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Energy transfers in internal tide generation, propagation and dissipation
in the deep ocean

J.W. Floor ⇑, F. Auclair, P. Marsaleix

Laboratoire d’ Aérologie, University of Toulouse/CNRS UMR 5560, 14 avenue Edouard Belin, F-31400 Toulouse, France

The energy transfers associated with internal tide (IT) generation by a semi-diurnal surface tidal wave

impinging on a supercritical meridionally uniform deep ocean ridge on the f-plane, and subsequent IT-

propagation are analysed using the Boussinesq, free-surface, terrain-following ocean model Symphonie.

The energy diagnostics are explicitly based on the numerical formulation of the governing equations, per-

mitting a globally conservative, high-precision analysis of all physical and numerical/artificial energy

transfers in a sub-domain with open lateral boundaries. The net primary energy balances are quantified

using a moving average of length two tidal periods in a simplified control simulation using a single time-

step, minimal diffusion, and a no-slip sea floor. This provides the basis for analysis of enhanced vertical

and horizontal diffusion and a free-slip bottom boundary condition. After a four tidal period spin-up, the

tidally averaged (net) primary energy balance in the generation region, extending ±20 km from the ridge

crest, shows that the surface tidal wave loses approximately C = 720 W/m or 0.3% of the mean surface

tidal energy flux (2.506 � 105 W/m) in traversing the ridge. This corresponds mainly to the barotropic-

to-baroclinic energy conversion due to stratified flow interaction with sloping topography. Combined

with a normalised net advective flux of baroclinic potential energy of 0.9 � C this causes a net local baro-

clinic potential energy gain of 0.72 � C and a conversion into baroclinic kinetic energy through the baro-

clinic buoyancy term of 1.18 � C. Tidally averaged, about 1.14 � C is radiated into the abyssal ocean

through the total baroclinic flux of internal pressure associated with the IT- and background density field.

This total baroclinic pressure flux is therefore not only determined by the classic linear surface-to-inter-

nal tide conversion, but also by the net advection of baroclinic (background) potential energy, indicating

the importance of local processes other than linear IT-motion. In the propagation region (PR), integrated

over the areas between 20 and 40 km from the ridge crest, the barotropic and baroclinic tide are decou-

pled. The net incoming total baroclinic pressure flux is balanced by local potential energy gain and out-

ward baroclinic flux of potential energy associated with the total baroclinic density. The primary net

energy balances are robust to changes in the vertical diffusion coefficient, whereas relatively weak hor-

izontal diffusion significantly reduces the outward IT energy flux. Diapycnal mixing due to vertical diffu-

sion causes an available potential energy loss of about 1% of the total domain-averaged potential energy

gain, which matches km�1
km

q0K
VN2 to within 0.5%, for km linearly distributed grid-levels and constant back-

ground density q0, vertical diffusivity (KV) and buoyancy frequency (N).

1. Introduction

The world’s oceans dissipate about 3.6 TW of the tidal energy in

the earth–moon–sun system, of which 2.54 TW is associated with

the semi-diurnal (M2) surface tide (Cartwright and Ray, 1991;

Egbert and Ray, 2001). By interaction with sloping sea floors,

roughly 1 TW of M2 surface tidal energy is converted into M2

internal tides (Egbert and Ray, 2001; Wunsch and Ferrari, 2004),

which are observed to propagate for thousands of kilometres from

their generation regions, such as the Hawaiian ridge (Ray and

Mitchum, 1997). Thus, internal tides (IT) appear to play a funda-

mental role in the meridional overturning circulation, providing

the abyssal ocean with half of the small-scale mixing energy re-

quired to maintain the observed global stratification (Munk and

Wunsch, 1998; Wunsch and Ferrari, 2004). The required energy

cascade from large to small-scale internal waves may occur

through the formation of higher harmonics due to wave-wave

interactions, parametric sub-harmonic instability (Gerkema et al.,

2006a), reflection of IT beams (Gerkema et al., 2006b) and fission

of low-mode internal waves into solitons (e.g. Gerkema and

Zimmerman, 1995; Shaw et al., 2009). Small-scale internal wave

breaking, resulting from a multitude of processes reviewed by
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Thorpe (2005), causes overturning of isopycnal surfaces and

irreversible diapycnal transfer of heat and salinity.

Even with the advent of dedicated large-scale campaigns (Lien

and Gregg, 2001; Rudnick et al., 2003), existing in situ measure-

ments cannot cover the IT energy transfers through the wide range

from basin scale tidal dynamics to millimetric mixing. Altimetry

and SAR observations provide ample data on propagation of low-

mode internal tides and solitons, but cannot tell us much about

weaker, high-mode internal tide motion (Egbert and Ray, 2001;

Apel, 1987; Hyder et al., 2005; Niwa and Hibiya, 2001).

Time-averaged tidal barotropic-to-baroclinic energy conversion

is often assumed to match the local internal tide energy flux diver-

gence, which is modelled as

~r � ~v 0p0ð Þ
D E

T
¼ �q0 b

0�vz

� �
T
; ð1:1Þ

where~v 0, p0, and b0 are the baroclinic velocity, pressure and buoyancy

anomaly and �vz the vertical velocity induced by barotropic tidal flow

over sloping topography, while q0 is a constant background density

and h�iT indicates the temporal average (Niwa and Hibiya, 2001;

Holloway and Merrifield, 1999; Gerkema et al., 2004; Di Lorenzo

et al., 2006). This formulation is inappropriate for large-amplitude

internal tides, which would require inclusion of (non-linear) advec-

tive energy fluxes (Scotti et al., 2006; Lamb, 2007) and does not

explicitly represent the energy lost by the surface tidal wave.

Recent theoretical estimates are constrained to two-dimen-

sional motion, the rigid-lid or infinite-depth assumptions, inviscid,

non-diffusive and (weakly non-) linear cases (Baines, 1982; Bühler

and Muller, 2007; Pétrélis et al., 2006; Khatiwala, 2003; Llewellyn

Smith and Young, 2002; Lamb, 2007). Viscosity is essential to inter-

nal tide theory, which otherwise contains small-scale singularities

in the internal tide beams (Pétrélis et al., 2006). Peacock et al.

(2008) showed good correspondence between laboratory experi-

ments and weakly viscous, linear theory, but were limited to either

sub-critical or knife-edge topography of small height compared to

the fluid depth. Non-linearity, viscosity and inclusion of a free sur-

face to explicitly calculate tidal energy conversion render the the-

ory intractable.

A global-scale model that accurately represents fine-scale mix-

ing is not currently within reach, although low-resolution global

simulations point to primary IT-production and conversion sites

(Simmons, 2008). Recent regional-scale efforts focused on M2-tidal

conversion and internal tide energy flux (Holloway and Merrifield,

1999; Munroe and Lamb, 2005; Di Lorenzo et al., 2006; Katsumata,

2006; Carter et al., 2008). Carter et al. (2008) used POM to estimate

the M2 internal tide energetics around the Hawaiian ridge,

employing the sum of kinetic and linearised available potential

energy, which is appropriate for linear stratification and small-

amplitude internal waves, discretised on the horizontal and verti-

cal mid-point of the model grid-cells. Although they concluded

that local dissipation is a non-negligible factor in the IT generation

zone, they observed an error in both the barotropic and baroclinic

global energy balance on the order of 10% of the primary energy

conversions.

We propose a complete energetics analysis of the internal tide

from generation to mixing, explicitly based on the numerical

scheme of the energy-conserving, Boussinesq, hydrostatic, free-

surface, terrain-following (r-) coordinate ocean model Symphonie,

which is similar to POM and described in detail by Marsaleix et al.

(2008). We evaluate all physical and numerical energy transfers,

permitting quantification, control and motivation of the artificial

energy transfers due to model choices, for instance temporal diffu-

sion and discretisation onto the C-grid (Arakawa and Lamb, 1977).

Expanding upon the global formulation for closed basins by

Marsaleix et al. (2008), we also consider lateral boundary fluxes

in sub-domains, e.g. to estimate internal tide energy radiation from

the generation region.

We analyse M2 internal tide generation by a barotropic surface

wave that impinges on a supercritical Gaussian ridge in the rotat-

ing stratified deep ocean, a representative case related to the

Hawaiian Island chain, previously studied in detail by Holloway

and Merrifield (1999), Munroe and Lamb (2005) and Lamb

(2007). We aim to quantify numerically (a) the primary energy bal-

ances in internal tide generation and in IT propagation away from

topography and (b) the associated energy expended in diapycnal

diffusion. The energy lost to enhanced diapycnal mixing associated

with the internal tide is evaluated following Winters et al. (1995),

using a novel adiabatic redistribution algorithm adapted to terrain-

following coordinates and a free surface. Finally, we underline the

importance of respecting the discretised model formulation for

precise energy diagnostics.

The paper is organised as follows: In Section 2, the model setup

is introduced and following parameter space analysis the resulting

internal tide field is characterised. In Section 3, the energy evolu-

tion equations are presented, which are adapted to internal tide

generation in Section 4. In Section 5, we show the energy balance

is closed, analyse the numerical energy transfers and the primary

energy transfers in internal tide generation and propagation and

evaluate the effects of enhanced vertical and horizontal diffusion

and a free-slip bottom boundary condition. We discuss the results

and conclude and present perspectives in Section 6.

2. Numerical simulation of the internal tide

The energy transfers inherent in internal tide generation by

free-surface tidal flow over a Gaussian ridge are studied using

the hydrostatic approximation, on the traditional f-plane. The

model equations are presented in Appendix A.1 and discretised

on the C-grid in the horizontal and on the Lorenz grid in the verti-

cal, using second order accurate schemes for advection of momen-

tum and tracers and an explicit leapfrog scheme in time, using a

single time-step. Vertical diffusion is calculated using an implicit

scheme. A Robert-Asselin filter is applied to the momentum and

tracer equations to limit high-frequency numerical noise associ-

ated with the leapfrog scheme (Robert, 1966; Asselin, 1972;

Marsaleix et al., 2008, Section 3.2.2). A control simulation is de-

fined in Section 2.1, aimed primarily at the analysis of mechanical

energy conversion from the barotropic to the baroclinic tide.

Therefore, numerical and physical viscosity and tracer diffusivity

are minimised, while maintaining model stability.

2.1. Model setup

The numerical model is set up in the zonal/vertical Oxz-plane

and is uniform and cyclic in the Oy-direction, permitting the Cori-

olis effect (cf. Appendix A.2), with f = 10�4 s�1, corresponding to a

latitude of 43.4�N. The numerical domain extends 1200 km

zonally, with ambient depth H = 5 km and a Gaussian ridge defined

by

h ¼ h0 exp � x� x0ð Þ2
a2

( )
; ð2:1Þ

centred at x0 = 600 km from the western boundary, and of charac-

teristic height h0 = 1500 m and width a = 6.45 km. The horizontal

resolution is Dx = 1 km and in the vertical 40 linearly distributed

r-layers are used.

Initially, the fluid is salt-stratified with a constant buoyancy fre-

quency N = 10�3 s�1. With the linear equation of state (A5), the

heat and salinity Eqs. (A4a) and (A4b) reduce to a single evolution

equation for the density anomaly
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~q ¼ q� q0; ð2:2Þ

where q0 = 1.029056 kg m�3 is an (arbitrary) constant background

value. In the control simulation only constant vertical turbulent vis-

cosity and diffusivity are used, KV = 10�6 m2 s�1, for momentum and

scalars.

Focusing on tidal dynamics, all free surface fluxes are (arbi-

trarily) set to zero. The bottom boundary condition is no-slip, so

that at z = �H + h(x) the velocity vanishes, while temperature and

salinity fluxes through the sea floor are zero.

An M2-tidal surface wave of frequency x = 1.4075 � 10�4 s�1

and period T = 12.4 h is forced on the west boundary, at x = 0, by

specifying the depth-averaged zonal current as �vF
x ¼ �U0 sinðxtÞ,

with U0 = 0.025 ms�1 and assuming the free surface elevation

behaves as the linear, inviscid shallow water solution g ¼
�vx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lð ÞH=g

p
, where l = f2/x2 represents the strength of Coriolis

dispersion for (arbitrary) frequency x.

The method of characteristics (e.g. Johns et al., 1983; Marsaleix

et al., 2009a) is used to radiate the surface tidal wave out of the do-

main at the eastern boundary and (small) surface wave anomalies

with respect to the forcing at the western boundary (cf. Appendix

A.2). The simulation is terminated before any reflected internal

wave might reach the domain of interest. The model characteristics

are summarised in Table 2.1.

