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a b s t r a c t

A binary unsupervised classification problemwhere each observation is associatedwith an
unobserved label that needs to be retrieved is considered.More precisely, it is assumed that
there are two groups of observation: normal and abnormal. The ‘normal’ observations are
coming from a known distribution whereas the distribution of the ‘abnormal’ observations
is unknown. Several models have been developed to fit this unknown distribution. An
alternative based on a mixture of Gaussian distributions is proposed. The inference is
performed within a variational Bayesian framework and the aim is to infer the posterior
probability of belonging to the class of interest. To this end, it makes little sense to
estimate the number of mixture components since each mixture model provides more
or less relevant information to the posterior probability estimation. By computing a
weighted average (named aggregated estimator) over themodel collection, BayesianModel
Averaging (BMA) is one way of combining models in order to account for information
provided by each model. An aim is then the estimation of the weights and the posterior
probability for a specific model. Optimal approximations of these quantities from the
variational theory are derived; other approximations of the weights are also proposed.
It is assumed that the data are dependent (Markovian dependency) and hence a Hidden
Markov Model is considered. A simulation study is carried out to evaluate the accuracy of
the estimates in terms of classification performance. An illustration on both epidemiologic
and genetic datasets is presented.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Binary unsupervised classification. We consider an unsupervised classification problemwhere each observation is associated
with an unobserved label that we want to retrieve. Such problems occur in a wide variety of domains, such as climate,
epidemiology (see Sun and Cai (2009)), or genomics (see McLachlan et al. (2002)) where we want to distinguish ‘normal’
observations from abnormal ones or, equivalently, to distinguish pure noise from signal. In such situations, some prior
information about the distribution of ‘normal’ observations, or about the distribution of the noise is often available and
we want to take advantage of it.
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More precisely, based on observations X = {Xt}, we want to retrieve the unknown binary labels S = {St} associated
with each of them.We assume that ‘normal’ observations (labelled 0) have distribution φ, whereas ‘abnormal’ observations
(labelled 1) have distribution f .We further assume that the null distributionφ is known,whereas the alternative distribution
f is not. From a classification perspective, we want to compute

Tt = Pr{St = 0|X}. (1)

Bayesian model averaging (BMA). The probability Tt depends on the unknown distribution f . Manymodels can be considered
to fit this distribution and we denote M = {fm;m = 1, . . . ,M} a finite collection of suchmodels. As none of these models is
likely to be the true one, it seems more natural to gather information provided by each of them, rather than to try to select
the ‘best’ one. The Bayesian framework is natural for this purpose, as we have to deal with model uncertainty.

Bayesianmodel averaging (BMA) has beenmainly developed byHoeting et al. (1999) and provides the general framework
of our work. It has been demonstrated that BMA can improve predictive performance and parameter estimation in Madigan
and Raftery (1993), Madigan and Hutchinson (1995), Volinsky et al. (1997), Raftery and Zheng (2003) or Ruggieri and
Lawrence (2011). Jaakkola and Jordan (1998) also demonstrated that model averaging often provides a gain in terms of
classification and fitting. The determination of the weight αm associated with each model m when averaging is a key
ingredient of all these approaches.
Weight determination. As shown in Hoeting et al. (1999) the standard Bayesian reasoning leads to αm = Pr{M = m|X},
where M stands for the model. In a classical context, the calculation of αm requires one to integrate the joint conditional
distribution P(M, Θ|X), where Θ is the vector of model parameters, and several approaches can be used. The BIC criterion
(Schwarz, 1978) is based on a Laplace approximation of this integral, which is questionable for small sample sizes. One
other commonly used method is MCMC (Monte Carlo Markov Chain, Andrieu (2003)) which samples the distribution and
can provide an accurate estimation of the joint conditional distribution, but at the cost of huge (sometimes prohibitive)
computational time.

In the unsupervised classification context, the problem is even more difficult as we need to integrate the conditional
P(M, Θ, S|X) since the labels are unobserved. This distribution is generally not tractable but, for a given model, Beal
and Ghahramani (2003) developed a variational Bayes strategy to approximate P(Θ, S|X). Variational techniques aim at
minimising the Kullback–Leibler (KL) divergence between P(Θ, S|X) and an approximated distribution QΘ,S (Corduneanu
and Bishop, 2001; Wainwright and Jordan, 2008; Ren and Hodges, 2011). Jaakkola and Jordan (1998) proved that the
variational approximation can be improved by using a mixture of distributions rather than factorised distribution as the
approximating distribution. A mixture distribution Qmix is chosen to minimise the KL-divergence with respect to P(Θ, S|X).
Unfortunately, their method averages the log of Qmix over all the configurations which leads to untractable computation and
a costly algorithm involving a smoothing distribution.
Our contribution. In this article, we propose variational-based weights for model averaging, in presence of a Markov
dependency between the unobserved labels. We prove that these weights are optimal in terms of KL-divergence from
the true conditional distribution P(M|X). To this end, we optimise the KL-divergence between P(Θ, S,M|X) and an
approximated distribution QΘ,S,M (Section 2). This optimisation problem differs from that of Jaakkola and Jordan (1998)
(see their Eq. (14)). Based on the approximated distribution of P(θ, S|M, X), we derive other estimations of the weights.

