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Summary

Empirical experience with genomic selection in dairy cattle suggests that the distribution of the
effects of single nucleotide polymorphisms (SNPs) might be far from normality for some traits.
An alternative, avoiding the use of arbitrary prior information, is the Bayesian Lasso (BL). Regular
BL uses a common variance parameter for residual and SNP effects (BL1Var). We propose here a
BL with different residual and SNP effect variances (BL2Var), equivalent to the original Lasso
formulation. The l parameter in Lasso is related to genetic variation in the population. We also
suggest precomputing individual variances of SNP effects by BL2Var, to be later used in a linear
mixed model (HetVar-GBLUP). Models were tested in a cross-validation design including 1756
Holstein and 678 Montbéliarde French bulls, with 1216 and 451 bulls used as training data; 51 325
and 49 625 polymorphic SNP were used. Milk production traits were tested. Other methods tested
included linear mixed models using variances inferred from pedigree estimates or integrated out
from the data. Estimates of genetic variation in the population were close to pedigree estimates in
BL2Var but not in BL1Var. BL1Var shrank breeding values too little because of the common
variance. BL2Var was the most accurate method for prediction and accommodated well major
genes, in particular for fat percentage. BL1Var was the least accurate. HetVar-GBLUP was almost
as accurate as BL2Var and allows for simple computations and extensions.

1. Introduction

Genome-wide strategies for genetic evaluation can be
roughly divided into BLUP-like methods (postulating
normal distribution of single nucleotide polymorph-
ism (SNP) effects) and variable selection methods
using more sophisticated distributions. The seminal
paper of Meuwissen et al. (2001) already made this
distinction, by creating BLUP and Bayes (A, B)
methods. In the first group, marker effects are posited
normal distributions with zero mean and identical
variance for all markers. This results in nice proper-
ties, like simplicity of computations and, in particular,
an equivalent model using a ‘genomic’ relationship
matrix (Van Raden, 2008). The latter can be meshed

with additive relationship matrices and extended to
the whole pedigree (Legarra et al., 2009). Further,
under mild assumptions, equivalences exist between
genetic variances in an additive relationship model
and marker variances (Gianola et al., 2009).

However, at least for some traits, it has been shown
that departures of SNP effects from normality exist.
This results in (and can be seen by) higher accuracy of
methods with more sophisticated a priori distributions
of the marker effects, like BayesA or non-linear re-
gression (Hayes et al., 2009; Van Raden et al., 2009b).
These methods are sometimes called ‘Bayesian meth-
ods’ (Lund et al., 2009). This is inappropriate, be-
cause BLUP is also a Bayesian method, and also
because they have frequentist counterparts (e.g. Usai
et al., 2009). Thus, we will call them ‘variable selec-
tion methods’ because most of them assume values of
most SNP effects to be zero or close to zero. Another
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property of variable selection methods, shown in si-
mulations, is that these methods have better proper-
ties in the long run, that is, estimates of SNP effects
are stable after several generations (Habier et al.,
2007). In addition, small (and possibly much cheaper)
subsets of markers chosen by variable selection
methods have been shown to be of acceptable accu-
racy (Weigel et al., 2009). Thus, variable selection
methods are being heavily used in simulations
(Meuwissen et al., 2001; Calus et al., 2008; Kizilkaya
et al., 2010) and in real data analysis (Hayes et al.,
2009; Van Raden et al., 2009b).

Most variable-selection methods nevertheless re-
quire a priori distributions or tuning parameters.
These include the number of SNPs a priori in the
model and its variance (Meuwissen et al., 2001;
Verbyla et al., 2009) ; or the ratio of variances of SNPs
‘ in’ or ‘out’ (Calus et al., 2008; Verbyla et al., 2009) ;
or the a priori variance of SNP effects (Kizilkaya et al.,
2010). No clear clue, based on biological knowledge,
exists about these a priori distributions. This compli-
cates their practical application.

The Lasso (least absolute shrinkage and selection
operator; Tibshirani, 1996) combines variable selec-
tion and shrinkage. Its Bayesian counterpart, the
Bayesian Lasso (Park & Casella, 2008) provides a
more natural interpretation in terms of a priori dis-
tributions. It is well known that, generally, con-
ditional expectations are optimal for selection
(Gianola & Fernando, 1986). These can be obtained
through the Bayesian Lasso but not the regular Lasso.
Also, in particular, Bayesian Lasso provides a fully
parametric model with a simple Gibbs sampler im-
plementation, as well as an EM algorithm for the es-
timation of the ‘sharpness ’ parameter l, needing little
(or no) prior information. Thus, Bayesian Lasso is an
attractive candidate for genomic selection because of
its simplicity, computational ease and little (or no)
need to postulate prior information. Further, the ex-
ponential distribution of the Lasso is thought to re-
flect reasonably well the nature of quantitative trait
locus (QTL) effects (Goddard, 2008).