2.2. Parameter space

The internal tide is characterised by the surface tidal amplitude

U0 and frequency x, the Coriolis frequency f, the strength of the

stratification through N, the characteristic height h0 and width a

of the topography and the ambient fluid depth, H (e.g. Garrett

and Kunze, 2007; Legg and Huijts, 2006). These can be organised

into the following set of non-dimensional parameters: The tidal

excursion parameter, U0/(xa), the topographic slope h0/a, the angle

of inclination hT = tan�1(h0/a), the relative height of the topography

with respect to the surrounding fluid depth h0/H, and the vertical

Froude number Fr = U0/(Nh0). The final non-dimensional parameter

is the slope of the internal wave beams at the tidal frequency,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � f 2ð Þ= N2 �x2

� �r
¼ tan h in the non-hydrostatic case, where

h is the angle with respect to the horizontal of the internal wave

beam, along which the internal tide energy propagates. If the inter-

nal waves are not scattered or dissipated in the ocean interior, they

are reflected at the free surface or ocean floor so that the energy

propagates horizontally along the oceanic wave-guide.

In principle, internal waves are generated at the tidal and its

harmonic frequencies (Bell, 1975), but for small tidal excursion

compared to the width of the topography the tidal frequency dom-

inates, which is the case here because U0/(x0a) = 0.03� 1. The rel-

ative height of the topography is h0/H = 0.3. The non-linearity of

the tidal dynamics can be characterised by the product of the tidal

excursion parameter and the relative height of the topography.

Here, U0h0/(ax0 H) = 0.008� 1 and it is safe to say that non-

linearity will not play an important role. The internal tide will be

predominantly generated at the M2 tidal forcing frequency.

For large Froude numbers, the flow is relatively unaffected by

the sloping topography, whereas if Fr� 1 the topography acts as

a barrier to the flow. At present, blocking effects may play a role

because Fr = 0.02, and the internal tide generation by oscillating

tidal flow perpendicular to the ridge should be relatively strong.

The ratio of the maximum topographic angle with respect to the

horizontal to that of the internal tide beam indicates whether the

topography is sub-critical (hT/h < 1) or super-critical (hT/h > 1).

Internal tide generation is significantly stronger for super-critical

than for sub-critical topography because there is always a (critical)

point on the slope where free internal gravity waves can resonate

with the tidal frequency. For super-critical topography, internal

tide beams are observed to emanate from the critical points, where

the topographic and beam slope are equal (e.g. Gerkema, 2006c).

Here, the greatest topographic angle of inclination, hT = 11.3�, ex-

ceeds the angle with respect to the horizontal of the internal tide

beam, h = 5.7�, so that the topography is supercritical and the gen-

erated internal tide should be relatively strong (e.g. Munroe and

Lamb, 2005). Regimes ranging from strongly sub-critical to

strongly super-critical were studied by Floor (2009).

For internal waves, non-hydrostatic effects are likely to be small

if x2/N2 � 1. In this limit the slope of internal tide beams isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � f 2ð Þ=N2

q
¼ tan h. The low tidal frequency leads to x2/

N2 = 0.014, which implies that the hydrostatic approximation used

in Symphonie is appropriate for the M2 internal tide. Hydrostatic

tidal beams have a slope that is 1% smaller than in the non-

hydrostatic case. Non-hydrostatic effects are important in small-

scale processes such as wave breaking, which we do not consider

explicitly (see e.g. Lamb, 2007; Auclair et al., 2010).

2.3. Velocity decomposition

To distinguish (barotropic) motion associated with the free sur-

face from that due to internal (baroclinic) motion, the horizontal

velocity is decomposed as

va ¼ �va þ v
0
a; ð2:3Þ

where horizontal direction is indicated by the subscript a = x, y and

v
0
a is the anomaly with respect to the vertically averaged horizontal

velocity

�va ¼ 1

D

Z g

�H

vadz; ð2:4Þ

where z = g(x, y, t) is the equation of the free surface elevation with

respect to its static equilibrium position (z = 0), and D � g + H-h the

total depth.

Symphonie is formulated in terrain-following Oxyr-coordinates
(Marsaleix et al., 2008; Johns et al., 1983), where the vertical coordi-

nate is the relative height of a fluidparcelwith respect to total depth,

r ¼ zþ H

D
; ð2:5Þ

so that in the present model r = 0 at the sea floor and r = 1 at the

free surface. With the same number of levels, the model grid has en-

Table 2.1

Summary of physical and numerical model characteristics.

Parameter Symbol Control simulation

(a) Physical parameters

Domain length L (km) 1.2 � 103

Ambient depth H (m) 5 � 103

Ridge height h0 (m) 1.5 � 103

Ridge e-folding width a (m) 6.45 � 103

Coriolis parameter f (s�1) 10�4

Reference density q0 (kg m�3) 1.029056 � 103

Buoyancy frequency N (s�1) 10�3

Vertical diffusion coefficient KV (m2 s�1) 10�6

Horizontal diffusion coefficient KH (m2 s�1) 0 (for va, T, and S)

Tidal velocity amplitude U0 (ms�1) 2.5 � 10�2

Tidal period T (h) 12.4

(b) Numerical parameters

Zonal grid-cells M 1201

Meridional grid-cells N 3

Mass vertical levels km 40

Velocity vertical levels kv 41

Horizontal grid-scale Dx (m) 1000

Vertical grid-scale Dr 1/40

Time-step Dt (s) 1.437

Asselin coefficient A 0.1
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hanced resolution over shallow bathymetry and, due to surface

waves, the r-levels move with respect to the absolute vertical coor-

dinate, z. Some useful relations for partial derivatives are shown in

Appendix A.1.

Using (2.3)–(2.5), the vertical velocity can also be split up into

barotropic and baroclinic contributions, so that

vz ¼ �vz þ v
0
z; ð2:6Þ

where respectively

�vz ¼ r
@g
@t

þ �va
@g
@xa

� �
þ ðr� 1Þ�va

@H

@xa
; ð2:7Þ

v
0
z ¼ rv 0

a

@g
@xa

þ ðr� 1Þv 0
a

@H

@xa
þ vr: ð2:8Þ

Repeated dummy indices a (or b) indicate summation, while vr is

the velocity component defined by vr � Ddr/dt, which equals zero

at sea-floor and surface. The barotropic component of vz, (2.7), de-

pends linearly only on local vertical sea-surface motion, the flow

of the depth-averaged current along sloping topography, which is

important for the IT-generation, and along sloping sea-surface. In

the absence of baroclinic motion, the relative height r of the fluid

particles is conserved (Pedlosky, 1987, Section 3.3). The baroclinic

component (2.8) comprises the anomalies with respect to barotrop-

ic motion.

2.4. Internal tide field

Fig. 1a shows the vertical velocity field four tidal periods after

the tidal surface wave first impinges on the ridge. Wave fronts cor-

responding to baroclinic normal modes in uniform stratification

(Pedlosky, 2003) propagate horizontally away from the ridge in

both directions at a phase speed corresponding to the non-rotating

limit, analogous to the propagation of transients away from a sea-

level discontinuity undergoing geostrophic adjustment (Gill, 1982,

Section 7.3). The fronts of modes 1, 2, and 3 are visible near 270,

130 and 85 km from the ridge summit. Far behind each front, after

a period of order T near the topography, the internal wave modes

have generation frequency x and feel the effect of rotation. The

rotating phase speed corresponds to cp;n ¼ cn=
ffiffiffiffiffiffiffiffiffiffiffiffi
1� l

p
and e.g. the

first mode wavelength is k1 = 101 km (not shown). After four tidal

periods, when about five baroclinic modes have travelled 50 km

away from the ridge, within this distance the familiar internal tide

beam takes shape closely corresponding to the theoretical angle

with respect to the horizontal of h = 5.7� and a stationary state

ensues.

The difference between the external (�vzÞ and internal (v 0
zÞ com-

ponents of the vertical velocity vz is evident in Panels 1b and c.

Being primarily associated with the impingement of the surface ti-

dal wave on the slope, �vz is concentrated over the topographic

slope, whereas v 0
z is significant throughout the domain and associ-

ated with the propagating baroclinic modes. Over the topography

v
0
z is similar in strength and in the opposite direction to �vz, which

represents the topographic coupling of the barotropic and baro-

clinic wave modes, and thus the conversion from barotropic to

baroclinic wave energy.

3. Energy evolution equations of a water column

Under the Boussinesq approximation, the mechanical and ther-

modynamical energy are essentially decoupled. The mechanical

energy density is the sum of kinetic (EK) and potential energy den-

sity (EP) and is conserved for inviscid, non-diffusive flow in a closed

domain.

Our approach is explicitly based on the discretised governing

equations of Symphonie, using separate discrete diagnostic equa-

tions in terrain-following Oxyr-coordinates for the barotropic and

baroclinic EK- and EP-evolution. This permits the evaluation of con-

sistency of the reversible exchange between EK and EP due to verti-

cal mass-flux, an essential feature of gravity wave motion. This

consistency requirement constrains the discretised formulation of

the surface and internal pressure gradient forces in the momentum

Eqs. (A1) and (A2) and the advective density (tracer) flux divergence

Fig. 1. Main characteristics of the linear internal tide after four tidal periods, in a vertical section extending to ±300 km from the ridge crest. (a) vz, fronts of internal wave

modes 1, 2, 3 are visible near 270, 130 and 85 km from the ridge crest, (b) �vz , and (c) v 0
z .
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in the tracer evolution Eqs. (A3) and (A4), as discussed byMarsaleix

et al. (2008) for a closed domain. Their Fig. 9 shows the discrete en-

ergy transfers within and between the different compartments. The

discretised formulation of energy transfers in a domain with open

lateral boundaries is discussed in Appendix B.

Previous studies of internal tide energetics considered an evolu-

tion equation for the sum of the kinetic energy and available po-

tential energy (i.e. the pseudo-energy, Lamb, 2007) or linearised

available potential energy (Carter et al., 2008). To obtain a rigor-

ously closed numerical energy balance, we choose to analyse the

complete baroclinic potential energy balance and use the complete

baroclinic density ~q, which includes the background stratification,

rather than an internal wave ‘density anomaly’ as is commonly

used in rigid lid models of IT-generation (e.g. Lamb, 2007). As a

consequence, ~q may include effects due to free-surface motion,

non-linearity, (sub-) harmonics and might in a realistic context

further contain geostrophic and wind-induced circulations, etc.

Since, wave motion is most fundamentally described in terms of

pseudo-energy (Shepherd, 1993), we also consider the available

potential energy loss due to diapycnal mixing in Section 4.3, fol-

lowing Winters et al. (1995).

In the following, we present evolution equations for kinetic and

potential energy per unit horizontal area, i.e. integrated vertically

over the depth of the fluid. We distinguish between (a) external

(barotropic) energy associated with surface motion and (b) internal

(baroclinic) energy associated with internal wavemotion, using the

density decomposition (2.2) and velocity decomposition (2.3). In the

following, Fq indicates horizontal flux divergences or net vertical

boundary flux (from the vertical integral of vertical flux divergence),

while local energy conversions are indicated by /q. The subscript q

indicates the type of conversion under consideration. For reference,

Table A.1 summarises the energy transfers and their abbreviations.

The Boussinesq, hydrostatic kinetic energy density is defined as

EK ¼ 1
2
q0vava and contains contributions from horizontal velocity

only. Denoting vertical integration by a hat and employing the

velocity decomposition (2.3), the kinetic energy tendency per unit

area in the Oxy-plane of a fixed fluid column is

@bEK

@t
¼
Z 1

0

@EKD

@t
dr¼q0

�va
@D�va

@t
�EK

@D

@t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
@
b
EK =@t

þq0

Z 1

0

v
0
a

@Dv 0
a

@t
dr�@D

@t

Z 1

0

E0
Kdr

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
@bE 0

K
=@t

;

ð3:1Þ

where barotropic kinetic energy density is EK ¼ 1
2
q0

�va�va and the

baroclinic part E0
K ¼ 1

2
q0v

0
av

0
a. Here, the first two right-hand side

(rhs)-terms represent the local barotropic kinetic energy tendency

per unit area, @bEK=@t, while the last two terms constitute the baro-

clinic kinetic energy tendency per unit area, @bE0
K=@t.

Firstly, vertically integrating the momentum equations for a

Boussinesq fluid (A1, 2) and the continuity equation (A3) and using

(3.1), the evolution equation for barotropic kinetic energy per unit

horizontal area can be written as

@bEK

@t
þ @D�vaEK

@xa|fflfflfflffl{zfflfflfflffl}
F
EK

þ gq0

@D�vag
@xa|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

FT

þ
Z 1

0

@D�vaP

@xa
dr

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
FX

¼ �D

Z 1

0

~qg�vzdr
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

�/z

þ gq0g
@D�va

@xa|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
�/T

�q0
�va

Z 1

0

@Dv 0
bv

0
a

@xb
dr

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
/3D2D

þ q0
�va

Z 1

0

@

@xb
DKH

b

@va
@xb

� �
dr

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�nH

þq0
�va

KV

D

@va
@r

" #1

0|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
�nV

: ð3:2Þ

Eq. (3.2) involves the following energy transfers: FEK
is the diver-

gence of the barotropic flux of barotropic kinetic energy, while

the sum (FT + FX) represents the divergence of the pressure flux

due to the barotropic tidal current. FT is the divergence of the linear

energy flux corresponding to small-amplitude, shallow water sur-

face waves (e.g. Gill, 1982, Section 5.7; Floor, 2009, Section B.4 ).

