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For an irrational number x ∈ [0, 1), let x = [a1(x), a2(x), • • • ] be its continued fraction expansion. Let ψ : N → N be a function with ψ(n)/n → ∞ as n → ∞. The (upper, lower) fast Khintchine spectrum for ψ is defined as the Hausdorff dimension of the set of numbers x ∈ (0, 1) for which the (upper, lower) limit of 1 ψ(n) n j=1 log aj (x) is equal to 1. The fast Khintchine spectrum was determined by Fan, Liao, Wang, and Wu. We calculate the upper and lower fast Khintchine spectra. These three spectra can be different.

Introduction

Each irrational number x ∈ [0, 1) admits a unique infinite continued fraction expansion of the form x = 1 a 1 (x) + 1 a 2 (x) + 1

a 3 (x) + . . . , (1.1) 
where the positive integers a n (x), called the partial quotients of x, can be generated by using the Gauss transformation T : [0, 1) → [0, 1) defined by T (0) := 0, and T (x) := 1 x (mod 1), for x ∈ (0, 1).

In fact, let a 1 (x) = ⌊x -1 ⌋ (⌊•⌋ stands for the integer part), then a n (x) = a 1 (T n-1 (x)) for n ≥ 2. For simplicity, (1.1) is often written as

x = [a 1 , a 2 , • • • ].
For any irrational number x ∈ (0, 1), its Khintchine exponent is defined by the limit (if it exists)

ξ(x) := lim n→∞ log a 1 (x) + • • • + log a n (x) n . (1.2)
Khintchine [START_REF] Khintchine | Metrische Kettenbruchprobleme[END_REF] (see also [9, p. 93]) proved that for Lebesgue almost all points x, we have ξ(x) = 1 0 log a 1 (x) (1 + x) log 2 dx = log(2.6854...) =: ξ 0 .

Though Khintchine did not use ergodic theory in his orignal proof, his result is a consequence of Birkhoff Ergodic Theorem, by the fact that the Gauss transformation T is ergodic with respect to the measure dx/((1 + x) log 2) and that the average in (1.2) can be written as a Birkhoff ergodic average.

From a multifractal point of view, one is also interested in the sets of points with a given Khintchine exponent which is different from ξ 0 . The Hausdorff dimension (denoted by dim H ) of the level sets

E(α) := x ∈ [0, 1) : lim n→∞ log a 1 (x) + • • • + log a n (x) n = α , α > 0,
was calculated in [START_REF] Fan | On Kintchine exponents and Lyapunov exponents of continued fractions[END_REF]. It turns out that the Khintchine spectrum, i.e., the function α → dim H E(α) is a real-analytic curve increasing on [0, ξ 0 ] and decreasing on (ξ 0 , ∞). Further, the Hausdorff dimension of E(+∞) is equal to 1/2, which means that there are lots of numbers with infinite Khintchine exponent. This thus leads to the question of detailed classification of numbers with infinite Khintchine exponent. Let α > 0 and let ψ : N → N such that ψ(n)/n → ∞ as n → ∞. We consider the following subsets of E(+∞):

E(ψ, α) := x ∈ [0, 1) : lim n→∞ log a 1 (x) + • • • + log a n (x) ψ(n) = α α > 0.
The so-called fast Khintchine spectrum, i.e., the Hausdorff dimension of E(ψ, 1) was obtained in [START_REF] Fan | On the fast Khintchine spectrum in continued fractions[END_REF]. Let ψ and ψ be two functions defined on N. We say ψ and ψ are equivalent

if ψ(n) ψ(n) → 1 as n → ∞. Define β = β(ψ) := lim sup n→∞ ψ(n + 1) ψ(n) . (1.3)
The authors of [START_REF] Fan | On the fast Khintchine spectrum in continued fractions[END_REF] proved the following theorem.