We then reconsider the case of unsupervised classification and consider a collection M of mixtures of parametric
exponential family distributions (Section 3). We propose a complete inference procedure that does not require any specific
development in terms of an inference algorithm. In order to assess our approach, we propose a simulation study which
highlights the gain of model averaging in terms of binary classification (Section 4). We also present two illustrations on
epidemiologic and genomic datasets (Section 5). An R package named VBMA4hmm (Variational Bayes Models Averaging for
hidden Markov models) is available on the CRAN.

2. Variational weights

The aim of model averaging is to account for the information in each model of a collection of M models. To do so, we
need to calculate the weight of each model. In this section, we propose three different weights based on the variational
Bayes theory.

2.1. A two-step optimisation problem

In a Bayesian Model Averaging context, we focus on averaged estimators to account for model uncertainty. It implies
evaluating the conditional distribution:

P(M|X) =


P(H,M|X)dH, (2)

where H stands for all hidden variables, that is H = (S, Θ), and M denotes the model.
In order to calculate this distribution, we need to compute the joint posterior distribution of H and M . Due to the latent

structure of the problem, this is not feasible. However, the mean field/variational theory allows an approximation of this
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distribution to be derived. This theory has mainly been developed by Parisi (1988) and provides an alternative approach to
MCMC for inference problems within a Bayesian framework. The variational approach is based on the minimisation of the
KL-divergence between P(H,M|X) and an approximated distribution QH,M . The optimisation problem can be decomposed
as follows:

min
QH,M

KL(QH,M∥P(H,M|X)) = min
QM


KL(QM∥P(M|X)) +


m

QM(m)min
QH|m

KL(QH|m∥P(H|X,m))


. (3)

This decomposition separates QM and QH|M , and these optimisations can thus be realised independently. We are mostly
interested in QM which provides an approximation of P(M|X) given in Eq. (2). Furthermore, since the collection M is finite,
we do not need to put any restriction on the form of QM andmay deal with the weights αm = QM(m) for eachm ∈ M. In the
following, we will first minimise the KL-divergence with regard to QM leading to weights that depend on QH|m. In a second
step, we will consider the approximation of P(H|X,m).

2.2. Weight function of any approximation of P(H|X,m)

We now consider the optimisation of QM . Proposition 2.1 provides the optimal weights.

Proposition 2.1. The weights that minimise KL(QH,M∥P(H,M|X)) with respect to QM , for given distributions {QH|m,m ∈ M},
are

αm(QH|m) ∝ P(m) exp[−KL(QH|m∥P(H|X,m)) + log P(X |m)], (4)

with


m αm(QH|m) = 1.

Proof. KL(QH,M∥P(H,M|X)) can be rewritten as:
m


QH|m(h)QM(m) log


QH|m(h)QM(m)

P(h,m, X)/P(X)


dh

=


m


QH|m(h)QM(m)


logQH|m(h) + logQM(m) + log P(X) − log P(h,m, X)


dh

=


m


QH|m(h)QM(m)


log

QH|m(h)
P(h, X |m)

+ logQM(m) − log P(m)


dh


+ log P(X)

=


m


QM(m)


KL(QH|m∥P(H, X |m)) + logQM(m) − log P(m)


+ log P(X).

The minimisation with respect to QM subject to


m QM(m) = 1 gives the result. �

Note that if QH|m = P(H|X,m) then KL-divergence in the exponential is 0, so αm equals P(m|X).

2.3. Weights based on the optimal approximation of P(H|X,m)

We now derive three different weights based on a variational Bayes approximation. The first one comes from the
complete optimisation of the KL divergence (see Corollary 2.1). The second one is based on a plug-in approach. The third
uses the variational posterior as a proposal for importance sampling.
Full variational approximation. To solve optimisation problem (3) we still need to minimise the divergence KL(QH|m∥P(H|

X,m)) for each modelm, where H = (S, Θ). The minimum is clearly reached for QH|m = P(H|X,m).
Due to the latent structure, the optimisation cannot be done directly. When P(X, S|Θ,M) belongs to the exponential

family and if P(Θ|M) is the conjugate prior, the Variational Bayes EM (VBEM; Beal and Ghahramani (2003)) algorithm
allows us to minimise this KL-divergence within the class of factorised distributions: Qm = {QH|m : QH|m = QS|mQΘ|m}.
We approximate P(H|X,m) using the Q VB

H|m defined as:

Q VB
H|m = arg min

Q∈Qm
KL(QH|m∥P(H|X,m)).