The (Bayesian or not) Lasso has been used in an
animal breeding context (de los Campos et al., 2009;
Usai et al., 2009; Weigel et al., 2009), albeit a broad
comparison with related methods using several traits
and a real, large data set has not yet been published.
In addition, we find that the particular case of Park
and Casella’s Bayesian Lasso includes a common
variance term for modelling both residual terms and
effects in the model, instead of two different variances.
We find that this parameterization is not optimal. The
purpose of this paper is thus manifold. First, to pro-
pose and compare a different, more general, model for
the Bayesian Lasso, which in fact is equivalent to
Tibshirani’s (1996) original Lasso. This model implies
different variances for residual terms and for SNP

effects. Second, an alternative linear model for geno-
mic prediction will be presented and tested empiri-
cally; in this model individual SNP variances are
inferred via the Bayesian Lasso first and then used in a
BLUP-like estimator. Third, we compare the per-
formance of these models with a more standard
‘genomic BLUP’ (GBLUP) either fixing the variance
for the marker effects from pedigree estimates apply-
ing a rough equivalence (Gianola et al., 2009), or in-
ferring and integrating it out from the data via the
Gibbs Sampler.

2. Parameterization of the Bayesian Lasso

The base of the Lasso is a typical linear model of the
form:

y=Xb+Za+e; ejs2 � MVN(0, Is2),

where b are fixed effects (e.g. an average mean), a are,
in this work, SNP effects and MVN stands for multi-
variate normal. Originality of Lasso is in modelling
effects a. In the Bayesian Lasso, the distribution of
(a single) SNP effect a is modelled as

p(ajs2, l)=
l

2s
exp

xl aj j
s

� �
:

In the classical Lasso (Tibshirani, 1996) this distri-
bution is actually p(a|s2, l)=(l/2)exp(xl|a|) ; how-
ever, Tibshirani (1996) assumes that incidence matrix
Z has been standardized, which is not assumed here
or in the Bayesian Lasso.

Finally, in Bayesian Lasso the variance of a is
Var(a)=2s2/l2.

Intriguingly, as shown in the expressions above, in
Bayesian Lasso applications in genomic selection
(e.g. de los Campos et al., 2009; Weigel et al., 2009)
the variance s2 has been used at the same time to
model the residual term as well as the distribution
of the SNP effects. However, we do expect the distri-
bution of SNP effects not to be related to un-
observable, unaccounted (residual) effects that can,
for example, vary from site to site for the same in-
dividuals. Assume, for instance, a crop trial design in
which some varieties are tested. Each variety can be
tested 1 or 100 times. If the phenotype to be analysed
is the average yield of the variety, everything else be-
ing equal, it is expected that the residual variation is
divided by 10 in the second option, but not the vari-
ation across SNP effects. Another example is as fol-
lows. Assume that a set of dairy bulls is tested in two
different locations, the second with less frequent milk
recording. The second location will show higher re-
sidual variation for milk yield, whereas genetic vari-
ation in the bulls will be the same.

The implementation of the Bayesian Lasso in Park
& Casella (2008) does not take this into account.
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A more general implementation would split the sour-
ces of variation in purely residual (se

2) and variation
due to SNPs (sa

2), by rewriting the model as

y=Xb+Za+e;

ajl, s2
a �

Y
i

l

2sa

exp
xl aij j
sa

� �
; ejs2

e � MVN(0, Is2
e):

However, this is clearly equivalent to

y=Xb+Za+e;

ajl �
Y
i

l

2
exp (xl aij j); ejs2

e � MVN(0, Is2
e),

which is the original form of Tibshirani’s (1996)
original Lasso, because only the ratio l/sa is used and
thus they cannot be estimated separately. Equiva-
lently, the model could be written in terms of sa

2 by
dropping l.

In the original Lasso, cross-validation is used for
the estimation of l (Usai et al., 2009). Park & Casella
(2008) proposed a fully parametric implementation
by computing a posterior distribution (using the
Gibbs sampler) or an empirical Bayes estimation by
marginal maximum likelihood by a Monte Carlo
Expectation–Maximization (MCEM) algorithm. The
latter avoids the problem of choosing a hyperprior for
l, pointed out by both Park & Casella (2008) and de
los Campos et al. (2009).

The hierarchical formulation of Lasso shown above
includes explicitly two sources of variation and is thus
akin to classical models in quantitative genetics and
genetic evaluation (Henderson, 1984; Falconer &
Mackay, 1996) where variation is split into environ-
mental and genetic variances. The shape of the dis-
tribution of SNP effects is determined by l, which
effectively determines the variance of SNP effects by
using Var (a)=2/l2. Thus, l plays the same role as the
inverse of a standard deviation in normal models. This
does not seem to have been recognized by previous
scholars (de los Campos et al., 2009; Usai et al., 2009).