FX is the divergence of the barotropic flux of internal pressure, asso-

ciated with the ambient stratification and the internal wave pres-

sure anomaly. The energy conversion between barotropic kinetic

energy and baroclinic potential energy is �/z, the vertical integral

of the barotropic buoyancy flux ~qg�vz, and is hereinafter referred

to as the barotropic buoyancy term (similarly for the total and baro-

clinic buoyancy terms). Furthermore, /T represents a sink of EK

equal to the local gain of barotropic potential energy. The term

/3D2D represents non-linear interaction between baroclinic and

barotropic motion. Finally, barotropic kinetic energy is dissipated

through the mixing terms �nH and �nV , including mixing parameteri-

sation, numerical diffusion and bottom friction, which we will turn

to in Section 5.5.

Secondly, the tendency of baroclinic kinetic energy per unit area

is similarly expressed as

@bE0
K

@t
þ
Z 1

0

@Dv 0
bE

0
K

@xb
dr

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
FE0

K

þ
Z 1

0

@D�vbE
0
K

@xb
dr

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
FX1

þ
Z 1

0

@Dv 0
aP

@xa
dr

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
FIW

þq0

Z 1

0

@Dv 0
bv

0
a
�va

@xb
dr

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
FX2

¼�D

Z 1

0

~qgv 0
zdr

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
/0
z

þq0
�va

Z 1

0

@Dv 0
bv

0
a

@xb
dr

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
/3D2D

þq0

Z 1

0

v
0
a

@

@xb
DKH

b

@va
@xb

� �
dr

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n0H

þq0

Z 1

0

v
0
a

@

@r
KV

D

@va
@r

!
dr

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n0V

: ð3:3Þ

Here, FE0K
is the divergence of the baroclinic advective flux of baro-

clinic kinetic energy (E0
K ), whereas FX1 is the barotropic E0

K-flux

divergence. FIW is the divergence of the flux of internal pressure

due to baroclinic motion, closely related to the classical definition

of the internal tide flux divergence (see Eq. (1.1)) but here it is

important to stress that FIW also includes the background stratifica-

tion. The term FX2 represents non-linear interaction between baro-

tropic and baroclinic motion. The energy conversion between

baroclinic kinetic and potential energy is /0
z, which is the vertical

integral of the buoyancy flux due to baroclinic vertical motion

ð~qgv 0
zÞ. The term /3D2D represents an advective exchange with baro-

tropic kinetic energy, where it appears with opposite sign. Finally,

n0H and n0V are the energy conversions associated with horizontal

and vertical diffusion of baroclinic momentum, where the latter in-

cludes sea–floor friction effects.

Using the density decomposition (2.2), the potential energy ten-

dency per unit area of a fixed fluid column is

@bEP

@t
¼ q0gg

@g
@t|fflfflfflfflffl{zfflfflfflfflffl}

@
b
EP=@t

þ
Z 1

0

D~qg
@z

@t
drþ

Z 1

0

gz
@D~q
@t

dr
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

@
b~EP=@t

; ð3:4Þ

where the barotropic potential energy density purely associated

with surface motion is EP ¼ q0gz and the baroclinic part is given

by eEP ¼ gz~q, which includes the background stratification and den-

sity anomalies associated with internal wave motion. This decom-

position corresponds exactly to the formulation of the numerical

model and is required to close the energy balance including diffu-

sive effects.

Using the vertically integrated continuity equation, it can be

shown that the local barotropic potential energy gain corresponds

to
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@bEP

@t
¼ /T ; ð3:5Þ

the rhs of which appears in the barotropic kinetic energy equation

(3.2). The two equivalent terms in Eqs. (3.2) and (3.5) are main-

tained to emphasise that they originate from different governing

equations, respectively the barotropic momentum and continuity

equation, which is essential in the derivation of the equivalent dis-

crete energy balances.

Finally, the baroclinic potential energy tendency equation can

be written in a form similar to (3.2), namely

@
beEP

@t
þ
Z 1

0

@Dvb
eEP

@xb
dr

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
F~EP

¼F~EP
þF 0

~EP

�
Z 1

0

@

@xb
gzDKH

b

@~q
@xb

� �
dr

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fm;H

� gz
KV

D

@~q
@r

" #1

0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Fm;V

¼ D

Z 1

0

~qgvzdr
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

/z¼�/zþ/0
z

�
Z 1

0

gDKH
b

@z

@xb

@~q
@xb

dr
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

/m;H

�
Z 1

0

gKV @~q
@r

dr
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

/m;V

: ð3:6Þ

Here, F~EP
is the horizontal divergence of the sum of the horizontal

baroclinic and barotropic flux of potential energy, while Fm,H (Fm,V)

represents the horizontal (vertical) divergence of the density diffu-

sion flux. Local exchanges with kinetic energy are the buoyancy

term (/z), and ‘horizontal’ diffusion along r–surfaces and vertical

diffusion (/m,H and /m,V). The latter are discussed in Section 6.

KH corresponds to diffusion along r-surfaces and primarily acts

over sloping topography. Although strictly an abuse of language,

we use ‘horizontal diffusion’ in this paper for convenience. Mellor

and Blumberg (1985) suggest that preferably KH = 0, to preserve

temperature and salinity fronts, and should only be non-zero to

limit noise. Non-zero KH is nonetheless employed regularly so it

is interesting to study its effect on internal tide generation. In par-

ticular, the ‘horizontal’ diffusion of density along sloping r-sur-
faces may change the potential energy ~EP even if the density

stratification only depends on depth, since in case of a sloping

sea surface or –floor the ‘horizontal’ derivative of both depth, @z/

@xa, and density, @~q=@xa, is non-zero.

Let us summarise this section by listing the shorthand evolution

equations for vertically integrated energy per unit area,

@bEK

@t
þ FEK

þ FT þ FX ¼ ��/z � /T � /3D2D þ �nH þ �nV ; ð3:7aÞ

@bEP

@t
¼ /T ; ð3:7bÞ

@
beEP

@t
þ F~EP

� Fm;H � Fm;V ¼ �/z þ /0
z � /m;H � /m;V ; ð3:7cÞ

@bE0
K

@t
þ FE0K

þ FX1 þ F IW þ FX2 ¼ �/0
z þ /3D2D þ n0H þ n0V : ð3:7dÞ

Clearly, the baroclinic potential energy equation may act as an

intermediary between the barotropic and baroclinic kinetic energy

equations, through the barotropic (�/zÞ and baroclinic buoyancy

term (/0
z). Carter et al. (2008) considered energy balances for the

sum of kinetic and (linearised available) potential energy, of the

form

@bE
@t

þ FE þ FT þ FX ¼ ��/z � /3D2D þ �nH þ �nV ; ð3:8aÞ

@bE0

@t
þ FE0 þ FX1 þ F IW þ FX2 � Fm;H � Fm;V

¼ �/z þ /3D2D þ n0H þ n0V � /m;H � /m;V ð3:8bÞ

which are simpler in form than (3.7), but do not allow the analysis

of the redistribution of energy in the potential energy compartment.

Here, bE ¼ bEK þ bEP and bE0 ¼ bE0
K þ eEP , while the barotropic buoyancy

conversion term (�/zÞ and the advective term /3D2D directly carry

energy between the barotropic and baroclinic energy

compartments.

The evolution equations of total kinetic (3.9a) and potential en-

ergy per unit area (3.9b) are obtained by summing (3.7a) and

(3.7d), respectively (3.7b) and (3.7c), giving

@bEK

@t
þ FEK þ FT þ FX þ F IWð Þ ¼ �/z � /T þ nH þ nV ; ð3:9aÞ

@bEP

@t
þ F~EP

� Fm;H � Fm;V ¼ /z þ /T � /m;H � /m;V ; ð3:9bÞ

where EK ¼ EK þ E0
K and EP ¼ EP þ eEP and the advective flux diver-

gence of kinetic energy is FEK ¼ FEK
þ FE0K

þ FX1 þ FX2. Let us compare

Eq. (3.9) to the mechanical energy equations in Cartesian Oxyz-coor-

dinates (e.g. Gill, 1982, Section 6.7). Without detailing viscosity and

diffusion for simplicity, assuming that the pressure at the free sur-

face equals zero and that the sea–floor is fixed and no-slip, in Carte-

sian coordinates, it can be shown (cf. Appendix A.4) that the

evolution equations for total kinetic and potential energy integrated

over the depth of the fluid, from z = �H to z = g, are

@

@t�

Z g

�H

EKdzþ
@

@x�a

Z g

�H

vaðEK þ q0ggþ PÞð Þdz

¼ �
Z g

�H

~qgvzdz� gq0g
@D�va

@x�a
þ n�; ð3:10aÞ

@

@t�

Z g

�H

EPdzþ
@

@x�a

Z g

�H

va
eEPdz� F�

m

¼
Z g

�H

~qgvzdzþ gq0g
@D�va

@x�a
� /�

m: ð3:10bÞ

Asterisks denote partial derivatives holding z constant (cf. (A6))

and total viscous and diffusion terms are denoted n⁄, respectively

/�
m and F�

m. Since horizontal derivatives of z-independent variables

are identical in r- and z-coordinates, Eq. (3.10) correspond exactly

to Eq. (3.9). The kinetic energy density may increase by a local

convergence of the kinetic energy density flux

(FEK ¼ @
@x�a

R g
�H
vaEKdzÞ and/or a local convergence of the flux associ-

ated with internal pressure. Because the total horizontal velocity

va is considered, the divergence of the vertically integrated flux

of total internal pressure ( @
@x�a

R g
�H
vaPdzÞ in (3.10a) corresponds to

the sum (FX + FIW) in (3.9a). The buoyancy conversion term /z in

(3.9a) and (3.9b) is exactly equivalent to the term
R g
�H

~qgvzdz in

(3.10a) and (3.10b): upward (downward) motion of fluid parcels

causes a sink (source) of kinetic energy density to (from) potential

energy. The term /T is the standard form of the conversion be-

tween the barotropic part of kinetic and potential energy (e.g. Ped-

losky, 1987, Section 3.6) appearing as gq0g@D�va=@x�a in (3.10a) and

(3.10b). The divergence of potential energy (F~EP
Þ includes only the

baroclinic potential energy associated with ~q, because the diver-

gence of barotropic potential energy is incorporated in/T (cf. Floor,

2009, Section B.4).

4. Energetics of internal tide generation and propagation

For a flow dominated by periodic wave motion, the sign of the

instantaneous reversible energy transfers depends on the wave

phase. When averaged over several tidal periods, relatively small

but irreversible energy transfers such as the energy conversions

from one wave-type to another that radiates away, or associated

with diffusion, may be significant compared to large amplitude

reversible transfers. We integrate the energy transfers horizontally
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over a sub-domain and apply a moving average over two tidal peri-

ods. Thus, we consider in the meridionally uniform case

/q

� �
¼ 1

2T

Z tþT

t�T

Z XR

XL

/qðx; t0Þdxdt
0
;

where h�i indicates spatial integration from the western lateral

boundary at XL to the eastern one at XR in addition to a time-average

over t � T 6 t < t + T. In what follows, hFqi denotes a net outward

flux through the boundaries of the domain. We also use h�iX to indi-

cate spatial integration only.

4.1. Exchange between barotropic and baroclinic wave energy

We are interested in the tidal average of the conversion mech-

anisms described in Section 3, integrated over a finite-width do-

main centred on sloping topography defined by (2.1). These

govern the redistribution of incoming barotropic tidal energy in

the form �hFT + FXi, into local EK , EP , eEP and E0
K as well as net out-

ward baroclinic and cross-fluxes of energy and pressure, such as

the potential energy flux F~EP

D E
, and the baroclinic pressure flux,

hFIWi. Applying the h�i-operator to the energy Eq. (3.7) the tidally

averaged energy equations are written

@bEK

@t

* +
þ FEK

D E
þ FT þ FXh i ¼ � �/z

� �
� /Th i � /3D2Dh i þ �nH þ �nV

� �
;

ð4:1aÞ

@
beEP

@t

* +
þ F~EP

D E
þ Fm;H

� �
þ Fm;V

� �
¼ �/z

� �
þ /0

z

� �
� /m;H

� �
� /m;V

� �
;

ð4:1bÞ

@bE 0
K

@t

* +
þ FE0K

D E
þ FX1h i þ F IWh i þ FX2h i ¼ � /0zh i þ /3D2Dh i þ n0H

� �
þ n0V
� �

:

ð4:1cÞ

The term �hFT + FXi on the left-hand side (lhs) of (4.1a) represents

the net local gain of barotropic energy in the domain, lost by the

surface wave as it passes through the domain, which may cause a

local change of EK , while h/Ti corresponds to the net local exchange

with EP associated with the propagation of a linear shallow water

wave (e.g. Gill, 1982, Section 5.7). In the absence of stratification,

topography and viscosity, the tidally averaged energy flux diver-

gence hFTiT is theoretically zero, and the surface tidal wave propa-

gates through the domain unhindered causing no net local energy

gain. With non-zero stratification, the surface tidal wave also does

work against the baroclinic (background plus internal tide) pressure

field, so that the barotropic pressure flux divergence is (FT + FX).