This approximation of P(H|X,m) allows us to define variational weightsαVB
m in Corollary 2.1.

Corollary 2.1. The weightsαVB
m achieving optimisation problem (3) for factorised conditional distribution QH|m are derived from

Eq. (4) and are defined as:

αVB
m ∝ P(m) exp


− min

QH|m∈Qm
KL(QH|m∥P(H|X,m)) + log P(X |m)


,

whereminQH|m∈Qm KL(QH|m∥P(H|X,m)) is achievable by the VBEM algorithm (see Section 3).
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TheweightsαVB are based on the KL-divergence between the distributionQ VB
H|m and P(H|X,m). Using classical approaches

(Plug-in and Importance Sampling), we now define two other weights based on Q VB
H|m.

Plug-in weights. The weights αm = Pr{M = m|X} can be estimated by using a plug-in estimation based on a direct
application of Bayes’ theorem. The conditional probability P(m|X) is proportional to P(X |m) which is equal to
P(X |m, Θ)P(Θ|m)/P(Θ|X,m) whatever the value of Θ , thus avoiding integrating over S. The distribution Q VB

Θ|m resulting
from the VBEM algorithm is an approximation of P(Θ|X,m). Setting Θ at its (approximate) posterior mean θ∗

= EQVB
Θ

(Θ),
we define the following plug-in estimate

αPE
m ∝ P(m)

P(X |m, θ∗)P(θ∗
|m)

Q VB
Θ|m(θ∗)

. (5)

Importance sampling. The weights given in Corollary 2.1 are based on an approximation of the conditional distribution
P(H|X). But, the weights defined in 2 can be estimated via importance sampling (Marin and Robert, 2010). For any
distribution R, we have

P(m|X) ∝


P(m)

P(X |h,m)P(h|m)

R(h)
R(h)dh.

Importance sampling provides an unbiased estimator of P(m|X). The importance function R can be chosen to minimise the
variance of the estimator. The minimal variance is reached when R(H) equals P(H|X) (Marin and Robert, 2010). Thus, in
the variational framework, the approximated posterior distribution Q VB

H|m is a natural choice for the importance function R,
leading to the following weights:

αIS
m ∝ P(m)

1
B

B
b=1

P(X |H(b),m)P(H(b))

Q VB
H|m(H(b))

, {H(b)
}b=1,...,B i.i.d. ∼ Q VB

H|m.

Although this estimate is unbiased, when the number of observations is large, it may require a long computational time to
get a reasonably small variance.

3. Unsupervised classification

3.1. Binary hidden Markov model

We now return to the original binary classification problemwith Markovian dependence between the labels. To this aim
we consider a classical hiddenMarkovmodel (HMM).We assume that {St}1≤t≤n is a first order Markov chain with transition
matrix Π = {πij; i, j = 0, 1}. The observed data {Xt}1≤t≤n are independent conditionally to the labels. We denote φ the
emission distribution in state 0 (‘normal’) and f the emission distribution in state 1 (‘abnormal’). We recall that the function
φ is known whereas f is unknown and we consider the collection M = {fm;m = 1, . . . ,M} where fm is a mixture of m
components:

fm(x) =

m
k=1

pkφk(x), with
m

k=1

pk = 1.

This collection is large as it allows us to fit the data from a two-component mixture (see McLachlan et al. (2002)) to a semi-
parametric kernel-based density (see Robin et al. (2007)). When f is approximated by amixture ofm components, the initial
binary HMM with latent variable S can be rephrased as an (m + 1)-state HMM with hidden Markov chain {Zt} taking its
values in {0, . . . ,m} with transition matrix

Ω =


π00 π01p1 · · · π01pm
π10 π11p1 · · · π11pm
...

...
...

...
π10 π11p1 · · · π11pm

 .

The observed data {Xt}1≤t≤n are independent conditionally on the {Zt} with distribution

Xt |Zt ∼ φZt ,

where φ0 = φ. Hence, we have two latent variables Z and S which correspond to the group within the whole mixture and
to the binary classification, respectively.

3.2. Variational Bayes inference

The VBEM (Beal and Ghahramani, 2003) aims at minimising the KL-divergence in exponential family/conjugate prior
context. The quality of the VBEM estimators has been studied byWang and Titterington (2004,?, 2003) for mixture models.
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Wang and Titterington (2003) have also studied the quality of variational approximation for state space models. The VBEM
algorithm has been studied by McGrory and Titterington (2006) for the HMM with emission distributions belonging to
the exponential family. The convergence of the variational Bayes estimator to the maximum likelihood estimator has been
demonstrated at rate O(1/n). In Wang and Titterington (2004), it is shown that the covariance matrix of the variational
Bayes estimators is underestimated compared to the one obtained for the maximum likelihood estimators.