Applying the same logic as in Gianola et al. (2009),
and in ideal conditions, it is possible to establish a
rough equivalence between genetic variance in a popu-
lation (su

2 ; usually estimated by an additive, relation-
ship-based model) and the variance of SNP effects :

Var(a)=
2

l2 =
s2
u

2g
i
pi(1xpi)

,

where pi is the allelic frequency at the ith marker.

3. Estimation and cross-validation study

(i) Data

Two sets of bulls from French dairy cattle popula-
tions have been analysed from, respectively, Holstein

(1756 bulls) and Montbéliarde (678 bulls) breeds.
Bulls were genotyped with the Illumina Bovine
SNP50 BeadChip. Markers were discarded based on
low call rate, lack of positioning in the genome, or
very high Mendelian inconsistency rate. No minor
allele frequency threshold was imposed. Finally,
51 325 and 49 625 polymorphic SNP were, respect-
ively, used in each breed. A cross-validation approach
was used where 1216 and 451 bulls were taken as the
training data and the rest as validation data. Bulls in
the validation data set were, roughly, bulls being
tested in 2004 and 2005, and younger than the train-
ing bulls. All parameter estimation in this work was
carried out on the training population.

Data for training (y in the model) were daughter
yield deviations (DYDs; Van Raden & Wiggans,
1991) as computed with data available in 2004; data
for validation were DYDs from data available in
2009. Thus, the validation mimics well a real scenario.
To account for different accuracies in the estimation
of DYDs, these were weighted by their prediction
error variances (in terms of number of equivalent
daughters) as estimated from regular genetic evalu-
ation. This will be explained in more detail later.

Traits analysed were milk, fat and protein yields
(MY, FY and PY) and fat and protein percentages
(FP and PP). Several models were used. The esti-
mation was mostly made by Bayesian methods using
Markov Chain Monte Carlo (MCMC) as well as,
for certain cases, a marginal maximum likelihood
by an MCEM algorithm, as suggested by Park &
Casella (2008) to avoid the use of a hyperprior
for l. An example of marginal maximum likelihood in
the genetics literature is the REML estimator of
variance components (Patterson & Thompson, 1971).
The models used to analyse the data sets are
described next.

(ii) Bayesian Lasso with genetic and residual
variances (Bayesian lasso with two variances;
BL2Var)

The model is as follows:

y=1m+Za+e;

ajl �
Y
i

l

2
exp (xl aij j); ejs2

e � MVN(0,Fs2
e),

where y contains twice the DYDs for each bull, m is a
general mean, Z is an incidence matrix of SNP effects
a, e is a vector of residuals and F is a diagonal matrix
that contains, in the diagonal, the inverse of the
number of equivalent daughters for each DYD. The
parameterization of SNP effects is as in Van Raden
(2008) :x2pi, 1x2pi, and 2x2pi for the genotypes 00,
01 and 11, where pi is the allelic frequency of ‘1’. In
this way, assuming Hardy–Weinberg equilibrium,
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SNP genotypic effects are substitution effects with
average effect of 0 in the population (Falconer &
Mackay, 1996), which is one of the conditions for the
expression of the genetic variation in the population
as 2g

i
pi(1xpi)Var(a) (Gianola et al., 2009). This

parameterization also results in slightly better pre-
dictive abilities compared to other ones such asx1, 0,
1 for the 00, 01 and 11 genotypes (data not shown).

The prior distribution for se
2 was an inverted chi-

square distributions with 4 degrees of freedom and
expectations equal to the value used in regular genetic
evaluation for se

2. Prior for l was deliberately vague,
being uniform between 0 and 1 000 000.

In practice, the model above was transformed in an
equivalent model, yielding the same solutions, as fol-
lows:

y*=Fx1=2y; x=Fx1=21; Z*=Fx1=2Z;

e*=Fx1=2e,

which amounts to multiply each row of 1 and Z by
the square root of the number of equivalent daugh-
ters, so that

y*=xm+Z*a+e*,

ajl �
Y
i

l

2
exp (xl aij j); e*js2

e � MVN(0, Is2
e),

which simplifies the computations.
A Gibbs sampler was implemented as in Park &

Casella (2008) or de los Campos et al. (2009), via the
introduction of additional (augmented) variables ti