Theorem 1.1 ([5], Theorem 1.1). Let ψ : N → N with ψ(n)/n → ∞ as n → ∞. If ψ is equivalent to a nondecreasing function, then E(ψ, 1) = ∅ and dim H E(ψ, 1) = 1 1 + β(ψ)
.

Otherwise, E(ψ, 1) = ∅.

We remark that the level α = 1 of the level set E(ψ, 1) in Theorem 1.1 can be replaced by any level α > 0. In fact, observing that for all α > 0,

E(ψ, α) = E( ψ, 1) with ψ = α -1 • ψ and that β( ψ) = β(ψ), we obtain dim H E(ψ, α) = dim H E( ψ, 1) = 1 1 + β( ψ) = 1 1 + β(ψ) , ∀α > 0.
Similarly, when ψ is not equivalent to a nondecreasing function, we have E(ψ, α) = ∅ for all α > 0.

In this note, we consider the following sets

E(ψ) = x ∈ [0, 1] : lim sup n→∞ log a 1 (x) + • • • + log a n (x) ψ(n) = 1 , (1.4) and E(ψ) = x ∈ [0, 1] : lim inf n→∞ log a 1 (x) + • • • + log a n (x) ψ(n) = 1 . (1.5)
Their Hausdorff dimensions are called upper and lower fast Khintchine spectra.

Remark that we only consider the level α = 1 here, since for other levels the Hausdorff dimension will not change, as in Theorem 1.1.

Our main result is as follows.

Theorem 1.2. Assume that ψ :

N → N satisfies ψ(n)/n → ∞ as n → ∞. Write lim inf n→∞ log ψ(n) n = log b and lim sup n→∞ log ψ(n) n = log B. (1.6) Assume b, B ∈ (1, ∞]. Then dim H E(ψ) = 1 1 + b and dim H E(ψ) = 1 1 + B .
We remark that b ≤ B ≤ β. The first inequality is directly from the definitions (1.6). For the second, by (1.3), for any small ε > 0, there exists n 0 such that ψ(i + 1)/ψ(i) ≤ β + ε for all i ≥ n 0 . Then

ψ(n) = ψ(n 0 ) • n-1 i=n 0 ψ(i + 1) ψ(i) ≤ ψ(n 0 ) • (β + ε) n-n 0 .
Hence the second inequality follows from the definition (1.6) of B. However, one can construct some ψ such that the three values b, B and β are all different.

We also remark that from Theorem 1.2, the sets E(ψ) and E(ψ) are always nonempty.

Our result can be considered as a contribution to the multifractal analysis of Birkhoff sums (averages) of dynamical systems. In history, the first multifractal analysis of Birkhoff averages may be due to Besicovitch who studied the frequencies of digits in binary expansions. Let x ∈ [0, 1] and let x = .x 1 x 2 . . . , with x i ∈ {0, 1} denote its binary expansion. Besicovitch ([1, p. 322]) obtained the Hausdorff dimension of the following level sets

x ∈ [0, 1] : lim sup n→∞ x 1 + • • • + x n n ≤ α , α ∈ [0, 1/2].
Let (X, d) be a metric space, T be a (piecewise) continuous transformation on X, and φ : X → R be a real-valued (piecewise) continuous function. The Hausdorff dimension of the level sets of Birkhoff averages:

x ∈ X : lim

n→∞ φ(x) + φ(T x) + • • • + φ(T n x) n = α , α ∈ R,
were widely studied ( [START_REF] Olivier | Analyse multifractale de fonctions continues[END_REF][START_REF] Fan | Recurrence, dimension and entropy[END_REF][START_REF] Pesin | The multifractal analysis of Birkhoff averages and large deviations[END_REF]). In [6, Theorem 3.3], a multifractal analysis result of the above level sets replacing lim by lim sup and lim inf was established for the full shift over two symbols and was applied to the study of dynamical Diophantine approximation.