Besides that, h/3D2Di represents non-linear energy exchange

between EK and E0
K .

The buoyancy term h/zi ¼ h�/zi þ h/0
zi is the fundamental revers-

ible energy conversion in gravity wave motion, and redistributes

the incoming barotropic energy between the compartments of

EK , eEP and E0
K . When the hydrostatic approximation is made, the

Cartesian vertical velocity vz is a diagnostic variable, which must

be derived from the vertical integral of the continuity equation

(A3), which is a fundamental constraint in Boussinesq models. Be-

cause /z requires vz, in hydrostatic models the continuity equation

plays a pivotal role in determining the conversion between kinetic

and potential energy. A similar argument applies to the barotropic

and baroclinic constituents of vertical velocity, �vz and v 0
z, and the

buoyancy term, �/z and /0
z.

Using Eq. (2.7), the barotropic buoyancy term can be decom-

posed as

�/z ¼
Z 1

0

D~qgr
@g
@t

dr
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

/S

þ
Z 1

0

D~qg�va
@z

@xa
dr

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�/B

; ð4:2aÞ

consisting of the baroclinic potential energy gain (loss) due to a

raising (lowering) of fluid parcels by free-surface motion, /S, and

vertical motion due to the barotropic flow along sloping r-surfaces,
respectively �/B, depending on both the free-surface and sea–floor

slope. Similarly, using Eq. (2.8) the baroclinic buoyancy term con-

sists of

/0
z ¼

Z 1

0

D~qgvrdr
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

/r

þ
Z 1

0

D~qgv 0
a

@z

@xa
dr

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
/0
B

; ð4:2bÞ

the baroclinic potential energy gain (loss) due to a raising (lower-

ing) of fluid parcels by flow across r-surfaces, /r, and baroclinic

flow along sloping r-surfaces, /0
B. These decompositions are partic-

ular to the Oxyr-coordinates, but are also convenient to the present

study in facilitating the analysis of energy transfers between the

barotropic and baroclinic waves, due to the clear-cut distinction be-

tween the contribution to /z by the free surface wave (4.2a) and

internal wave motion (4.2b).

4.2. Generation and propagation region

The domain can be split up into two physically distinct regions,

the ‘generation region’ (GR) where the bottom topography varies

significantly and the ‘propagation region’ (PR) where the sea floor

is flat. The GR reflects internal tide generation and radiation, be-

cause there is significant coupling between barotropic and baro-

clinic motion primarily due to the sloping sea-floor. Where the

topographic slope greatly exceeds the free surface slope, over the

ridge slopes in the present model set-up h�/Bi corresponds to the

classical barotropic conversion term appearing on the rhs of Eq.

(1.1). We define the GR to extend 20 km on either side of the ridge

crest.

The PR involves energy transfers between the potential and ki-

netic compartments associated primarily with propagation of the

internal and surface tide. The flat sea-floor of the PR permits prop-

agation of the barotropic and baroclinic tidal waves without signif-

icant mutual interaction, provided the ratio of the internal and

surface gravity wave celerity, respectively cn and c0, satisfies

c2n=c
2
0 << 1 (Pedlosky, 2003, p. 85 ), which applies in the present

case study. The energy transfers in the PR are defined as the differ-

ence between those in a domain extending 40 km on either side of

the ridge crest and the energy transfers in the GR.

4.3. Diapycnal mixing

In order to obtain a closed energy balance, the energy analysis is

explicitly based on the formulation of the numerical model, in par-

ticular considering the total baroclinic potential energy.

The potential energy of a finite-width fluid domain can be de-

fined as the sum of dynamically available ðbEAÞ and background po-

tential energy ðbEBÞ. Regarded as global quantities of a fluid volume,

the former may be defined as the maximum amount of potential

energy available for conversion into kinetic energy under any adi-

abatic redistribution of mass (Lorenz, 1955), so that simulta-

neously bEB be the minimum potential energy attainable by

adiabatically rearranging the fluid in the volume under consider-

ation (Winters et al., 1995). The energy of a wave field is best char-

acterised by the pseudo-energy, the sum of kinetic energy and bEA

(Shepherd, 1993). In a dynamic fluid, the energy conversion due

to diffusive mixing (e.g. Fm,H, /m,H) may contain both an adiabatic

(reversible) part, due to diffusion along isopycnals, and an
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irreversible diabatic part due to diapycnal diffusion, by which bEA is

lost from the wave-field by increasing the background potential

energy, bEB.

To isolate the energy expended in irreversible mixing, following

Winters et al. (1995), we examine the gain in background potential

energy in a domain of finite width, through local diapycnal mixing,

h/di, and through the domain boundaries, hFdi. The instantaneous

definition per unit horizontal area is

Fd þ /d ¼
Z 1

0

@

@xa
gZ�DKH

a

@~q
@xa

� �
dr

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
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/d;V

; ð4:3Þ

where /d,H and /d,V are local conversions, and Fd,H and Fd,V represent

the divergence of the diapycnal mixing flux in an infinitesimally

wide fluid column. Note that in the present case, Fd,V � 0. Here,

Z� ¼ Z�ð~qÞ can be identified as the depth in the background state

of a fluid parcel of density ~q. The local bEA-change due to diapycnal

mixing is defined as the difference between the total potential en-

ergy gain and the bEB-gain due to diffusion, denoted e.g.

�/I;V ¼ � /m;V � /d;V


 �
.

In non-uniformly discretised coordinate systems, numerically

adjacent grid-cells may have different physical volume and alti-

tude. The calculation of background potential energy by adiabatic

rearrangement of the density field should be carefully considered

in order to ensure conservation of volume. This issue was not ad-

dressed in the algorithms for Boussinesq fluids proposed by Win-

ters et al. (1995), Huang (1998), or Tseng and Ferziger (2001). To

fill this gap, following similar principles we propose an algorithm

adapted to r-coordinates, guaranteeing volume conservation and

applicable to free-surface flow, which is described in Appendix C.

5. Numerical energy diagnostics of internal tide generation over

a deep-ocean ridge

5.1. Global energy balance

The results in this sub-section correspond to the internal tide

GR, since it experiences the strongest energy transfers, showing

characteristic limits of precision with respect to the smallest en-

ergy transfers.

5.1.1. Numerical precision

Table 5.1 shows the magnitude of the instantaneous energy

transfers during 20 tidal periods, integrated over the GR, for the

left-hand side of the energy evolution equations (3.2), (3.3), (3.5)

and (3.6), and the pressure gradient decompositions (A7) and

(A8). The magnitude of the largest and smallest term, and the max-

imum absolute difference between lhs and rhs,

emax ¼ maxðjlhs� rhsjÞ; ð5:1Þ

which should be zero theoretically, are shown for each balance. The

instantaneous barotropic kinetic and potential energy balance, as

well as the pressure gradient decompositions, are in equilibrium

up to 13 significant digits. The error occurs due to numerical round-

ing. The baroclinic potential energy, however, has up to nine signif-

icant digits, which is also reflected in the buoyancy term. This

reduced numerical precision is due to the summation of large terms

which nearly cancel, associated with potential energy flux diver-

gence in particular. The smallest term in all balances remains of

order O[105] W/m larger than emax, supporting the utility of mod-

el-oriented energetics analysis. An overview of the instantaneous

and tidally-averaged complete kinetic and potential energy

balances and the decomposition into the primary terms of the tidal

energy balance is shown in Table 4.2 of Floor (2009).

5.1.2. Coriolis energy flux

In theory, the Coriolis effect does not do work (e.g. Gill, 1982,

Section 4.6) and integrated over a closed domain the sum of the

discrete version of the Coriolis terms in the kinetic energy balance

�vxfvy and vyfvx vanishes identically. However, due to the spatial

discretisation of the momentum equations on the C-grid, this is

not the case for a domain with open lateral boundaries, as shown

in Appendix B.4.

When the internal tide field is well-established, in the GR the

net energy flux due to spatial discretisation of the Coriolis force

primarily acts as a small source of baroclinic kinetic energy, on

the order of 1% of the fluxes in the predominant net energy balance

between the barotropic pressure flux, �hFT + FXi, the buoyancy

term, h/zi, and the baroclinic IT-pressure flux, �hFIWi. The net baro-

tropic Coriolis flux is several orders of magnitude smaller and neg-

ligible. In the control simulation, the net baroclinic Coriolis flux is

an order of magnitude larger than the net potential energy change

due to vertical mixing, �/m,V. This emphasises the importance of

accurate energy diagnostics.

5.1.3. Temporal diffusion

The energy transfer associated with the Robert–Asselin (R–A)

filter resembles a Laplacian diffusion of energy in time (cf. Marsa-

leix et al., 2008; Floor, 2009, for details). Its strength is expressed

by the coefficient 0 6 A < 0.5. If A = 0, a pure leapfrog scheme is

used so that the odd and even trajectories evolve separately and

may diverge. If A = 0.5, the two trajectories are averaged each iter-

ation. The appropriate value for A is determined case-by-case. In

the control simulation A = 0.1 is used. The filter chiefly acts during

periods of model spin-up and ideally only negligibly affects the

model physics. Since the R–A filter is used only to enhance model

stability, only two weaker values of A are tested in a simulation

otherwise corresponding to the control run. Table 5.2 shows the

Table 5.1

Magnitude in 10log(power/m) of the LHS (Mlhs) of the energy equations (3.2), (3.3),

(3.5), (3.6), and the pressure-gradient decompositions (A8), (A9). Also shown are

magnitudes of the largest and smallest term in each balance (Mmax, Mmin), and that of

the maximum absolute error (emax), calculated over 20 tidal periods for the control

simulation. KE refers to total kinetic energy, PO and PI, respectively to barotropic and

baroclinic potential energy, PGO and PGI to barotropic and baroclinic pressure

gradient decomposition, and /z refers to the buoyancy conversion term between KE

and PI.

Balance Equation Mlhs Mmax Mmin emax

KE (3.2)

+(3.3)

4 4 �3 �9

PO (3.5) 4 4 4 �12

PGO (3.2), (A8) 3 3 �3 �9

PI (3.6) 4 4 0 �5

PGI (3.3), (A8) 3 4 2 �9

/z (4.2ab) 4 4 3 �5

Table 5.2

Diffusion tests.

Parameter Control Tests

A 0.1 0.05, 0.01

KV (m2 s�1) 10�6 Unforced/tidal motion, 10�5, 10�4, 10�3

KH (m2 s�1) 0 Unforced/tidal motion, 0.5, 1, 2
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values of the diffusion coefficients and A used in the control simu-

lation as well as the values of A tested while keeping the remaining

parameters constant.

For all three cases, during the first tidal period, the R–A filter

acts relatively strongly yet intermittently, at O[10] W/m times A

for durations of 0.001 T, due to the strong velocity shear associated

with the surface wave front that initially rapidly propagates

through the domain. In the stationary state after about 4 T, the

R–A filter causes a kinetic energy loss of about �1 W/m times A.

Its direct effect on potential energy is negligible. This is of the same

order as /m,V in the control simulation. Reducing the coefficient A

negligibly enhances the other (net) energy transfers. Since its pur-

pose is to enhance model stability and both test simulations with

smaller R–A coefficients are stable over 20 tidal periods, the R–A

coefficient should be reduced accordingly.

5.2. Instantaneous and local energy transfers in GR and PR

The barotropic buoyancy term �/z depends on �vz and therefore

predominantly acts over the topographic slopes in the GR, with

mean 720W/m and amplitude O[103] W/m. In the PR �/z has zero

mean and small amplitude. This confirms decoupling of barotropic

and baroclinic wave motion, so we distinguish a fortiori the inter-

nal tide GR and the PR, where both tidal wave types interact little.

Since v 0
z is significant throughout the domain, so is the baroclinic

buoyancy term, /0
z, with an amplitude of O[103] W/m.

For zero stratification and/or topography, the modelled time-

mean of the eastward barotropic energy density flux FlT ¼
gq0D�vxg per unit width is

hFlTiT � 2:506� 105 W=m; ð5:2Þ

which is matched in the control simulation far west of the ridge.

This is slightly smaller than the theoretical time-mean energy flux

2.529 � 105 W/m that corresponds to the linear forcing (cf. Gill,

1982, Section 8.2). Far east of the ridge, the tidal energy flux is

hFlTiT = 2.499 � 105 W/m, so that the tidal wave loses approximately

0.3% of its energy in traversing the ridge. Nearer the ridge, it is the

sum hFlT + FlXiT � 2.50 � 105 W/m where FlX ¼
R 1

0
D�vxPdr, that cor-

responds to the barotropic tidal energy flux, since the tidal wave

feels the internal tide pressure perturbations.

Consistency in the energy diagnostics is indeed important, since

a small error on the scale of the instantaneous tidal energy flux

may lead to large uncertainties in the net energy transfers of

O[102] W/m after 10 T, which are discussed below.