2,
which can be seen as variance components for each
SNP effect. The Gibbs sampler with residual update
(Legarra & Misztal, 2008) was used to speed up sam-
pling of location parameters m and a. The full con-
ditional posterior distributions are as follows (the
symbol ~bb indicates the current state of variable b) :

mjelse / N(xk(y*xZ*~aa)=xkx, 1=xkx~ssx2
e ),

or

mjelse / N(xk(~ee+x~mm)=xkx, 1=xkxsx2
e ),

aijelse / N(zi*k(y*xx~mmxZ*~aaxi)~ss
x2
e =lhsi, 1=lhsi),

or

aijelse / N(zi*k(~ee+zi*~aai)~ss
x2
e =lhsi, 1=lhsi),

where lhsi=zi*kzi*~ssx2
e +~ttx2

i , zi* is the row of Z* cor-
responding to the ith effect and axi indicates all a
variables except for ai. Further,

tx2
i jelse / IG

ffiffiffiffiffi
~ll2

~aa2
i

s
, l2

0
@

1
A,

where IG stands for inverted Gaussian,

l2jelse / G s=nsnp, sc=2=g~tt2i
� �

bounded between 0 and 1 000 000, and where G is a
gamma distribution with shape ‘s ’ and scale ‘sc ’ and
‘nsnp’ is the number of a effects. Finally,

s2
ejelse / xx2(~ee*k~ee*+S2

e, 4+ndata),

where Se
2 is the scale of the a priori distribution of the

residual variance and ndata is the number of records
in y. For the inverted Gaussian distribution, we used
the algorithm of Michael et al. (1976) with a minor
modification: extracting the largest root of the quad-
ratic to avoid numerical cancellation.

For the MCEM estimation of l (BL2Var-EM), the
iterations proceed as above but sampling of l is sub-
stituted by an updated estimate

l̂2=
2 nsnp

g
i
E ~tt2i j~yy*ð Þ ,

where E(~tt2i j~yy*) are obtained by MonteCarlo using the
previous estimate of l. In our case and after exper-
imentation with one trait, the number of iterations to
get E(~tt2i j~yy*) was reduced to just one. This seems to be
possible because the very large number (51 325) of ~tt2i
variables included provides a reasonable estimate. At
convergence, the last 100 samples of l were averaged
to obtain a MonteCarlo error-free estimate (as sug-
gested by Park & Casella, 2008).

(iii) Bayesian Lasso with one variance (BL1Var)

The model by Park & Casella (2008) and de los
Campos et al. (2009) postulates a one-variance com-
ponent linked to a priori variation in both residual
and SNP effects, and thus:

y=1m+Za+e;

ajl, s2
e �

Y
i

l

2se

exp
xl aij j
se

� �
; ejs2

e � MVN 0,Fs2
e

� �
The conditional distributions are as above, with the
following modifications:

lhsi=zi*kzi*~ssx2
e +~ttx2

i ~ssx2
e

tx2
i jelse / IG

ffiffiffiffiffiffiffiffiffi
~ll2s2

e

~aa2
i

s
, l2

0
@

1
A

and

s2
ejelse / xx2(~akak~DD

x1
~aa+~ee*k~ee*+S2

e, 4+nsnp+ndata),

where D is a diagonal matrix with ti
2se

2 in the (i,i)
position. This conditional distribution shows well
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that SNP effects are in practice considered as pseudo-
residuals in the one-variance Bayesian Lasso.

(iv) Bayesian mixed model with unknown genetic
and residual variances (MCMC-GBLUP)

This model is similar to the ‘BLUP’ model in
Meuwissen et al. (2001), although the variance com-
ponents are not fixed a priori. Instead, they are esti-
mated in the model as in Legarra et al. (2008) :

y=1m+Za+e, ajs2
a � MVN 0, Is2

a

� �
;

ejs2
e � MVN 0,Fs2

e

� �
:

The prior distribution for se
2 is as in the Bayesian lasso

with two variances; the prior distribution for sa
2 was a

chi-squared distribution with 4 degrees of freedom
and expectation equal to s2

u=2gi
pi 1xpið Þ ; su2 being

the genetic variance component used in genetic
evaluation. The Gibbs sampler for this model has
been extensively described (e.g. Sorensen & Gianola,
2002).

(v) Bayesian mixed model with known genetic and
residual variances (GBLUP)

This model is as the previous one, except that variance
components were assumed to be known with certainty
and inferred from values used in current genetic
evaluation, as for the priors in MCMC-GBLUP. To
estimate solutions for m and a, Henderson’s (1984)
mixed model equations were used, which were solved
by preconditioned conjugated gradients as described
in Legarra & Misztal (2008).

(vi) Bayesian mixed model with heterogeneous genetic
variances (Het-GBLUP)

This model assumes that components of overall gen-
etic variation (l and se

2) are known with certainty but
allows for heterogeneous variances of SNP effects,
which are ti

2 for the ith SNP. In order to accommo-
date heterogeneous variances in a linear estimator,
these have to be previously known. Thus, we followed
a three-step procedure. First, l and se

2 were estimated
as in the Bayesian Lasso with two variances. Second,
estimates t̂2i of ti

2 were computed by a Gibbs sampler
(as the one in the Bayesian Lasso with two variances)
with l and se

2 fixed to their estimated values. Finally,
a diagonal matrix D was formed to describe the
heterogeneous variance, with t̂2i in the (i,i) position.
Thus, the model becomes

y=1m+Za+e, ajl, t � MVN(0,D);
ejs2

e � MVN(0,Fs2
e),

which is solvable by Henderson’s mixed model equa-
tions as above.