The VBEM algorithm is an EM-like algorithm with alternate pseudo-steps E and M . At the pseudo-M , the approximate
posterior distribution of the parameters is updated, based on the calculation of an expectation with respect to current
approximate posterior distribution of the hidden variables. The pseudo-step E is symmetric (Beal and Ghahramani, 2003).
Interestingly, in the case of HMM, this latter step can be implemented via the popular forward–backward algorithm (Baum
et al., 1970).

In our case, P(X, S|Θ,M) does not belong to the exponential family whereas P(X, Z |Θ,M) does. Wewill therefore make
the inference on the (m+1)-state hiddenMarkovmodel involving Z rather than the binary hiddenMarkovmodel involving S.
Despite the specific form of the transition matrix Ω , it does not modify the framework of the exponential family/conjugate
prior. To be specific, log P(X, Z |Θ,M) can be decomposed as log P(Z |Θ,M) + log P(X |Z, Θ,M) and only the first term
involves Ω:

log P(Z |Θ,M) =

m
k=1

m
j=1

Nkj logπ11 + N00 logπ00 +

m
k=1

Nk0 logπ10

+

m
j=1

N0j logπ01 +

m
k=1

Z1k log q1 + Z10 log q0 +

m
k=0

m
j=1

Nkj log pj +
m

k=1

Z1k log pk, (6)

with Nkj =


t≥2 Zt−1,kZtj and q is the stationary distribution of Π . Since log P(Z |Θ,M) can be written as a scalar product
Φ · u(Z) with Φ the vector of parameters and u(Z) the vector containing the {Nkj}1≤k,j≤m and the sums over Z , it shows that
Z |Θ,M belongs to the exponential family and that this specific formofΩ only affects the updating step of hyper-parameters.

3.3. Model averaging

For each model m from the collection M, the VBEM algorithm provides the optimal distributions Q VB
H|m, from which we

can derive the three weights defined in Section 2:αVB
m ,αPE

m andαIS
m . Based on these weights, we can get an averaged estimate

of the distribution f :f A
=

αA
m
fm,

where A corresponds to one of the proposed approaches (VB, PE or IS). Although the largest model only involves M
components, the averaged distribution is a mixture with M(M + 1)/2 components. As we are mostly interested in the
estimation of the posterior probability Tt defined in (1), we similarly define its averaged estimate:TA

t = 1 −


m

αA
mEQVB

Z |m
(St),

where EQVB
Z |m

(St) corresponds to the expected value of S calculated with the optimal variational posterior distribution of Z .
This expectation does not depend on A.

In this article, we propose a variational-based approach for model averaging, the steps of the process can be summarised
as follows:

Consider a dataset X and a collection of models M.

1. For eachm ∈ M, run the VBEM algorithm and collect the posteriors.
2. Compute the weights {αA

}m∈M .
3. Estimate the averaged estimatorTA.

4. Simulation study

In this section, we study the efficiency of the estimators defined in the previous sections. First, we study the accuracy of
αVB and αPE in terms of weight estimation. Then, we focus on the accuracy from a classification point of view. We therefore
compare the averaged estimator of the posterior probability Tt to the theoretical one. We also compare the averaging
approach with a classical two-state HMM and with the HMMwhich has the highest weight calculated with the IS approach,
called throughout the remainder of the paper ‘‘selected HMM’’. This means that the ‘‘selected HMM’’ approach accounts for
estimation given by m:

m = argmax
m∈M

αIS
m . (7)
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Fig. 1. Exemple of simulated datasets according to the value of c . The standard Gaussian distribution φ and the alternative f are represented (in red and
green, respectively). Left: c = 5; right: c = 15. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

4.1. Simulation design

We simulate a binary HMM as described in Section 3, where f is non Gaussian and defined as the density of a random
variable Y defined as follows:

Y = Φ−1(U), where U ∼ U ([0, 1/c]) and c ∈ [5, 7, 10, 15].
The function Φ is the cdf of the standard Gaussian distribution. The known distribution φ is supposed to be distributed as
a standard Gaussian (N (0, 1)). Fig. 1 displays examples of the simulated datasets according to the value of c . We note that
the overlap between the two groups is high when c is small. Therefore, the difficulty of the problem decreases with the
parameter c. We also consider four different transition matrices which have the same form given by:

Πu =


1 − lu lu
l(1 − u) 1 − l(1 − u)


, (8)

where l is the shifting ratewhich varies from 0 to 1 and u corresponds to the proportion of the group of interest and is chosen
within {0.05, 0.1, 0.2, 0.3}. For each of the 16 configurations we generate P = 100 datasets of size n = 100. The inference
is performed for a semi-homogeneous case: for each simulation condition, we fit a 7-component Gaussian mixture with
common variance σ 2 and means µk for the alternative. In a Bayesian context, the parameters are random variables with
prior distributions. These prior distributions are chosen to be conjugate. Denoting by λ the precision parameter, λ =

1
σ 2 , we

have:
• Transition matrix: for j = 1, 2, πj. ∼ D(1, 1).
• Mixture proportions: p ∼ D(1, . . . , 1).
• Precision: λ ∼ Γ (0.01, 0.01).
• Means: µk|λ ∼ N


0, 1

0.01×λ


.