5.3. Primary energy transfers in the generation region

Fig. 2 illustrates the primary net energy transfers involved in

internal tide generation by a barotropic tide impinging on a ridge.

The initial spin-up period lasts about 3.5 T. In Fig. 2c, an initial

build-up of baroclinic kinetic energy is evident, associated with

the establishment of the internal tide field. Fig. 2b shows that

the local baroclinic potential energy tendency remains positive,

reflecting the fact that baroclinic potential energy is being ad-

vected into the water column. After 4T, some 12 normal modes

propagating at the group speed have reached the edge of the GR,

which corresponds to the maximum wave number that can be rea-

sonably represented at the present resolution, requiring a mini-

mum of three grid-points/levels per wavelength. For waves at the

tidal frequency, the vertical resolution is the limiting factor here.

Fig. 2a shows that the net barotropic pressure flux into the

domain, �hFT + FXi, of 720W/m is balanced by the barotropic buoy-

ancy term h�/zi. The former becomes stationary after approximately

4 T, whereas h�/zi shows only a slight increase from the outset. The

net work done by the barotropic current matches the barotropic

buoyancy term to ±1% after 4 T and less than ±0.05% after 6 T. After

a spin-up period of 4 T, the running mean barotropic kinetic energy

equation (4.1a) therefore reduces to

hFT þ FXi � �h�/zi: ð5:3Þ

The barotropic buoyancy term matches the classical barotropic to

baroclinic tide conversion term, i.e. h�/zi � h�/Bi with a margin of

0.01%, because the surface-contribution h/Si is negligible.

Fig. 2b shows that the primary balance in the potential energy

equation (4.1b) involves all terms except diffusion, i.e.

h@
beEP

@t
i þ F~EP

D E
� �/z

� �
þ /0

z

� �
; ð5:4Þ

which is satisfied with a margin less than 0.05%. The barotropic

buoyancy term h�/zi, and the potential energy flux into the fluid col-

umn �hF~EP
i, act as sources of baroclinic potential energy and a

transfer into baroclinic kinetic energy through the baroclinic buoy-

ancy term h/0
zi.

Until about 4 T the baroclinic current contributes about two-

thirds of the potential energy advection, compared to one third

by the barotropic part hF~EP
i. After 4T, the latter is reduced to a

few percent of the total baroclinic potential energy flux, while

the baroclinic part hF 0
~EP
i, dominates. The local baroclinic potential

energy gain h@beEP=@ti is about 80% of the net advective flux hF~EP
i.

The remainder plus h�/zi is converted into baroclinic kinetic energy

by h/0
zi, which is thus about 13% larger than the barotropic buoy-

ancy term.

Finally, during the quasi-stationary period, in the baroclinic ki-

netic energy balance the internal wave pressure flux, hFIWi �
823W/m, closely matches the energy provided by the baroclinic

buoyancy term �h/0
zi. Thus, Fig. 2c illustrates that to within a mar-

gin of 3%

hF IWi � �h/0
zi: ð5:5Þ

The remaining 3% mainly consists of the local gain in baroclinic ki-

netic energy and the baroclinic numerical Coriolis-flux described in

Section 5.1.2, which represents approximately 0.3% of the total run-

ning mean kinetic energy tendency. Effects of advection and viscos-

ity in the kinetic energy equations are several orders of magnitude

smaller. These results are neither sensitive to the initial phase of the

tidal forcing, nor to the length of the integration region, although

the outward internal tide energy flux reaches steady state later in

a longer domain (cf. Lamb, 2007, Fig. 4).

It is remarkable that the baroclinic pressure flux, hFIWi, exceeds
the energy lost by the barotropic tide, �hFT + FXi, by a factor 1.14.

The excess is attributed to part of the baroclinic flux of potential

energy hF 0
~EP
i into the GR. This significant contribution may be due

to the inclusion of the background density field in the baroclinic

density ~q and pressure P in our model-oriented approach.

The strength of the time-averaged baroclinic flux associated

with the background stratification can be estimated by a simple

scale analysis from the expression Dv 0
x
�qgz, averaged over time

and integrated over the fluid depth.

Assuming a sinusoidal dependence of the free-surface motion

and considering thefirst baroclinic normalmodehorizontal velocity,

v
0
x;1 ¼�u0

1 cosðm1zÞsinðk1x	xtÞ, with amplitude u0 = O[10�2] ms�1,

using the physical parameters in Table 2.1a and using

g¼
ffiffiffi
H
g

q
U0 sinðKx�xtÞ for the time-varying part of the total depth

D, we find

1

2T

Z T

�T

Z 1

0

Dv 0
x
�qgzdrdt ¼ �q0N

2

2T

ffiffiffiffi
H

g

s
U0

Z 1

0

z2
X

n

u0
n cosðmnzÞ

(

�
Z T

�T

sinðKx�xtÞ sinðknx�xtÞdt
�
dr ¼ O½10
 W=m;
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into the GR for eastward travelling internal waves. Both east- and

westward internal waves transfer energy into the GR at order

O[10] W/m. This term is non-zero for any normal mode when

kn – K, which is the case here since the surface wavelength is much

greater than the internal wavelength, so that kn � K. This interac-

tion term between free-surface and internal tide is non-existent

in a rigid-lid model such as used by Lamb (2007) and particular

to the free-surface formulation used here. In a future study, the

internal tide signature may be separated from the background den-

sity (or potential energy) field using the pseudo-energy formulation

of Winters et al. (1995), or the combined wavelet-eof analysis of

Pairaud and Auclair (2005).

Munroe and Lamb (2005) numerically estimated the internal

tide energy flux in nearly identical physical circumstances, but at

latitude 20�N and with much stronger vertical diffusivity/viscosity,

with the pressure flux formulation Fl
ML
IW ¼

R g
�H

pIv
0
xdz, where pI is the

approximate hydrostatic pressure anomaly associated with the

internal tide field, rather than the complete internal pressure P.

They found a net eastward baroclinic flux of internal pressure of

Fl
ML
IW � 400 W/m. Multiplying this by 2, this does correspond closely

to our estimate of hFIWi � 823 W/m of the sum of east- and west-

ward baroclinic pressure flux, despite the fact that hFIWi includes

both the IT-pressure and the pressure associated with the back-

ground density field.

5.4. Primary energy transfers in the propagation region

Fig. 3 illustrates the primary energy transfers integrated over

the PR, between 20 and 40 km on either side of the ridge. Initially,

as the internal tide front arrives, the internal wave pressure flux

into the PR causes a local increase in kinetic energy and is partially

converted into baroclinic potential energy, so that

@bE0
K

@t

* +
þ hF IWi � �h/0

zi; ð5:6Þ

as shown in Fig. 3a.

After about 6 T, internal wave modes up to mode 12 have trav-

elled over 40 km away from the ridge, and the local kinetic energy

gain is reduced to zero. Therefore, the net baroclinic kinetic energy

balance reduces to

hF IW i � �h/0
zi; ð5:7Þ

which amounts to about 360 W/m from 6 T onwards, showing a

gradual decline towards about 308W/m after nearly 10 T.

Fig. 3b shows that until about 2 T, the baroclinic buoyancy term

causes a local increase in baroclinic potential energy. Simulta-

neously, the advective flux of baroclinic potential energy hF~EP
i,

out of the PR, strongly increases. The approximate baroclinic po-

tential energy balance is

@
beEP

@t

* +
þ hF 0

~EP
i � h/0

zi; ð5:8Þ

because the net barotropic flux of potential energy, hF~EP
i, converges

to zero (not shown). After 6T, the baroclinic potential energy gain is

of order O[10] W/m and the sum of the balances (5.7) and (5.9) then

approximately reduces to

hF IW i � �hF 0
eEP

i;

i.e. the net total energy gain in the PR is small. The strength of the

constituents of balance (5.9) depends on the length of the domain of

propagation. When the PR length matches the first normal mode

wavelength, the net transfers in (5.9) reduce to about 10% of the

baroclinic flux of baroclinic pressure from the GR, while the local

baroclinic potential energy gain remains of O[10] W/m. As in the

GR, our results (5.7) and (5.9) for the PR may be attributed to the

combined use of a free surface and the total baroclinic density, ~q,
that includes the background stratification in accordance with the

present model-oriented approach.

Fig. 2. Primary volume-integrated energy transfers in internal tide generation, integrated over a 2D column extending 20 km on either side of the ridge. The moving average

over two tidal periods is shown. (a) The barotropic pressure-flux �hFT + FXi is balanced by the barotropic buoyancy term, �/z

� �
� �/B

� �
. (b) The barotropic buoyancy term �/z

� �

and the baroclinic flux of baroclinic potential energy � F 0
~EP

D E
cause a local gain in potential energy @

beEP=@t

 �
, and a conversion into baroclinic kinetic energy by the baroclinic

buoyancy term � /0
z

� �
. The term hsumi represents the sum of the terms in Eq. (5.5) that together balance @

beEP=@t

 �
. (c) The baroclinic buoyancy term � /0

z

� �
is radiated by the

internal waves, represented by the baroclinic pressure flux,hFIWi.
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5.5. Vertical and horizontal diffusion and bottom friction

In this section, we address the following questions: how strong

are the diffusive potential energy transfers? How sensitive are the

primary energy balances to the parameterisation of sub-grid pro-

cesses? How much energy do the dynamics lose through diapycnal

mixing? What is the effect of a free-slip bottom boundary condi-

tion? The different tests for KH and KV keeping the remaining

parameters constant are summarised in Table 5.2.

5.5.1. Diffusive energy transfers

In the absence of tidal motion both vertical and ‘horizontal’

(along r-surfaces) diffusion of density associated with sub-grid

scale processes may already change potential energy. Therefore

we also analyse an unforced case labelled STILL. The relative effect

of the tidal dynamics on the diffusive energy transfers is labelled

DYN, so that e.g. /DYN
m;V ¼ /m;V � /STILL

m;V .

The STILL domain-averaged potential energy gain due to vertical

density diffusion is for arbitrary constant KV and N

� /STILL
m;V

D E
¼ km � 1

km
q0K

VN2; ð5:9Þ

where km = 40 is the number of vertical mass levels in the fluid inte-

rior, h�i indicates the volume average and the factor km�1
km

¼ 0:975,

stems from summation by parts in the discretised formulation to

obtain the integrand of /m,V, using vertically uniform spacing Dr.
The initial GR and PR volumes are respectively, 187.9 km3 and

200.0 km3. In the control simulation in the GR the initial diffusive

potential energy gain is �h/STILL
m;V i ¼ 0:18848W/m, or about 0.02%

of �hFT + FXi.
In the STILL case, non-zero ‘horizontal’ diffusion along r-sur-

faces causes a potential energy gain in the GR of

�h/STILL
m;H i ¼ 3:23� 10�3q0K

HN2 Wm�3;

which is non-zero because of the sloping sea floor. In the GR, e.g.

with KH = 1 m2 s�1 this gives �h/STILL
m;H i ¼ 6:24� 102 W/m or a signif-

icant fraction (86%) of �hFT + FXi. In the PR, the initial horizontal dif-

fusion is zero, because isopycnal and r-surfaces coincide. After 10 T,

the local impact of KH on the potential energy tendency in the PR is

two orders of magnitude smaller than in the GR.

For several values of KV and KH, Table 5.3 shows the relative po-

tential energy change associated with tidal dynamics due to verti-

cal and horizontal density diffusion in the GR after 10 T, normalised

respectively, by �h/STILL
m;V iX and �h/STILL

m;H iX , which increases nearly

linearly from zero.

Fig. 4a shows the time-integral over 5T 6 t 6 10T of the inte-

grand of �/m,V in the control simulation. Along the internal tide

beams, the local ~EP-change due to vertical diffusion is significantly

modulated, by up to ±5%. This applies to all tested KV. However, as

shown in Table 5.3, after 10 T integrated over the GR the dynamics

cause an increase of �h/m,ViX of less than 0.5% compared to

�h/STILL
m;V iX , while �h/ m,HiX decreases by about 1.5–2.5% compared

to �h/STILL
m;H iX .

5.5.2. Sensitivity of primary energy transfers to diffusivity

Enhanced KV increases the local potential energy gain by 5% for

KV = 10�3 m2 s�1, but otherwise negligibly affects the primary en-

ergy transfers. Fig. 5 shows the effect of enhanced horizontal diffu-

sion on the primary energy transfers in the GR. The tested

‘horizontal’ diffusion coefficients are weak compared to commonly

used values for a horizontal resolution of 1 km, such as

KH = 10 m2 s�1. However, the primary baroclinic energy transfers

in the GR are strongly reduced: the baroclinic buoyancy term

Fig. 3. Primary volume-integrated energy transfers in internal tide propagation, between 20 and 40 km from ridge crest. (a) The internal wave pressure flux hFIWi is balanced
by buoyancy term� /0

z

� �
; (b) The buoyancy term � /0

z

� �
is balanced by a potential energy gain @

beEP=@t

 �
and radiated out of the propagation region by the baroclinic potential

energy flux characterised by F~EP

D E
, while the barotropic potential energy flux is negligible. The term hsumi represents the sum of the terms in Eq. (5.9) that together balance

@
beEP=@t

 �
.