All models above were fit to the five traits for the
Holstein breed; for the Montbéliarde, only the
Bayesian Lasso with two variances and GBLUP
were fit. The MCEM was run for 50 000 iterations,
with final convergence ; the MCMC were run for
50 000 iterations with 25 000 of burn-in after which
solutions for all unknowns were estimated by their
posterior means. Self-made programs were written in
Fortran95.

Different parameters were estimated. In addition to
se
2 and l, a rough equivalent of the classical, pedigree-

based genetic variance (su
2 ) was estimated for each

model (except for GBLUP where it is supposed fixed).
For the Bayesian Lasso with two variances, this
is s2

u=2g
i
pi 1xpið ÞVar að Þ=2g

i
pi 1xpið Þ(2=l2). For

the Bayesian Lasso with one variance, this is
s2
u=2g

i
pi 1xpið Þ(2s2

e=l
2). For the MCMC-GBLUP,

this is s2
u=2g

i
pi 1xpið Þs2

a. A pedigree-based estimate
of su

2 was obtained by REML for the Holstein breed
using REMLF90 (Misztal et al., 2002).

(vii) Cross-validation

Predictions (genomic estimated breeding values
(GEBVs)) for the validation data test were computed
as û=Zâ for the different models, and compared with
2009 progeny test-based DYDs. Predictive ability was
measured as the correlation between both. The cor-
relation was weighted by the number of equivalent
daughters in 2009 DYD data. The formula for the
weighted Pearson product moment correlation co-
efficient is as follows (e.g. Peers, 1996) :

rxy=
gwi xixx̄wð Þ yixȳwð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gwi xixx̄wð Þ2gwi yixȳwð Þ2
q ,

where x̄w=gwixi=gwi and ȳw=gwiyi=gwi and w are
the weights for each data point. Cross-validation re-
sults for BL2Var-EM approach were essentially the
same as BL2Var (correlation among EBVs was higher
than 0.99) and are therefore not shown.

4. Results

(i) Estimates of parameters

Tables 1 (for Holstein) and 2 (for Montbéliarde) show
estimates of l parameters. Estimates are generally ac-
curate as shown by their standard errors. Estimates
from BL1Var are very similar across traits, which does
not occur for BL2Var. On the other hand, estimates
by full Bayesian inference (BL2Var) or marginal
maximum likelihood (BL2Var – EM) are virtually
identical in both Holstein (Table 1) and Montbéliarde
(Table 2). Also, estimates in Holstein and in
Montbéliarde are quite similar for the same traits.

Estimates of genetic variation in the population
(su

2 ) are shown in Tables 2 and 3. Estimates from
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BL2Var and MCMC-GBLUP (which are remarkably
close) are similar to pedigree-based estimates by
REML or to values currently used, so that they make
clear biological sense and are understandable in terms
of genetic variation. Differences of the REML esti-
mate from current values can be explained by the in-
completeness of the DYD data; differences among
pedigree-based and SNP-based models can be due to
this reason, but also to the different assumptions of
both models, which make them not fully comparable,
as discussed below. Estimates from BL1Var are
clearly different from any other estimate and are not
reliable as estimates of the genetic variation in the
population.

(ii) Empirical accuracies

Tables 4 (for Holstein) and 2 (for Montbéliarde) show
empirical accuracies of predicted GEBVs. Possibly
due to the relatively small data set, accuracies are
lower than some previously reported estimates
(Hayes et al., 2009; Van Raden et al., 2009b) although
comparable to accuracies in a small study of similar
size (Luan et al., 2009).

Accuracies are almost systematically highest for
BL2Var, in particular for traits controlled by major
genes as DGAT1 (Grisart et al., 2002) (FP). GBLUP
and MCMC-GBLUP perform similarly (with 10%
less accuracy than BL2Var for FP). The two-step ap-
proach HetVar-GBLUP reaches similar accuracies to
BL2Var, with only 2% less accuracy for FP. As for
BL1Var, its performance is the poorest almost sys-
tematically, although the difference is minimal for FY
and PY. Thus, results from previous users of Bayesian
Lasso (e.g. Weigel et al., 2009) might underestimate
the true potential of Lasso. This is possibly trait de-
pendent.

Results in Montbéliarde show no major difference
between BL2Var and GBLUP. This is partly due to
the fact that DGAT1 has an extremely low minor
allele frequency (4%) in Montbéliarde and causes
almost no genetic variation in the population (Gautier
et al., 2007).

In general, models with the same accuracy are al-
most identical (correlations among EBVs higher than
0.99), as shown in Table 6 for MY and FP. This im-
plies that errors in estimation of EBVs are very similar
across methods. Models with different accuracies
show, obviously, lower correlations. For example,
correlations of EBVs estimated with BL2Var with
those estimated by BL1Var and MCMC-GBLUP for
FP are, respectively, 0.73 and 0.92.