For calculating the weights αIS
m , the numbers of draws has been fixed to B = 5000.

4.2. Results

We present the results for l = 0.6. We considered other values within the range {0.1, 0.2, 0.4, 0.6, 0.8, 0.9} for this
parameter but the performance is almost the same.

4.2.1. Accuracy of the weight
We consider importance sampling as a reference for weight estimation as it provides an unbiased estimate of the true

weightswhatever the approximation.We compared it to VB and PEweights by calculating the total variation distance,which
quantifies the dissimilarity between two distributions α1 and α2:

δ(α1, α2) =
1
2


x

|α1(x) − α2(x)|. (9)

The closer to 0 this distance is, the better the estimation of the weights.
Table 1 shows that VB weights are the closest to IS weights. The total variation distance δ(αVB, αIS) is close to 0 whatever

the simulation study. In contrast, the PE weights do not seem to be correct for approximating the true weights except when
the two populations are well separated. These trends are also highlighted when we focus on the weights calculated for the
P samples given a simulation condition. On average, compared to the PE approach, the VB method tends to provide weight
estimations close to those of the IS approach. For instance, for c = 7 and u = 0.2, theymix threemodels with a huge weight
(≈0.70) for f1 and weights around 0.15 for f2 and f3. However, the VBmethod has more stable estimated weights than IS. PE
is the more stable approach among the three but it tends to only select the two-component model with an average weight
around 0.95.
Conclusion on the weight estimation. By directly analysing the weight estimation, the similarities between the IS and the VB
methods have clearly appeared. The VB method provides a good estimation of the true weights which is not the case for PE.
Hence, when the computational time of the IS method becomes very high, we get a real advantage by using the VB method
in terms of weight estimation.
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Table 1
The total variation distance defined by (9) between the estimated weights with respect to importance sampling for each
value of u and c.

c u = 0.05 u = 0.1 u = 0.2 u = 0.3
PE VB PE VB PE VB PE VB

5 0.419 0.069 0.370 0.101 0.453 0.120 0.456 0.069
7 0.438 0.096 0.403 0.101 0.287 0.101 0.257 0.072

10 0.386 0.092 0.271 0.180 0.232 0.115 0.107 0.092
15 0.372 0.093 0.303 0.158 0.258 0.129 0.102 0.101

4.2.2. Accuracy of the posterior probabilities
Once the weights have been estimated, the averaged estimates of the posterior probabilities Tt are computed for each

approach. The aim of the VB method is to cluster the data into two populations. In many cases, these populations are
difficult to distinguish but some observations are easily classifiable without any statistical approach. Hence, we put aside
observations with a theoretical probability of belonging to the cluster of interest smaller than 0.2 or higher than 0.8. A
classical indicator to measure the quality of a given classification is the MSE (Mean Square Error) which evaluates the
difference between the averaged estimateTA of one method of A and the theoretical values T (th).

MSEA
=

1
P

P
p=1

1
n

n
t=1

(TA
t,p − T (th)

t,p )2. (10)

TheMSEA estimation allows us to evaluate the quality of the estimates provided byModelm over all datasets p = {1, . . . , P}

and one approach of A. The smaller the MSE, the better the performances.
Since we deal with synthetic data, we can look at the best achievable MSE. This aims at minimising the MSE within the

averaged estimator family to obtain an oracle weight. We denote this oracle by α∗ and we have:

α∗
= argmin

α

T (th)
−

M
m=1

αmT (m)


2

, (11)

with
M

m=1 αm = 1 and ∀m ∈ {1, . . . ,M}, 0 ≤ αm ≤ 1. The variableT (m) is the estimation of T supplied by model m. This
oracle can be viewed as the weights we would choose if the theoretical posterior probability of belonging to the group of
interest were known. This oracle estimator is obtained by a functional regression under non-negativity constraint and it can
be written as:

α∗
= (T ′T )−1T ′T (th)

× γ , (12)

where γ is a normalising constant and T is the matrix containing the estimates T (m) for all model m. Several algorithms
allow this estimator to be calculate numerically by taking constraints into account. In this article, the optimisation has been
achieved by the Newton–Raphson algorithm.

