggests that
this behavior is location dependent and not feature dependent,
which is in accordance with results in monkeys (Fischer et al.,
1984; Schiller and Haushofer, 2005). Indeed, imposed sensory
pathways latencies exclude the ability of express saccade for the
cortical color loop (122 ms) which easily explains the lack of such
saccade in the color task. Therefore, the intrinsic architecture of
the model predicts that correct express saccades cannot occur
based on feature information. Moreover in our system this spatial
dependency is encoded in a retinocentric reference frame and so
doesn’t depend on the location of target in space which is also in
accordance with previous results (Schiller and Haushofer, 2005).

Furthermore it seems that these express saccades are not
dependent on FEF as simulations done with FEF inactivation on
a learned system, only lengthen them of about 15 ms which seems
to be quite in accordance with what was observed in lesion studies
(Schiller et al., 1987).

Interestingly, we observed a short latency burst of activity in
FEF prior to the execution of the express saccade. This activity is
not caused by a direct visual input (it appears before visual input
reaches FEF) but by an indirect SC activity causing the a resonat-
ing activity in the cortical loop. Although a SC to FEF projection,
either direct or through the Thalamus, has been hypothesized
(Sommer and Wurtz, 1998; Everling and Munoz, 2000), this
induced activity through BG disinhibition seems to be a new
prediction of our model.

Notice that the express saccades we obtained could be theoret-
ically shortened even more with a pre-disinhibition of BG which
could be viewed as a preparatory activity. Doing so it should be
possible to shorten latency by tens of milliseconds maybe explain-
ing the observed range of timings from 70 to 90 ms in living
animals. For example a preparatory activity in FEF during the gap
period which could either facilitate or even elicit disinhibition of
BG (Everling and Munoz, 2000). Whether this pre-disinhibition
exists or not remains a question to be answered experimentally.
However this phenomenon was not observed in our system and
may require some memory capacity that we did not implement.

If we look further at the SRT distributions, what is commonly
observed in primates is a bimodal distribution of reaction time
for a detection task (only one cue) which can be related to our
spatial task. These two modes are in the range of 80–100 ms
and 130–160 ms. Moreover, as said before these timings keeps

quite unmodified after a FEF lesion but are drastically changed
after a SC lesion (Schiller et al., 1987). Our model produces a
compatible bimodal distribution but with a longer latency for
the second mode which involves the color loop. So it seems that
our model doesn’t capture the exact mechanism explaining this
precise timing.

In contrast, a unimodal distribution is observed in primates
for a discrimination task (where the animal has to choose a cue
based on a feature) which can be related to our color task. In
this case the distribution is wider and in the range of 160–200 ms
without express saccades. Once again, this distribution remains
unchanged after FEF lesion but is modified after a SC lesion
(Schiller et al., 1987). Here the mechanism proposed by our
model seems quite consistent with the experimental data.

Unfortunately to the best of our knowledge there is no data
on a spatial-feature conjunction task in the literature, but it is to
be noted that a similar three peaks distribution was observed in a
quite different task where the primate had to choose between two
targets (both rewarded) presented with a 50 ms offset (Schiller
et al., 2004).

4.4. EXPLORATION

Noise is necessary in the system to allow the generation of sac-
cades toward one target among two with similar predicted values,
rather than systematically resulting in averaging saccades. While
averaging saccades sometimes happen in behaving animals (Ottes
et al., 1984) they are quite rare and not as systematic as our model
would produce them without perceptual noise. This is because
the output of our BG does not represent a probability distribu-
tion of possible targets but indeed a direct control that requires
a unique choice. Yet, our solution is probably a bit simplistic, a
more plausible one would be to produce a selection with more
competition between targets such as “race models” (Bundesen,
1987; Ludwig et al., 2007). These mechanisms would most of the
time allow a selection of a unique target between two perfectly
identical cues. Moreover these mechanisms could also produce
an attentional engagement/disengagement behavior which could
produce the “gap effect” (Saslow, 1967; Braun and Breitmeyer,
1988) that our model cannot replicate.