Table 5 shows regression coefficients of 2DYDs on
GEBVs. These regression coefficients should ideally
be 1, implying that the predicted has the same
variance as the true value. This is relevant for the
comparison of estimated breeding values across gen-
erations. Methods give often inflated variances of
GEBVs (b<1) for yields. For contents, they oscillate
around 1; the reason is that most genetic variation is
well captured due to large QTL effects. However,
BL1Var results in inflation for all traits because it
does not shrink estimators enough. Even in the ab-
sence of genomic information, predictions of young
bulls by parent average are known to be biased
(Van Raden et al., 2009a). One explanation for the
generally low value for b is pre-selection of validation
bulls (Mäntysaari et al., 2010) ; according to our in-
formation, this is actually not the case in the French
industry. Another more likely explanation is lack
of enough information, because in this work dams
‘ information is not added to the genomic predictions.
A combined index was suggested by Van Raden et al.
(2009b).

Figure 1 shows the estimates by HetVar-GBLUP of
SNP effects for FP in chromosomes 13 (representative
of the rest of the genome) and 14 in a log-10 scale. At
the beginning of chromosome 14, the effect of
DGAT1 can be appreciated, presenting a sharp peak
even in the logarithmic scale of the plot. Peaks of this
size cannot be observed elsewhere in the genome.
Also, it can be observed that whereas most of the
effect of the markers range between 10x2 and 10x4, a
few have very low values of about 10x8 ; this corre-
sponds to markers whose effects are ‘almost nullified’
by the estimate. As pointed out by Usai et al. (2009),
in the original Lasso a joint mode is estimated and
most markers are expected to have values of exactly
zero; whereas in Bayesian Lasso, posterior means are
estimated, possibly with small values but not zero.
Posterior means are optimal for selection (Gianola &
Fernando, 1986; Goddard, 2008).

5. Discussion

(i) Sense of hyperparameters in Bayesian Lasso
and genetic variation in the population

Little has been discussed on estimates of l in Bayesian
Lasso for genomic selection. In BL1Var, values are

Table 1. Estimates of ‘sharpness ’ parameter l (¡SE)
in Holstein

Trait BL1Var BL2Var BL2Var-EM

MY 17.06¡0.05 0.26¡0.01 0.26
FY 20.60¡0.05 6.56¡0.20 6.51
PY 19.92¡0.05 8.43¡0.23 8.41
FP 15.06¡0.05 57.20¡1.64 55.61
PP 16.32¡0.06 135.82¡4.40 134.01

MY, milk yield; FY, fat yield; PY, protein yield; FP, fat
percentage; PP, protein percentage.
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Table 3. Estimates of population genetic variance su
2 (¡SE) in Holstein

Trait BL1Var BL2Var MCMC-GBLUP
Pedigree
REML

Current
valuesa

MYb 1260¡50 448¡27 451¡26 570 635
FY 1876¡84 710¡44 710¡39 893 973
PY 1127¡50 429¡24 428¡20 473 520
FP 27.6¡1.09 9.32¡0.54 11.60¡0.60 14.90 8.80
PP 5.51¡0.03 1.66¡0.10 1.60¡0.12 2.56 2.19

a As used in regular genetic evaluation.
b Divided by 1000.
MY, milk yield; FY, fat yield; PY, protein yield; FP, fat percentage; PP, protein
percentage.

Table 4. Accuracies: correlations between GEBVs and 2DYDs in the
validation data set, in Holstein

Trait BL1Var BL2Var GBLUP MCMC-GBLUP HetVar-GBLUP

MY 0.28 0.41 0.42 0.40 0.41
FY 0.35 0.37 0.34 0.37 0.36
PY 0.27 0.30 0.31 0.30 0.30
FP 0.53 0.73 0.59 0.61 0.71
PP 0.36 0.48 0.44 0.46 0.47

MY, milk yield; FY, fat yield; PY, protein yield; FP, fat percentage; PP, protein
percentage.

Table 2. Results in Montbéliarde: estimates (¡SE) of ‘sharpness ’
parameter l, of population genetic variance su

2 and accuracies r
(correlations between GEBVs and 2DYDs in the validation data set)

Trait

BL2Var-EM BL2Var
GBLUP

l l s2
u r r

MYa 0.26 0.26¡0.01 412¡36 0.36 0.35
FY 6.79 6.80¡0.30 618¡57 0.46 0.46
PY 8.39 8.43¡0.38 402¡35 0.41 0.41
FP 74.73 74.11¡2.59 5.18¡0.36 0.35 0.34
PP 144.68 143.63¡5.75 1.40¡0.11 0.40 0.41

a Divided by 1000.
MY, milk yield ; FY, fat yield; PY, protein yield; FP, fat percentage; PP, protein
percentage.