Fig. 2 displays theMSE calculated for the different methods under the various simulation conditions. First, we notice that
the VB method based on the optimal variational weights provides good results in most of the cases. Moreover, we observe
that an averaging approach with either the IS or VB method provides better results than the selected HMM. We observe
that the PE method and the two-state-HMM provide worse estimates for many simulation conditions than do the VB and IS
methods. Another comment is that there is no method which is the best whatever the simulation condition. Moreover, the
estimations get closer to the oracle estimator as the problem becomes easier.

Fig. 3 shows the standard deviation of the MSE over all the simulation conditions. We notice that the VBmethod has one
of the lowest variabilities. Once more, the two-state HMM has the worst performances.

Table 2 includes information on the misclassification for the three averaging approaches. The misclassification rate
is calculated on the P samples whatever the simulation condition. The values in bold correspond to the smallest
misclassification rate among the PE, VB and IS approaches. First, we note that the VB and the IS methods have very similar
misclassification rates whatever the simulation condition. Moreover, this rate corresponds to the best rate of the three
averaging methods. The averaged estimator supplied by the plug-in weights estimation seems to misclassify more data
than the other approaches. Once again, Table 2 shows us that the VB approach provides good results when the simulation
condition is complicated. In fact, when c equals either 5 or 7, the averaging method based on optimal variational weights
provides the lowest misclassified rate among the three averaging approaches. Since the misclassification rate of the oracle
is close to the rates obtained by VB and IS estimation, the two approaches provide good results for each value of c and u.
Another comment is that the selected HMM approach always provides worse results than the IS and VB. This means that
the averaging approach brings a gain to the posterior probability estimation.

Fig. 4 shows the entropy of the weights. We note that the optimal variational weights have one of the largest entropies
among all the proposed weights. This means that the VB method tends to mix several models. Contrary to the other three
weights, PE has a low entropy. This method seems to select only one model to infer posterior probability and does not take
others into account.
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Fig. 2. Mean square error (MSE) between the true posterior probabilities and the estimates as a function of the uniform parameters calculated over the
P = 100 datasets. Methods: ‘‘∆’’: PE, ‘‘∇ ’’: two-state-HMM, ‘‘*’’: IS, ‘‘•’’: selected HMM, ‘‘�’’: VB, ‘‘O’’ : Oracle. Top left: Π0.05 , top right: Π0.1 , bottom left:
Π0.2 , bottom right: Π0.3 . VB and Oracle are in dotted lines.
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Conclusion on the accuracy of the estimates. Studying the MSE indicator allows us to compare the methods in terms of
classification. Except for the ‘‘two-state-HMM’’ approach, we highlight that all the proposed methods have quite similar
behaviours. However, the VB method provides better results in terms of MSE and its standard deviation than does the PE
approach. These results are very close to those of IS and even often better. The focus on the misclassification rate confirmed
the closeness between our approach and that of IS. These methods have a quite similar misclassification rate whatever
the simulation condition. Furthermore, this rate corresponds to the best rate among the three averaging approaches. The
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Table 2
Mean(sd) of the misclassification rate for the three averaging approaches.

c PE VB IS Selected HMM Oracle

u = 0.05 5 0.44 (0.04) 0.36 (0.03) 0.38 (0.04) 0.42 (0.03) 0.31 (0.02)
7 0.54 (0.04) 0.42 (0.04) 0.43 (0.04) 0.47 (0.03) 0.34 (0.02)

10 0.35 (0.04) 0.30 (0.04) 0.30 (0.04) 0.34 (0.04) 0.21 (0.03)
15 0.38 (0.04) 0.34 (0.04) 0.33 (0.04) 0.36 (0.03) 0.23 (0.03)

u = 0.1 5 0.40 (0.04) 0.37 (0.03) 0.39 (0.03) 0.39(0.03) 0.29 (0.03)
7 0.29 (0.03) 0.23 (0.03) 0.23 (0.03) 0.25 (0.03) 0.17 (0.02)

10 0.28 (0.03) 0.28 (0.03) 0.23 (0.03) 0.28 (0.03) 0.16 (0.02)
15 0.25 (0.04) 0.22 (0.03) 0.20 (0.03) 0.22 (0.03) 0.17 (0.02)

u = 0.2 5 0.33 (0.03) 0.29 (0.03) 0.30 (0.03) 0.31 (0.03) 0.19 (0.02)
7 0.26 (0.03) 0.23 (0.02) 0.24 (0.02) 0.25 (0.02) 0.18 (0.02)

10 0.23 (0.03) 0.20 (0.02) 0.19 (0.02) 0.23 (0.01) 0.17 (0.02)
15 0.08 (0.01) 0.09 (0.01) 0.07 (0.01) 0.09 (0.01) 0.06 (0.02)

u = 0.3 5 0.23 (0.02) 0.19 (0.01) 0.20 (0.01) 0.22 (0.01) 0.16 (0.01)
7 0.13 (0.01) 0.11 (0.01) 0.12 (0.01) 0.13 (0.01) 0.09 (0.01)