Table 5.3

Potential energy gain relative to the STILL case, for various strengths of vertical and

horizontal diffusion.

(a) Instantaneous potential energy gain in the generation region due to

vertical diffusion at t = 10T, relative to STILL case. For KH
– 0, the vertical

diffusion equals KV = 10�6 m2 s�1

KV (m2 s�1) h/DYN
m;V iX /STILL

m;V

D E
X

.
� /I;V

� �
X

/STILL
m;V

D E
X

.

10�6 3.32 � 10�3 �1.40 � 10�2

10�5 3.33 � 10�3 �1.38 � 10�2

10�4 3.18 � 10�3 �1.36 � 10�2

10�3 1.71 � 10�3 �1.16 � 10�2

KH (m2 s�1) h/DYN
m;V iX /STILL

m;V

D E
X

.
� /I;V

� �
X

/STILL
m;V

D E
X

.

0.5 3.08 � 10�3 �1.22 � 10�2

1 2.79 � 10�3 �1.11 � 10�2

2 2.20 � 10�3 �9.45 � 10�3

(b) Instantaneous potential energy gain in the generation region due to

diffusion along r-surfaces at t = 10T, relative to STILL case. The vertical

diffusion equals KV = 10�6 m2 s�1

KH (m2 s�1) h/DYN
m;H iX /STILL

m;H

D E
X

.
� /I;H

� �
X

/STILL
m;H

D E
X

.

0.5 �1.63 � 10�2 3.22 � 10�4

1 �1.94 � 10�2 5.75 � 10�3

2 �2.53 � 10�2 1.38 � 10�2
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h�/zi and the baroclinic flux of internal pressure hFIWi decrease by a

factor 2 for KH = 2 m2 s�1.

5.5.3. Diapycnal mixing

In the STILL case, all vertical diffusion is diapycnal because the

isopycnals are horizontal, giving /STILL
m;V ¼ /STILL

d;V . Mixing along r-sur-
faces initially acts as a sink of available potential energy in the GR,

given by

� /STILL
I;H

D E
¼ �0:69� 10�5q0K

HN2 Wm�3:

Table 5.3 shows the relative available potential energy change asso-

ciated with tidal dynamics due to vertical and horizontal density

diffusion in the GR after 10 T, normalised respectively by

�h/STILL
m;V iX and �h/STILL

m;H iX . For vertical diffusion, the dynamic back-

ground potential energy gain exceeds the total potential energy

gain, so that diapycnal diffusion acts as a sink of available potential

energy. Fig. 4b shows the time-integral over 5T 6 t 6 10T of the

integrand of �/d,V in the control simulation, but a similar picture

applies to all tested KV. The integrand of � /d,V is more strongly

modulated than that of �/m,V, but remains close to �h/STILL
m;V i when

averaged over the GR. After about t = 3T, the available potential en-

ergy gain associated with ‘horizontal diffusion’, �h/I,Hi, starts

increasing linearly from zero.

5.5.4. Free slip sea–floor friction

In the control simulation, the bottom boundary condition is no-

slip, with zero tracer flux. This unrealistically neglects bottom

Fig. 4. Vertical section of local tendency of the potential energy density due to vertical diffusion with KV = 10�6 m2 s�1, integrated from t = 5 T to t = 10 T and zoomed into

±300 km from the ridge crest. The colour bar is cut off at 1.98 and 2.48 J/kg. (a) Change in total potential energy density due to diffusion, integrand of �/m,V. (b) Change in

background potential energy density due to diffusion, integrand of �/d,V.

Fig. 5. Primary volume-integrated energy transfers in internal tide generation, with horizontal diffusion, super-imposed for KV = 10�6 with KH = 0,0.5,1, and 2 m2 s�1. (a)

Barotropic energy transfers are hardly affected; (b) @
beEP=@t

 �
increases, while F 0

~EP

D E
and � /

0
z

� �
decrease with KH. The term h sumi represents the sum of the terms in Eq. (5.5)

that together balance @
beEP=@t

 �
and (c) both hFIWiand � /0

z

� �
strongly decrease with KH.
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boundary layer turbulence and uses weak vertical viscosity

KV = 10�6 m2 s�1. Therefore, we consider a free-slip condition,

where at the mid-level of the bottom grid-cell the bottom stress

is parameterised as sa ¼ q0CD
ffiffiffiffiffiffiffiffiffiffiffi
vbvb

p
va, with drag coefficient

CD = 2.5 � 10�3.

In the free-slip case, the barotropic tidal flux is enhanced by

about 1% compared to the control simulation, to hFlT + FlXiT �
2.535 � 105 W/m. In the stationary state after about 4T the free-slip

(FS) bottom boundary condition causes less than 1% change in the

amplitudes of the instantaneous energy transfers. In both the GR

and PR, the energy expended by bottom friction in the no-slip case

is O[10�3] W/m, whereas in the FS case it is about 21 W/m. A simple

scale analysis gives the order ofmagnitude of no-slip kinematic bot-

tom stress, KVU0/Dz2 = O[10�12] m s�2. In the FS case, the kinematic

bottom stress is of order CDU
2
0 ¼ O½10�7
m s�2. This explains the

large difference in frictional energy dissipation.

Let us focus on the GR. The wave energy deposited there, lost

from the barotropic tidal pressure flux, hFlT + FlXiT, is altered both

by the changed bottom boundary condition ‘upstream’ and by local

energy transfers. Compared to the no-slip case, the net barotropic

tidal pressure flux into the GR �hFT + FXi gained 3% due to weaken-

ing of the net surface pressure flux,�hFTi, while the conversion into

baroclinic potential energy h�/zi, gained 2%. The difference between

�hFT + FXi and h�/zi is attributed to enhanced EK-dissipation by local

bottom friction. Both the barotropic, hF~EP
i, and baroclinic flux of po-

tential energy hF 0
~EP
i, increased in strength by about 70Wm3/kg,

which is a respective amplification of 100% and 12%, reflecting that

hF~EP
i remains small in comparison. The internal potential energy

tendency @
beEP=@t

 �
increased by about 20%. Being of the same or-

der of magnitude, the baroclinic buoyancy term /0
z

� �
, increased by

only 7%. The baroclinic flux of internal pressure, hFIWi, of the same

order as the baroclinic buoyancy term h/0
zi, increased by about 5%,

while the baroclinic kinetic energy tendency h@bE0
K=@ti, diminished

even further compared to the control simulation. The difference

h/0
zi � hF IWi is matched by the energy lost in bottom friction.

Increasing the vertical diffusion coefficient to a more realistic

KV = 10�4 m2 s�1 in the FS case changes the previous primary GR

energy transfers by less than 1%.

6. Discussion and conclusion

We analysed the energetics of internal tide generation by strat-

ified barotropic tidal flow impinging on a supercritical Gaussian

ridge and its subsequent propagation, using the energy-conserving,

Boussinesq, hydrostatic, free-surface ocean model Symphonie. The

originality of our approach lies in the closed, i.e. numerically con-

sistent, global energy balance, evaluated explicitly in terms of all

physical and numerical energy transfers in the model. The com-

plete, high-precision energy diagnostics allowed the quantification

of the energy transfers associated with physical diffusion and

numerical choices, such as the discretisation of the Coriolis

acceleration.

6.1. Basic energy balance of internal tide generation

After a spin-up of four tidal periods, within 50 km from the

ridge crest the simulated internal tide beams correspond well to

linear hydrostatic plane internal waves on the f-plane, at the tidal

frequency. The generation region (GR) extending 20 km on either

side of the ridge crest is characterised by strong topographic slopes

over which the barotropic tidal flow generates strong �vz and the

barotropic buoyancy term associated with the topographic slope,
�/B, identified as the primary barotropic-to-baroclinic energy con-

version term.

The stationary primary net energy transfers associated with

internal tide generation are summarised in Fig. 6a and to a good

approximation given by

hFT þ FXi � �h�/zi; ð6:1aÞ

h@
beEP

@t
i þ hF 0

~EP
i � h�/zi � hF IWi; ð6:1bÞ

where the outward baroclinic pressure flux �hFIWi was substituted

for the baroclinic buoyancy term h/0
zi in (6.1b). About 720W/m of

barotropic energy is lost by the surface tide, �(FT + FX), in the GR,

which is converted into internal tide energy through the barotropic

buoyancy term h�/zi. This corresponds to about 0.3% of the total sur-

face tide energy flux hFlT + FlXiT � 2.506 � 105 W/m. The internal

tide energy flux out of the GR, hFIWi, amounts to 823 W/m and ex-

ceeds h�/zi by 13%. Thus, hFIWi is fed by both h�/zi and the difference

between the local baroclinic potential energy gain and the net baro-

clinic potential energy flux into the GR �hF 0
~EP
i. The significance of

F 0
~EP

D E
is most likely associated with the density decomposition

(2.2) that was used for consistency with the numerical formulation:

the baroclinic density ~q includes the background stratification (cf.

Section 5.3). Furthermore, F 0
~EP

D E
and hFIWi may include effects of

trapped waves and tidal rectification (e.g. Pérenne et al., 2000), be-

sides the presence of (sub-) harmonics and non-linearity.

These results are not very sensitive to changes in vertical diffu-

sion, which primarily affects the background density field. The sec-

ond objective of this work was to quantify the energy transfer due

to diapycnal mixing. In all tested cases, diapycnal diffusion acts as

an APE-sink around 1% of the STILL potential energy gain. However,

to determine the deep-ocean mixing energy budget an appropriate

horizontal diffusion formulation is crucial, because it strongly af-

fects the baroclinic energy conversions in the GR: the internal

wave pressure flux to the abyssal ocean, hFIWi, is reduced by 40%

for weak KH = 2 m2 s�1. Adopting a free-slip bottom boundary for-

mulation causes significant local energy dissipation due to sea–

floor friction since it parameterises bottom boundary layer turbu-

lence. However, the associated change in net flux of energy and

pressure into and out of the GR is only a few percent of the energy

lost in the GR by the barotropic tide, �hFT + FXi.
Kinetic energy advective terms play a negligible role in the pri-

mary energy balance (6.1) in the GR of the present simulation,

whereas � F 0
~EP

D E
is important due to interaction between the sur-

face and internal tide and the background stratification. Non-line-

arity can transfer energy between the surface and internal tide, to

(sub-) harmonics or rectified tides (Pérenne et al., 2000). As noted

by Carter et al. (2008) it is possible that non-linear interactions are

underestimated here, because the simulation was started from

rest.

6.2. Basic energy balance of internal tide propagation

In the propagation region (PR), extending between 20 and

40 km from the ridge crest, the surface and internal waves propa-

gate rather independently because the barotropic vertical velocity,
�vz, is negligible. Vertical motion is primarily due to the internal

tide and the buoyancy term is dominated by /0
z.

In the PR, when after about 6 T a stationary state is reached, the

primary net energy balance is

�hF IWi � h/0
zi � h@~̂EP=@ti þ hF 0

~EP
i; ð6:2Þ

which is summarised in Fig. 6b, amounting to about 308W/m in the

control simulation. The net baroclinic pressure flux, �hFIWi, into the

PR is approximately balanced by the baroclinic flux of potential

energy out of the PR, F 0
~EP

D E
, resulting in a small local baroclinic
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potential energy gain. The internal and surface tide are decoupled,

while the barotropic energy flux divergence is negligible in compar-

ison with the terms in (6.2). The values of �hFIWi, /0
z

� �
and F 0

~EP

D E
de-

pend on the length of the PR and reduce to about 10% of the

baroclinic flux of internal pressure from the GR if it equals integer

wavelengths of the first (and all other) internal wave normal modes

at the tidal frequency.

As mentioned in the introduction, small-amplitude internal

tides are often described using a rigid lid and density anomaly with

respect to the background stratification (e.g. Lamb (2007), illustra-

tive example 2). In the linear description of propagating small-

amplitude sinusoidal internal wave modes, the net tidally averaged

IT-pressure flux and baroclinic potential energy flux into the PR are

zero. As in the GR, our results (6.2) for the PR may be attributed to

the combined use of a free surface and the total baroclinic density,
~q, that includes the background stratification in accordance with

the present model-oriented approach. Additional effects that may

play a role include non-linearity, the presence of (sub-) harmonics

and in a realistic setting would incorporate the geostrophic

circulation and wind induced currents etc., which may be sepa-

rated using wavelet-eof analysis (Pairaud and Auclair, 2005).

Except for the extreme case with KV = 10�3 m2 s�1, in the PR ver-

tical diffusion reduces the energy transfers in (6.2) by less than

0.5%. The potential energy tendency in the PR due to ‘horizontal’

diffusion remains negligible.

6.3. Numerical evaluation of energy transfers

The energy diagnostics are explicitly based on the numerical

scheme of the Symphonie model equations for two main reasons.