Table 5. Regression coefficients b of 2DYDs on GEBVs in the validation
data set, in Holstein

Trait BL1Var BL2Var GBLUP MCMC-GBLUP HetVar-GBLUP

MY 0.25 0.67 0.59 0.66 0.67
FY 0.35 0.80 0.65 0.78 0.77
PY 0.17 0.42 0.41 0.43 0.43
FP 0.50 1.18 0.97 1.11 1.13
PP 0.35 1.10 0.83 1.10 0.99

MY, milk yield; FY, fat yield; PY, protein yield; FP, fat percentage; PP, protein
percentage.
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similar across traits. This is possibly a by-product
of modelling residual and SNP effects with a common
s2 parameter. However, in BL2Var, l differs from
trait to trait. Further, we provide an interpretation of
the meaning of l in a quantitative genetics context :
it is a measure of the genetic variation, as in, for ex-
ample,

BL2Var: s2
u=2g

i

pi 1xpið Þ 2
l2 :

This estimate of genetic variation in the population
is appropriate for an ideal population in Hardy–
Weinberg and linkage equilibrium (Gianola et al.,
2009). Yet, in spite of this assumption, estimates of
su
2 are close to pedigree-based estimates and currently

used estimates in the overall population for both
BL2Var and MCMC-GBLUP, whereas estimates
of su

2 in BL1Var do not agree well and make no bio-
logical sense. Thus, BL2Var has the advantage of
providing biologically reasonable parameters. We
recall that pedigree estimates of genetic variation
are also ideal, assuming, for instance, unrelated
base individuals ; thus, both cannot be exactly com-
pared.

(ii) Predictive ability and use of prior information

Predictive ability is optimal for BL2Var almost sys-
tematically. This agrees with Van Raden et al. (2009b)
who found better predictions for non-linear than for
linear equations (GBLUP) for these traits. However,
Luan et al. (2009) found similar or better results for
GBLUP than for non-linear (Mixture and BayesB)
methods. For other traits (e.g. fertility) both Van
Raden et al. (2009b) andHayes et al. (2009) found that
GBLUP performed better than non-linear methods.
In general, for large data sets, the difference seems to
be negligible for most traits in dairy cattle except for
FP and PP (Van Raden et al., 2009b).

A possible explanation for the superiority of
BLVar2 over GBLUP is that we did use very little
prior information or tuning parameters, extracting
most information from data. This is a very important
issue in genomic selection nowadays. As extensively
shown by simulations (e.g., Meuwissen et al., 2001),
the use of the correct – biological – a priori infor-
mation results in better predictive abilities. However,
current state of knowledge on QTL action and lo-
cation does not allow the construction of this prior
information, which is replaced by somehow contro-
versial (e.g. Gianola et al., 2009; Hill, 2010) figures or
deductions from population genetics theory. This
prior information includes the number of QTLs for
non-linear regression or BayesB (Meuwissen et al.,
2001; Van Raden, 2008) ; or the a priori variance of
‘ true’ respect to ‘false ’ SNP effects (Calus et al.,
2008); or, yet, the a priori variance of SNP effects in
BayesA and BayesB (Meuwissen et al., 2001). Some of
this information does not vanish asymptotically as
data cumulate (Gianola et al., 2009).

Another option is the ‘trial and error’ of several
‘priors ’ (i.e. Usai et al., 2009) to find the best predic-
tive ability. This is not real Bayesian (or parametric)
inference. In fact, this is an estimation of parameters
by trial and error, like the cross-validation methods
used in non-parametric inference. This is indeed a
legitimate strategy, albeit in practice it is hard to
ascertain if all the parametric space of the prior has
been covered or how to conceive the different priors.
Another problem is that inference depends on the

Table 6. Correlation among GEBVs in the validation data set predicted by various methods for milk yield
(above diagonal) and fat percentage (below diagonal), in Holstein

Trait BL1Var BL2Var BL2Var-EM GBLUP MCMC-GBLUP HetVar-GBLUP

BL1Var 0.61 0.61 0.69 0.62 0.56
BL2Var 0.73 1.00 0.96 1.00 0.96
BL2Var-EM 0.73 1.00 0.96 1.00 0.96
GBLUP 0.70 0.90 0.89 0.96 0.92
MCMC-GBLUP 0.70 0.92 0.91 0.98 0.96
HetVar-GBLUP 0.74 1.00 1.00 0.92 0.94
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Fig. 1. Estimated effects of SNP loci for FP in Holstein by
the HetVar-GBLUP method, for chromosomes 13
(crosses) and 14 (rounds).
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constitution of the validation data set, a difficult
problem in an animal breeding context where data are
correlated and selected.