10 0.17 (0.02) 0.12 (0.01) 0.11 (0.01) 0.18 (0.01) 0.03 (0.01)
15 0.12 (0.01) 0.10 (0.01) 0.09 (0.01) 0.12 (0.01) 0.06 (0.01)
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Fig. 4. Entropy of the weights calculated over the P = 100 datasets. Methods: ‘‘∆’’: PE, ‘‘*’’: IS, ‘‘�’’: VB, ‘‘O’’ : Oracle. Top left: Π0.05 , top right: Π0.1 , bottom
left: Π0.2 , bottom right: Π0.3 . VB and Oracle are in dotted lines.

computational time is also a key point of these classificationmethods. Indeed, the VBmethod has a negligible computational
time compared with IS. This may dramatically increase further with the size of the data.

4.3. Discussion

It is known that the true posterior distribution achieves the minimal variance of importance sampling estimates.
Therefore, it may seem natural to use the variational posterior Q VB

H|M for importance sampling as its ‘best’ approximation.
However, it is known that variational posterior often underestimates the posterior variance (Wang and Titterington, 2004).
In Robert and Casella (2004), it is advisable to avoid importance functions with tails lighter than those of the distribution
P(H|X,M). In this case, the variances of the corresponding estimators could be infinite. In order to determine whether
the underestimation of the posterior variance leads to a bad estimation of the weights we have carried out a simulation
study. We performed the simulation in the most complicated configuration u = 0.05 and c = 5. In this configuration, we
multiplied the variance of the variational posterior by an increasing parameter κ ≥ 1. The results (not shown) show that the
value of κ giving the minimal variance for the weights is 2.5. This variance is 1.6 times smaller than the one we get when
using the variational posterior directly and both variances have the same order of magnitude (about 10−2). Moreover, the
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Table 3
Parameter estimation of the Gaussian mixture within the alternative distribution f .

m Mean Variance Proportions αVB

1 4.9 1.1 1 <10−4

2

4.5, 5


0.9


0.67, 0.33


<10−4

3

4, 4.2, 6


0.3


0.32, 0.32, 0.34


0.34

4

3.9, 4.1, 5, 6.3


0.2


0.22, 0.27, 0.26, 0.25


0.66

5

3.8, 4, 4.1, 5.2, 6.4


0.18


0.17, 0.19, 0.22, 0.22, 0.20


<10−4

6

3.8, 4, 4.1, 4.8, 5.6, 6.5


0.15


0.14, 0.16, 0.16, 0.20, 0.16, 0.18


<10−4

total variation distance between the two sets of weights is 6× 10−2. We therefore conclude that, although it is suboptimal,
this choice does not affect the evaluation of the respective model weights.

5. Illustration

5.1. Epidemiologic dataset

5.1.1. Description

The data. In this section, we focus on the analysis of a real dataset collected from public health surveillance systems. These
data have also been studied in the recent paper of Sun and Cai (2009) using an FDR (False Discovery Rate) approach. The
database is composed of 1216 time points. The data and log-transformation of them are shown in Fig. 5. The events described
by the data can be classified into 2 groups: usual or unusual. These two groups correspond to a regular low rate and an
irregular high rate respectively. Hence, the first group represents our group of interest and the other one the alternative.
Moreover, it is clear that an event highly depends on the past and Le Strat and Carrat (1999) demonstrated that this kind of
data can be described by using a two-state HMM. In this analysis, we thus aim at retrieving the two groups in the population
and we want to estimate well the posterior probability of belonging to the group of interest.
Initialisation of the algorithm. To avoid any influence of the prior distributions, they have been chosen as described in
Section 4.1. As considered in the simulation section, the alternative distribution has been fitted by a Gaussian mixture
with common variance. The number of components m within the alternative distribution varies from 1 to 6 and the fixed
distribution N (2.37, 0.762) has been chosen according to results of Sun and Cai (2009).

5.1.2. Results
For each number of components we infer the model parameters and estimate the weights with the VB method. The

results we obtained are summarised in Table 3.
Every model presented in Table 3 has the same estimation of the transition matrix


0.96 0.04
0.04 0.96


. In their article, Sun

and Cai selected a model with two heterogeneous Gaussian distributions for the alternative. In our approach, due to the
homogeneous assumption, the number of components increases and we keep two models with three and four components
respectively. The other models have a low weight, smaller than 10−4, and have no influence on the posterior probability
estimation.We now focus on the classification provided by the averaged distribution and the 3-componentmodel proposed
by Sun and Cai (2009) and we notice that only 3 points differ between our approach and that of Cai. However if we focus
on these three points, we observe that they correspond to points with a posterior probability close to 0.5. These points are
on the borderline between the two classes. As our approach tends to increase the posterior probabilities (see Fig. 6), the
epidemical ranges are greater with our approach. In two cases, the epidemics are declared earlier with the VB method than
with that of Cai.