4.5. MULTIPLE LOOPS

In our model we have chosen to include only one SC-Th-BG loop
but McHaffie et al. (2005) have identified at least two (maybe
three) different loops involving different layers of the SC.

The first one linking the SC superficial layers (SCs) to the BG
via lateral posterior (LP) and pulvinar nuclei of thalamus and
ending back to the SC superficial layers (and possibly also deep
layers). According to the fact that SCs activity is mainly driven
by direct retinal projection, it seems reasonable to think that this
loop could be responsible of selection of these retinal inputs. We
didn’t implement this loop that appeared redundant in our model
as we included a SCs to SCi projection but we can imagine a dif-
ferent mechanism with for example a SCs to SCi pathway gated
by SNr inhibition.

The second loop—that we implemented in our model—links
the SC deep layers (SCi) to BG via intralaminar thalamus nuclei
(both caudal and rostral, which represent segregated regions with
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different type of contact to striatal medium spiny neurons and
thus may in fact describe two parallel loops). The deep layers of
the SC are known to receive afferent connections from multiple
areas (sensory, premotor, motor, but also multisensory. . .) (May,
2006) thus probably conveying much higher level information.
Moreover, as good evidences indicate a SCs to SCi projection (Lee
et al., 1997; Isa, 2002), it seems reasonable to think that this loop
could be involved in selection of sensory (or high order) targets
for orienting behavior as described in this work.

4.6. ASSOCIATIVE MAP

The conjunction task clearly requires the ability to select and
combine feature and location, but we built our model with the
conservative assumption that these different types of information
were treated independently by strictly separating feature and spa-
tial loops in the learning stage. We thus stick to the assumption of
parallel functionally segregated loops as described in Alexander
et al. (1986). Moreover this choice was also driven by anatom-
ical considerations as the TE region of IT seems to projects to
the “Visual Striatum” (Middleton and Strick, 1996) while the
FEF seems to project to the “Oculomotor Striatum” (Stanton
et al., 1988). This architecture should make learning quicker and
learning generalization easier (i.e., we can directly learn that a
color is rewarded regardless of its position rather than learn
each color/location combination). This assumption has also the
clear advantage to keep the system simple without the need to
learn all possible combinations of features and locations which
would causes a problem of combinatorial explosion. But the dis-
advantage is that the system has no means to directly associate
the couple feature/location and can only separately learn both,
explaining the relatively poor performances for this task.

We hoped that each loop could learn to select separately and
then produce the desired behavior while combined back at SC
level. However, with this architecture the only mean to per-
form the correct behavior (trigger a saccade only if the good cue
appears at the good position) is by triggering an average saccade
between the two cues in the “no conjunction” case and thus keep-
ing fixation close to the center. In our model, it becomes less
and less probable as learning progresses, because the spatial loop
becomes quicker than the feature one, thus feature information
cannot be included in the decision anymore. Notice that with
an external brake (such as inhibition from dlPFC) limiting the
expression of express saccades, the task could probably be learned.

Different architectures can be proposed to alleviate this prob-
lem in more realistic ways. It is possible to combine all the
information at different levels. FEF is known to receive inputs
from multiple areas (Schall et al., 1995), being a convergence
structure for ventral and dorsal visual stream. In particular in
our case, IT (TE) is known to project to FEF (Schall et al., 1995)
and we can imagine that FEF already combines spatial and non-
spatial information. This combination could occur after feature
selection and then explain the observed salience map (Thompson
et al., 2001).

Another possibility could be a combination at the Striatum
level allowing the possibility to learn combination of inputs as
done in Guthrie et al. (2013). The disadvantage is to multiply
the size of the input vector as stated above. If we have N spatial

channels and M color channels the input size is N × M and the
all-to-all weight matrix (N × M)2. Even if Guthrie et al. (2013)
invoked interesting biological bases, one can question if this kind
of combination is a problem in biological systems. The predic-
tions we make about the conjunction case could help deciding
based on experimental data, which architecture (separated or
merged loops) is correct.

Finally, interaction between loops can also happen at the
Thalamus level. Even if FEF and IT loops doesn’t share the
same Thalamic nuclei (VAmc for IT and MDpl for FEF) this
mechanism could still be possible.
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