In hierarchical Bayesian models, prior is estab-
lished in high-order hyperparameters (e.g. variance
components or l), so that the influence of the prior
vanishes asymptotically. This is used for example in
MCMC-GBLUP (in this work) or in Bayesian Lasso
(Park & Casella, 2008; de los Campos et al., 2009;
Weigel et al., 2009). This is routinely done for the
estimation of genetic parameters via the Gibbs
Sampler; the influence of the prior information is
negligible for reasonably large data sets (Van Tassell
et al., 1996). There is little experience, though, on
the practical influence of the prior information on
genomic selection. de los Campos (2009) found this
influence to exist in estimates of l, but not really on
estimates of SNP effects. Indeed, priors for l were
difficult to conceive, because no natural inter-
pretation on this parameter was recognized. From
this work, a reasonable (but not exact) guess of l is
l2=2g

i
pi 1xpið Þ(2=s2

u). At any rate, if priors are not
sought, and as suggested by Park & Casella (2008),
the marginal maximum likelihood estimate can be
used. We have shown the feasibility of this estimate by
MC-EM, finding values similar to the use of low in-
formative priors for l. Thus, Bayesian Lasso is rather
unique among parametric variable selection methods
in genomic selection because it is readily estimable
using fully parametric methods, either fully Bayesian
or using marginal maximum likelihoods.

(iii) Shape of SNP effects

Figure 2 shows clearly that BL2Var is able to ac-
commodate SNPs of large effect (i.e. around DGAT1)
and also of small, almost nil, effects. Because of the
nature of shrinkage caused by models positing a priori
normal distributions, both features are generally dif-
ficult to attain, unless large amounts of information
exist. It is unknown if these kinds of distributions
(e.g. similar to double exponential) for SNP effects are
frequent in nature or not, but the case of DGAT1
shows its importance in practice, at least for the dairy
cattle industry. Because of this ability, BL2Var results
in optimal predictive abilities.

Figure 2 shows the theoretical distribution of SNP
effects for FP in Holstein according to the distribu-
tions for a described in Methods and estimates for l
(for BL2Var), l and se

2 (for BL1Var) and sa
2 (for

MCMC-GBLUP). FP is the trait with more differ-
ences observed for predictive ability in the cross-
validation approach, and partially controlled by
DGAT1. For the BL1Var approach, the peak is not
very sharp and is indeed lower than for BL2Var. This
produces a distribution for SNP effects with little
shrinkage for BL1Var, which is also reflected in

Table 6. Thus, BL1Var does not seem to shrink en-
ough in the appropriate regions. This is reflected in its
poor predictive ability. On the other hand, BL2Var
shrinks more than the normal distribution for most of
the domain except for effects of more than about 3
standard units. This illustrates well that in order to
account for the distribution of SNP effects both the
sharpness and the variance have to be considered.

(iv) Precomputation of variance of SNP effects

In HetVar-GBLUP, variances of SNPs are pre-com-
puted via BL2Var. This results in good accuracies.
This strategy presents several practical advantages.
Computation of SNP solutions, once variances are
known, is very fast following, for example, Legarra &
Misztal (2008). Also, a genomic relationship matrix
with the same results, can be constructed as
G=ZDZksa2 (Goddard, 2008; Van Raden, 2008),
giving more importance to SNPs with large than small
effect. Mixed model equations using G can be set up
with several nice properties. Solving is quite simple
(Van Raden, 2008) even for singular G (Henderson,
1984). Pseudo-reliabilities can be constructed from
their inverse ; extensions exist to include full pedigree
in the relationships and all data available (Legarra
et al., 2009; Aguilar et al., 2010; Christensen & Lund,
2010). Models including an additional polygenic term
(i.e. Guillaume et al., 2008) can easily be set up.

We suggest, based on these practical considera-
tions, a two-step procedure to include large amounts
of data (i.e. genotyped cows, genotyped individuals
with no record, or all genotyped and ungenotyped
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Fig. 2. Theoretical distribution of SNP effects for fat
content according to estimates of se

2, sa
2 and l in BL2Var

(continuous line), BL1Var (grey dashed line) and
MCMC-GBLUP normal model (dotted black line). The
figure has been scaled so that the normal distribution has
a variance of 1.
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individuals). First, variances in D can be estimated in
a small yet informative sample of data (e.g. bulls).
Second, D can be used for genetic evaluation either
for all genotyped animals or all animals in the popu-
lation. Pre-computation is the strategy used for vari-
ance components in regular genetic evaluation. It is
an open question whether this strategy is stable with
time or across different strata in a population.

6. Conclusion

The Bayesian Lasso with different variances for re-
sidual or SNP effects (BL2Var), which is equivalent to
the original Lasso (Tibshirani, 1996) is appropriate
for genomic selection, with generally highest ac-
curacies and less inflation of GEBVs than other
methods included in this study. Park & Casella’s
(2008) original BL1Var cannot be recommended be-
cause of inappropriate constraints in the model. We
have shown how to estimate parameter l with little
(or no) prior information, and its biological in-
terpretation in relation to genetic variation in the
population. The inclusion of specific SNP variances in
linear models is feasible by pre-computing the vari-
ances with the BL2Var. These methods should be
further explored in other data sets including different
traits and species.
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