Firstly, this permits closing the global energy balance to high pre-

cision, in the sense that all physical and numerical sources and

sinks in the individual energy compartments of EK , EP , eEP and E0
K

and their mutual exchanges are quantified. This allowed a detailed

analysis of energy transfers associated with the ‘physical’ diffusion

coefficient KVand the bottom boundary condition (Section 5.5). We

also found that the staggered grid causes a net baroclinic energy

boundary flux due to the Coriolis effect, on the order of 1% of the

Fig. 6. Conceptual scheme of net internal tide energy transfers and balance at arbitrary time t = 8.925 T, accurate to <1%. (a) Generation region: the mean eastward barotropic

tidal energy flux hFlX + FlTiT is shown west and east of the ridge. (b) Propagation region.
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primary energy fluxes. Secondly, consistency in the energy diag-

nostics is needed because a small error on the scale of the instan-

taneous local eEP-flux would lead to significant uncertainties in the

net energy transfers and obscure the diffusive energy transfers,

/m,V. Such uncertainties may have arisen in previous studies, which

singled out specific (approximate) energy transfers (Munroe and

Lamb, 2005), or discretised an approximate balance directly onto

the model grid (Carter et al., 2008).

Katsumata (2006) and Carter et al. (2008) partitioned the en-

ergy equations into barotropic and baroclinic components, without

distinguishing between kinetic and potential energy in the results.

Carter et al. (2008) found a difference of 5% between the barotropic

and baroclinic estimate of the buoyancy conversion term. In fact,

making the distinction between kinetic and potential energy al-

lowed us to show that the buoyancy term is conservative in Sym-

phonie, i.e. no energy is lost in the instantaneous exchange

between potential and kinetic energy that is fundamental to grav-

ity wave motion. Additionally, we confirmed explicitly that the

barotropic tidal energy lost in the generation region, �hFT + FXi, is
indeed primarily converted into baroclinic potential energy, which

was previously assumed implicitly.

Comparing simulations at resolutions of Dx = 4 km and

Dx = 1 km, Carter et al. (2008) concluded tidal conversion may be

underestimated if the horizontal resolution is too low. In a higher

resolution simulation the baroclinic flux of internal pressure hFIWi
might be larger due to an improved representation of previously

unresolved steep sea–floor features, but also because a larger num-

ber of internal wave modes can be represented. In the present case,

the vertical resolution is the limiting factor for the number of

modes that can be represented. The ridge is a smooth Gaussian

and its features are well-resolved with a resolution Dx = 1 km.

We performed additional tests using 80 and 160 vertical levels as

well as Dx = 0.5 km (not shown), but did not find an appreciable

change of the primary energy transfers (6.1) and (6.2).

Pressure gradient truncation errors (PGE) associated with the

terrain-following coordinates and the initialisation of the density

field can cause spurious circulation and energy transfers (Marsa-

leix et al., 2009b, Section 2.2). However, analysis of the STILL case

indicates that the weak PGE-induced circulation is unlikely to have

affected the tidal dynamics and energy transfers significantly. Sep-

arating the physical energy transfers from the PGE-induced trans-

fers is beyond the scope of the present study, but may prove useful

for taller and/or steeper topography, realistic non-linear stratifica-

tion and/or vertical discretisation.

In conclusion, we have analysed the energetics of internal tide

generation and propagation in detail, based explicitly on the dis-

cretised governing equations of Symphonie. The model formulation

was deliberately straightforward, both numerically and physically

to enforce consistency in the buoyancy term, /z, and limiting ver-

tical diffusion to a minimum in the control simulation to focus on

mechanical energy conservation. We presented a schematic over-

view of the primary energy balances in the generation region (over

sloping topography) and the propagation region, Fig. 6. The com-

plete energy balance permitted the quantification of physical and

numerical energy transfers and the analysis of the impact of diffu-

sion and viscosity. Finally, using a novel adiabatic rearrangement

algorithm adapted to free-surface flow and terrain-following coor-

dinates, we showed that in the generation region the tidal dynam-

ics cause an additional background potential energy gain equal to

about 1% of the total diffusive potential energy gain.

Progress in distinguishing the surface and internal tide energy

fluxes can, especially in the baroclinic potential energy balance,

be made by decomposing density into constant, vertically varying

‘background’ and internal wave anomaly components. Numerous

free-surface studies have used such an approach (e.g. Munroe

and Lamb, 2005; Carter et al., 2008). Although the background den-

sity is straightforwardly defined in rigid-lid models (e.g. Lamb,

2007), in sigma-coordinates with a free surface that is non-trivial

and will be the subject of future work.

The present approach is neither limited to the present model

set-up, nor to the particular discretised formulation. A generalisa-

tion to other models, using different coordinates (Cartesian, spher-

ical) and/or grids (A, B, unstructured), of the present energy

diagnostics approach is envisageable but would require careful

inspection of the particular discretised formulation. However, the

present approach becomes complex in case of e.g. multi-step inte-

gration methods, or non-linear diffusion schemes.
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Appendix A. Model formulation

A.1. Model equations

The governing equations under the Boussinesq and hydrostatic

approximation in terrain-following coordinates are summarised as

follows. The horizontal momentum equations are given by

@Dva
@t

þ@Dvbva

@xb
þ@vrva

@r
þ eabcDXbvc

¼�Dg
@g
@xa

� D

q0

@P

@xa
þ 1

q0

@P

@r
@z

@xa
þ @

@xb
DKH

b

@va
@xb

� �
þ @

@r
KV

D

@va
@r

!
:

ðA1Þ

The horizontal velocity is va where a = x, y indicates direction and

vr is the velocity perpendicular to r-surfaces, which is classically

called x (Blumberg and Mellor, 1987). Repeated dummy indices

a, b indicate summation, while eabc selects the vertical component

of the Coriolis effect. Xb is the b-component of the Coriolis acceler-

ation, where b = x, y, z. Furthermore, the total depth is

D = H � h(x) + g, where h is the sea floor elevation with respect to

ambient depth H and g is surface elevation, g is the gravitational

acceleration, q0 is a constant reference density, P is pressure due

to the density anomaly ~q, z is depth, KH
b and KV, respectively are

the ‘horizontal’ (along r-surfaces) and vertical coefficients for both

viscosity and diffusion, which implies that the turbulent Prandtl

number equals 1.

In the vertical, the hydrostatic equation holds, so that

0 ¼ � @P

@r
� D~qg: ðA2Þ

Furthermore, the continuity equation is

@g
@t

þ @Dva
@xa

þ @vr
@r

¼ 0 ðA3Þ

and the heat and salinity equation are respectively given by

@DeT
@t

þ @DvaeT
@xa

þ @vreT
@r

¼ @

@xa
DKH

a

@eT
@xa

!
þ @

@r
KV

D

@eT
@r

 !
; ðA4aÞ

@DeS
@t

þ @DvaeS
@xa

þ @vreS
@r

¼ @

@xa
DKH

a

@eS
@xa

!
þ @

@r
KV

D

@eS
@r

 !
: ðA4bÞ

A linear equation of state is used, so that
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~q ¼ �aT
eT þ bS

eS; ðA5Þ

where aT is the thermal expansion coefficient, while bS is the saline

contraction coefficient.

Partial derivatives in Cartesian coordinates (indicated by an

asterisk, except for the vertical) are related to those in terrain-fol-

lowing coordinates by

@

@t�
¼ @

@t
� 1

D

@z

@t

@

@r
;

@

@x�a
¼ @

@xa
� 1

D

@z

@xa

@

@r
;

@

@z
¼ 1

D

@

@r
: ðA6Þ

Using these relations, it is straightforward to recover the governing

equations in Cartesian coordinates, except for the viscous and diffu-

sive terms in (A1) and (A4a), (A4b), which correspond to the formu-

lation of Mellor and Blumberg (1985).

A.2. Boundary conditions

Cyclic boundary conditions are employed in the meridional

direction, that is all northward (scalar, volume, energy-) fluxes at

the northern model boundary are recycled at the southern bound-

ary, while respecting the C-grid discretisation. The wave propaga-

tion is in the zonal direction. Anomalies with respect to the forcing

are defined as �vA
x ¼ �vx � �vF

x . In case of linear dynamics and mono-

chromatic waves, the total barotropic flow at the western bound-

ary �vx ¼ �vF
x þ �vA

x satisfies

@�vx

@t
¼ cp;0
�� �� @�vx � �vF

x

@x
þ @�vF

x

@t
;

while at the eastern boundary

@�vx

@t
¼ � cp;0

�� �� @�vx

@x
;

where jcp;0j ¼
ffiffiffiffiffiffi
gH

p
= 1� lð Þ is the surface wave phase speed in the

rotating regime. The remaining model variables satisfy unforced

boundary conditions, e.g. at the western boundary

@/

@t
¼ cp;0
�� �� @/

@x
:

In this setup, partial surface wave reflections occur at the eastern

and western open boundary due to non-linearity. This leads to a

weak initial ‘sloshing’ relative to the tidal wave that would occur

in the absence of boundaries, associated with the propagation of

the initial surface wave front through the domain. Nonetheless,

for a flat sea floor, after 3 T throughout the domain the tidal wave

phase is indistinguishable from that of the linear, inviscid predic-

tion g(x, t) = g F(t � x/cp,0) with phase velocity cp;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH=ð1� lÞ

p

and matches its amplitude to within 1%.

A.3. Decomposition of the pressure work rate

For reference, the energy transfers defined in Section 3 are listed

in Table A.1. The barotropic (baroclinic) buoyancy term is derived

from the vertically integrated work done by the barotropic (baro-

clinic) current against the internal pressure gradient force, using

the chain-rule of partial differentiation, the continuity equation

(A3) and hydrostatic balance (A2). The barotropic and baroclinic

pressure work rate decomposition can thus be expressed as

� D�va

Z 1

0

@P

@xa
þ ~qg

@z

@xa

� �
dr ¼ �FX � �/z; ðA7Þ

� D

Z 1

0

v
0
a

@P

@xa
þ ~qg

@z

@xa

� �
dr ¼ �F IW � /0

z: ðA8Þ

The magnitude and accuracy of the equivalent discretised decom-

positions PGO and PGI integrated over the GR are illustrated in

Table 5.1 and by Floor (2009, Table 4.2).

A.4. Energy equations in Oxyz-coordinates

Neglecting viscosity and diffusivity, the kinetic and potential

energy density evolution equations are given by Gill (1982,

Section 6.7)

@EK

@t�
þ @

@x�a
va EK þ gq0gþPð Þð Þþ @

@z
vzðEK þPÞð Þ ¼�~qgvz � gq0g

@va
@x�a

;

ðA9Þ
@EP

@t�
þ @

@x�a
ðvaEPÞþ

@

@z
ðvz
eEPÞ ¼ ~qgvz þ gq0g

@va
@x�a

; ðA10Þ

where EK ¼ 1
2
q0vava and EP ¼ eEP þ EP . Integrating the kinetic en-

ergy density over the fluid depth, from z = �H to z = g and taking

the partial time-derivative, we find the tendency of kinetic energy

per unit area in the Oxy-plane of a fluid column, namely:

@

@t�

Z g

�H

EKdz ¼
Z g

�H

@EK

@t�
dzþ EKðz ¼ gÞ @g

@t�
þ EKðz ¼ �HÞ @H

@t�
;

where Leibniz’ rule was invoked to obtain the rhs. Thus, the energy

tendency per unit area of a fluid column depends on the vertical

integral of the local energy equations (A9) and (A10), and two terms

accounting for the variations of free surface and sea floor. Similar

terms arise from the advective terms in (A9) and a similar argument

applies to potential energy. These boundary terms cancel partially

with terms in the vertical integral of @(� � �)/@z in (A9) and partially

when the free-surface pressure is zero and the sea–floor height is

time-independent, impenetrable and no-slip. The result is shown

in the energy equations per unit horizontal area of a fluid column,

(3.10a) and (3.10b) in Section 3.

Appendix B. Model-oriented energy analysis

B.1. Local transfers and boundary fluxes of energy

The discretisation of the global energy evolution equations im-

poses the discretised formulation of the boundary fluxes of both ki-

netic (FX , FT, FIW and FEK Þ and potential energy (F~EP
, Fm,H) required

to obtain a closed energy balance. Let us neglect variations along

Oy for simplicity. In general, kinetic energy conversion associated

with a spatial gradient along the Ox-axis of arbitrary variable Ai,

representing pressure, momentum or diffusive fluxes, integrated

over a box running over (i1 + 1)Dx 6 x 6 i2Dx can be expressed

on the domain (i1, i2) 2 N in the form

�
Xi2

i¼i1þ1

v
i�1

2
x Ai � Ai�1
� �

¼
Xi2�1

i¼i1

Ai
v

iþ1
2

x � v
i�1

2
x

� �
� v

i2�1
2

x Ai2

þ v
i1þ1

2
x Ai1; ðB1Þ

where the sumon the rhs represents local energy conversion. The last

two terms are respectively the Ai-flux at the eastern and western

boundary, where each involves the velocity on the interior grid-point

of each box boundary. For expressions involving pressure, surface

elevation, longitudinal momentum flux or diffusion, one substitutes

for Ai, respectively Pi, gi, Flim;L, or finally the diffusive momentum flux

Fd
i
m;L (cf. B.2). In case of Pi the discretised continuity equation allows

the rhs-sum to be written in terms of the buoyancy term.