Fig. 6 (left) displays the averaged posterior probabilities against the estimations obtained by the model proposed by
Cai. The first comment is that the two approaches provide close estimations. This is especially the case for probabilities
smaller than 0.3 or greater than 0.7. These ranges correspond to low entropy areas. The main comment is that an averaging
approach tends to refine posterior probabilities between 0.3 and 0.7. This high entropy area is considered as a difficult area
for estimating the probabilities. In fact, it mainly corresponds to data points which are on the borderline between the two
classes.

The fit of the averaged distribution is given in Fig. 6 (right). We note that this distribution provides a good fit to the data
and it does not correspond to a mixture of Gaussian distributions.

5.2. Genomic dataset

5.2.1. Description
We now focus on a genomic dataset related to the model plant Arabidopsis thaliana. The experiment aims at identifying

differentially expressed genes by comparing two experimental conditions on a specific microarray, a so-called tiling array,
where probes cover the whole genome of the plant (Berard, 2011). For detecting the differentially expressed genes, we
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applied the Varmixtmethod (Delmar et al., 2005) and obtained a p-value pi for each probe i. These p-values are distributed
as amixture of anuniformdistribution on [0; 1] (U([0; 1])), referring to non-differentially expressed genes, and anunknown
distribution, referring to differentially expressed genes. We applied a probit transformation on the pi, so that the uniform
distribution U([0; 1]) becomes a standard Gaussian (N (0, 1)), while the other distribution remains unknown. We analysed
a specific sample of 800 probes and we used the proposed averaging approach to detect transcriptional areas differentially
expressed. We calculated the optimal variational weights for the models with 1, 2 and 3 Gaussian components for the
alternative distribution f .

5.2.2. Results
Only the models with 1 and 2 Gaussians had a significant weight (see Table 4).
The model with one component has the largest weight, however model averaging leads to a different classification of

the probe. These modifications are represented in Fig. 7 which displays the averaged posterior probabilities against the
estimations of the model m = 1. We note that, once more, model averaging tends to refine posterior probabilities in high
entropy areas.
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Table 4
Parameter estimation of the Gaussian mixture within the alternative
distribution f .

m Mean Variance Proportions αVB

1 −2.32 0.16 1 0.73
2 (−2.32, −0.71) 0.15 (0.70, 0.30) 0.27
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Fig. 7. Aggregated posterior probabilities according to the estimation of the posterior probabilities with the modelm = 2. The four red points correspond
to the points whose classification is modified.
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To study the changes in the classification, we focus on a 30-probe region containing gene AT4G22850, which is made up
of four exons and three introns and covered by 11 probes. From a biological point of view, only exons are expected to be
(differentially) expressed. Fig. 8 displays the posterior probability estimations supplied by models m = 1 and m = 2 and
the averaged estimator. We note that the HMM with one or two Gaussians for the alternative distribution tends to smooth
the posteriors.

Formodelm = 2, the 11 probes of the gene are declared as differentially expressed, and thus the introns are not detected.
As for modelm = 1, five successive probes are declared non-differentially expressed so the exon covered by only one probe
is not detected. When considering an averaged estimator, this exon is detected so it seems that the smoothing effect due
to the Markovian dependency is attenuated. The other points whose classification is modified mainly correspond to probes
located at the beginning or the end of genes, where the annotation is known to be questionable.
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6. Conclusion

We proposed a method for binary classification problems based on averaged estimators within a variational Bayesian
framework. This approach allows us to avoid model selection and take model uncertainty into account. It can theoretically
be proved that using an averaged estimator provides a gain in terms of MSE and increases the lower bound of the log-
likelihood. We proposed a method based on optimal variational weights which derive from a modification of the classical
lower bound of the log-likelihood. Our method does not require more computational time than the more commonly used
selection approach. For studying performance, the method has been used on both synthetic and real data.

The results we obtained on synthetic data showed that our method enhances the estimator in terms of MSE in many
simulation conditions. We also highlighted that the averaging approach improves the posterior probability estimation
provided by the classical selection approach.Moreover,we showed that optimal variationalweights are closer to importance
sampling than the plug-in estimates. Since the importance sampling coped with computational time problems for high
dimensional datasets, our method is of significant interest in this case.

An illustration on epidemiologic and transcriptomic datasets has been carried out to highlight the performance of
the method we proposed on real datasets. In this context, the aggregation model still refines the estimation of posterior
probabilities. We note in particular that the classification is different in cases where the probability is close to 0.5, i.e. when
the classification is difficult. Model averaging allows us to refine the start of the epidemic period and to better determine
the gene along the genome.
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