Similarly, potential energy conversions associated with diver-

gence of scalar-flux or -diffusive flux Bi (see B.3) integrated over

the mass-points (i1)Dx 6 x 6 (i2)Dx, can be expressed in the form

�
Xi2

i¼i1

zi Biþ1
2 � Bi�1

2

� �
¼
Xi2�1

i¼i1

Biþ1
2 ziþ1 � zi

 �

� Bi2þ1
2zi2 þ Bi1�1

2zi1; ðB2Þ

where the boundary fluxes are defined using B exterior to the

boundary points x = i1Dx and x = i2Dx. This is required for
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consistency in the local buoyancy conversion term, such as due to

flow along r-planes, which is found by substitution of

Biþ1
2 ¼ 1

2
g ~qiþ1þ



~qiÞv iþ1
2

x in (B2). Its counterpart is retrieved from

the kinetic energy equations by vertical integration of the rhs-

sum of (B1) with Ai = Pi and requires the hydrostatic and continuity

equations (cf. Marsaleix et al., 2008, Section 3.3.1).

B.2. (Diffusive) momentum fluxes

The momentum fluxes are defined as in Blumberg and Mellor

(1987), so that on a mass-point at vertical level k the longitudinal

flux of zonal momentum is

Fl
i;j
m;x;L ¼

1

4
v

_iþ1
2
;j

x þ v

_i�1
2
;j

x

� �
v

iþ1
2
;j

x þ v
i�1

2
;j

x

� �
;

where v
_i;j
x ¼ Di;j

v
i;j
x Dri;j and the subscript m, x, L indicates a zonal

(i.e. longitudinal) flux of zonal momentum. In contrast, a transversal

momentum flux is for example the meridional flux of zonal

momentum,

Fl
i;j
m;x;T ¼ 1

4
v

_iþ1
2

y þ v

_i�1
2

y

� �j�1
2

v
j
x þ v

j�1
x


 �i
:

Integrated over a horizontal area at level k, the latter leads to the

energy flux decomposition

�
Xi2;j2

i¼i1þ1
j¼j1

v
i�1

2
x Fl

i�1
2
;jþ1

2
mT � Fl

i�1
2
;j�1

2
mT

� �
¼
Xi2;j2�1

i¼i1
j¼j1

Fl
i�1

2
;jþ1

2
mT v

i�1
2
;jþ1

x � v
i�1

2
;j

x

� �

�
Xi2

i¼i1

v
i�1

2
;j2

x Fl
i�1

2
;j2þ1

2
mT

þ v
i�1

2
;j1

x Fl
i�1

2
;j1�1

2
mT ;

where the boundary flux similarly has velocity on the interior grid-

point, but the summation limits of the local conversion term differ

Table A.1

List of energy transfers.

Symbol Expression Meaning

EK 1
2q0vava

Total kinetic energy density

EK
1
2q0

�va �va Barotropic kinetic energy density

E0K 1
2q0v

0
av

0
a

Baroclinic kinetic energy density

EP qgz Total potential energy density

EP q0gz Barotropic potential energy density

eEP
gz~q Baroclinic potential energy density

FlT gq0D�vxg Surface tide energy flux

FlX
R 1
0 D�vxPdr Barotropic internal pressure flux

(FT + FX) gq0
@D�vag
@xa

þ
R 1
0

@D�vaP
@xa

dr Divergence of barotropic flux of surface plus internal pressure

/T gq0g
@D�va
@xa

¼ �gq0g
@g
@t Local bEK to bEP conversion

/z ¼ �/z þ /0
z D

R 1
0
~qgvzdr ¼ D

R 1
0
~qg �vz þ v

0
z


 �
dr Total equals barotropic plus

Baroclinic buoyancy conversion term between EK , E
0
K and eEP

/B ¼ �/B þ /0
B D

R 1
0
~qgva

@z
@xa

dr ¼ D
R 1
0
~qg �va þ v

0
a


 �
@z
@xa

dr Total equals barotropic plus baroclinic buoyancy term due to surface and topographic slope

/S,/r D
R 1
0
~qg r @g

@t

� �
dr; D

R 1
0
~qgvrdr

Buoyancy term due to local vertical surface motion and vr

�nH q0
�va
R 1
0

@
@xb

DKH
b

@va
@xb

� �
dr EK -dissipation of hor. mixing

�nV q0
�va

KV

D
@va
@r

h i1
0

EK -dissipation by vertical mixing

F
EK

@D�vaEK
@xa

Divergence of barotropic advective EK -flux

/3D2D q0
�va
R 1
0

@Dv 0
bv

0
a

@xb
dr Non-lin. interaction of �EK and E0K

FIW
R 1
0

@Dv 0
aP

@xa
dr Divergence of baroclinic flux of internal pressure

n0H q0

R 1
0 v

0
a

@
@xb

DKH
b

@va
@xb

� �
dr E0K -dissipation of horizontal mixing

n0V q0

R 1
0 v

0
a

@
@r

KV

D
@va
@r

� �
dr E0K -dissipation of vertical mixing

FE0K
R 1
0

@Dv 0
bE

0
K

@xb
dr Divergence of barotropic E0K -flux

FX1
R 1
0

@D�vbE
0
K

@xb
dr Divergence of barotropic EK -flux

FX2 q0

R 1
0

@Dv 0
bv

0
a �va

@xb
dr Divergence of baroclinic v

0
a�va


 �
-flux

F~EP
¼ F~EP

þ F 0~EP
R 1
0

@Dvb
~EP

@xb
dr ¼

R 1
0

@D �vbþv 0
bð Þ~EP

@xb
dr

Divergence of total equals barotropic plus

baroclinic eEP-flux.

Fm,H
R 1
0

@
@xb

gzDKH
b

@~q
@xb

� �
dr Horizontal divergence of diffusive eEP-flux

Fm,V gz KV

D
@~q
@r

h i1
0

Top and bottom vertical diffusive eEP-flux

/m,H
R 1
0 gDKH

b
@z
@xb

@~q
@xb

dr Local eEP-transfer due to horizontal density diffusion

/m,V
R 1
0 gKV @~q

@rdr Local eEP-transfer due to vertical density diffusion

Fd,H
R 1
0

@
@xa

gZ�DKH
a

@~q
@xa

� �
dr Horizontal divergence of diffusive bEB-flux

Fd,V gZ� KV

D
@~q
@r

h i1
0

Surface and bottom vert. diffusive bEB-flux

/d,H
R 1
0 gDKH

a
@Z�

@xa

@~q
@xa

dr Local bEB-transfer due to horizontal diffusion

/d,V
R 1
0 gKV @Z�

@r
@~q
@r dr Local bEB-transfer due to vertical diffusion

/I,H /m;H � /d;H ¼
R 1
0 gDKH

a
@ z�Z�ð Þ

@xa

@~q
@xa

dr Local bEA-transfer due to vertical diffusion

/I,V /m;V � /m;H ¼
R 1
0 gKV @ z�Z�ð Þ

@r
@~q
@r dr Local bEA-transfer due to vertical diffusion
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from the form presented in paragraph B.1. due to the discretisation

onto the staggered C-grid.

In case of a constant diffusion coefficient, the diffusive flux of

momentum along a r-level in the Ox-direction is of the form

Fd
i;j;k
m;x;L ¼ KH

Dx
DDrð Þi;j;k;t v iþ1

2
x � v

i�1
2

x

� �
.

Note that (DDr)i,j,k,t is averaged onto mass-points.

B.3. Horizontal (diffusive) flux of scalars

The potential energy flux terms along Ox labelled Biþ1
2
;j;k;t are

firstly the horizontal scalar flux,

�v i;j;k
x Dx

Drxðwi;j;kÞx;

where w represents eT or eS. Secondly, the horizontal scalar diffusive

flux is defined as

KH

Dx
wi;j;k;t�Dt � wi�1;j;k;t�Dt
� �

Di;j;t�Dt
Dri;j;k;

here eT and eS are evaluated at the previous time-step for numerical

stability reasons (Marsaleix et al., 2008).

B.4. Coriolis effect

Although no net work is done in the inner domain (Arakawa and

Lamb, 1977), the Coriolis terms at the lateral boundaries pose a

non-vanishing energy source or sink, which is illustrated by the

integral of the Coriolis-contribution to the kinetic energy equations

over a horizontal domain at an arbitrary r-level, of the form

Xi2;j2

i¼i1;j¼j1þ1

v
i;j�1

2
y ðFðvxÞxÞy;i;j�

1
2 �

Xi2;j2

i¼i1þ1;j¼j1

v
i�1

2
;j

x FðvyÞy
� �

x;i�1
2
;j

¼
Xj2�1

j¼j1þ1

F i1;jv
i1�1

2
;j

x ðvyÞy;i1;j þ F i2;jv
i2þ1

2
;j

x ðvyÞy;i2;j
� �

�
Xi2�1

i¼i1þ1

F i;j1v
i;j1�1

2
y ðvxÞx;i;j1 þ F i:j2v

i;j2�1
2

y ðvxÞx;i;j2
� �

þ F i1;j1 v
i1�1

2
;j1

x v
i1;j1þ1

2
y � v

i1þ1
2
;j1

x v
i1;j1�1

2
y

� �

þ F i2;j1 v
i2þ1

2
;j1

x v
i2;j1þ1

2
y � v

i2�1
2
;j1

x v
i2;j1�1

2
y

� �

þ F i1;j2 v
i1�1

2
;j2

x v
i1;j2�1

2
y � v

i1þ1
2
;j2

x v
i1;j2þ1

2
y

� �

þ F i2;j2 v
i2þ1

2
;j2

x v
i2;j2�1

2
y � v

i2�1
2
;j2

x v
i2;j2þ1

2
y

� �
: ðB3Þ

Here, Fi,j = Di,jf and the following averaging operators were used, for

arbitrary variable w and grid-point i, j and fixed r, namely

ðwÞx;i;j ¼ 1
2

wiþ1
2
;j þ wi�1

2
;j

� �
along Ox and ðwÞy;i;j ¼ 1

2
wi;jþ1

2 þ wi;j�1
2

� �
along

Oy. The sums on the right-hand side in (B3) represent energy fluxes

through the domain boundaries, while the remaining terms corre-

spond to each of the four corners of the domain. In a closed domain

the velocities perpendicular to the boundaries at i1 � 1, i2 + 1,

j1 � 1 and j2 + 1 are set to zero, so that in effect v
i1�1

2
;j

x ¼ v
i2þ1

2
;j

x ¼ 0

and v
i;j1�1

2
y ¼ v

i;j2þ1
2

y ¼ 0, and therefore (B3) vanishes and kinetic en-

ergy is indeed conserved. It is straightforward to define the energy

fluxes due to the Coriolis effect associated with the external and

internal mode, by replacing v i;j
a by respectively �v

i;j
a and v 0

a
i;j.

Appendix C. Free-surface, sigma-coordinate sorting algorithm

for background state computation

The computation of the diapycnal mixing at location (i,j,k) re-

quires knowledge of Z�ð~qi;j;kÞ, the depth of a fluid parcel of density
~qi;j;k in the adiabatically reorganised ‘‘background’’ state. This

computation is done based on a sorting algorithm (Winters et al.,

1995). The originality of the present implementation is that it is

applied to a r-coordinate, free surface model. The minimisation

of the potential energy implies in particular that the background

state free surface be levelled. To this end, we propose a five-step

algorithm.

Step 1: in the original domain (Rg), mass parcels ð~qDVÞi;j;k are

sorted based on their density, into a volume distribution

DVgð~qÞ.
Step 2: neighbouring mass parcels in DVg ~qð Þ are gathered

together if their densities are ‘too close’, giving the (possi-

bly lower resolution) distribution DV2 �qð Þ. By ‘too close’, it

is meant that the model vertical resolution imposes a min-

imum density difference that can be evaluated, such as

D~q � 1
K

~qmax � ~qminð Þ, where ~qmin and ~qmax are respectively,

the minimum and maximum density in the domain, and K

is the number of vertical levels.

Step 3: a ‘levelled’ domain RL is defined using the domain average

of the original free surface elevation. The volume parcels in

RL are sorted based on their depth, into a volume distribu-

tion DVL(Z
⁄). It is important to note that the total volume

in RL equals that of the original domain Rg.

Step 4: the volume distribution DVL(Z
⁄) is now filled from the bot-

tom up with mass parcels from DV2ð�qÞ, starting with the

densest parcel, giving the vertical density distribution
�qðZ�Þ. Thus, the volume in RL below the vertical level

Z�ð�qÞ contains parcels with density q > �qðZ�Þ.
Step 5: The resulting depth-distribution Z�ð�qÞ of density �q in

domain RL is finally interpolated onto the parcels DVi,j,k

in Rg with corresponding ~q, giving the spatial distribution

of Z�ð~qi;j;kÞ.
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