In contrast to continued fractions, in symbolic dynamical systems of finitely many symbols there is no fast spectrum since the Birkhoff averages are usually bounded (for example, when φ is continuous). Thus the fast spectra studied in this note and in [START_REF] Fan | On Kintchine exponents and Lyapunov exponents of continued fractions[END_REF][START_REF] Wu | On the distribution for sums of partial quotients in continued fraction expansions[END_REF][START_REF] Xu | On sums of partial quotients in continued fraction expansions[END_REF][START_REF] Liao | Subexponentially increasing sum of partial quotients in continued fraction expansions[END_REF] are new subjects for continued fractions and can have generalization in symbolic dynamical systems of infinitely many symbols.

The result of [START_REF] Fan | A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation[END_REF]Theorem 3.3] shows that in symbolic dynamical systems with finitely many symbols, the multifractal spectra remain the same when lim is replaced by lim sup or lim inf. However, our main result Theorem 1.2 proves that in the case of fast Khintchine spectra, if we change lim to lim sup or lim inf, the result changes essentially. This uncovers a new phenomenon in continued fractions and in symbolic dynamical systems of infinitely many symbols.

Preliminaries

For any n ≥ 1 and (a

1 , a 2 , • • • , a n ) ∈ N n , define I n (a 1 , a 2 , • • • , a n ) = x ∈ [0, 1) : a 1 (x) = a 1 , • • • , a n (x) = a n ,
which is the set of numbers starting with (a 1 , • • • , a n ) in their continued fraction expansions, and is called a basic interval of order n. The length of a basic interval will be denoted by

|I n |. Proposition 2.1 ([9], p. 66, p. 68). For any n ≥ 1 and (a 1 , • • • , a n ) ∈ N n , (2.1) 2 n n k=1 a k -2 ≤ |I n (a 1 , • • • , a n )| ≤ n k=1 a k -2
.

The following lemma is used to calculate the lower bound of the Hausdorff dimension of E(ψ).

Let ℓ ≥ 2 be some fixed real number and {s n } n≥1 be a sequence of real numbers such that s n ≥ 1. Set

F ({s n } ∞ n=1 ; ℓ) := x ∈ [0, 1) : s n ≤ a n (x) < ℓs n , for all n ≥ 1 . Lemma 2.2 ([4], Lemma 3.2). Under the assumption that s n → ∞ as n → ∞, one has dim H F ({s n } ∞ n=1 ; ℓ) = 2 + lim sup n→∞ log s n+1 log s 1 s 2 • • • s n -1 .
We remark that the Hausdorff dimension of the set F ({s n } ∞ n=1 ; ℓ) does not depend on ℓ. The original version of Lemma 2.2 asks for the sequence {s n } and the number ℓ to be positive integers. However, a slight modification of the proof also works for real numbers.

In fact, Lemma 2.2 has a more general form. Let s := {s n } n≥1 and t := {t n } n≥1 be two sequences of real numbers such that s n ≥ 1, t n > 1 for all n ≥ 1. Consider the following set

F (s, t) := x ∈ [0, 1) : s n ≤ a n (x) < s n t n , for all n ≥ 1 .
Naturally, we do need to assume that for each n there is an integer between s n and s n t n , otherwise F (s, t) would be empty.

Lemma 2.3. Assume that F (s, t) = ∅, s n → ∞ as n → ∞, and lim n→∞ log(t n -1) log s n = 0.
Then

dim H F (s, t) = 2 + lim sup n→∞ log s n+1 log s 1 s 2 • • • s n -1 .
The proof of Lemma 2.3 is essentially contained in the proof of the lower bound of the dimension of E(ψ) in Subsection 3.2. So the details are left for the reader. A special case of Lemma 2.3 can be found in [START_REF] Liao | Subexponentially increasing sum of partial quotients in continued fraction expansions[END_REF]Lemma 2.3].

The next lemma will be used to obtain the upper bound of the Hausdorff dimensions of E(ψ) and E(ψ).

Lemma 2.4 ([11], Main Theorem). For any a > 1, b > 1, dim H x ∈ [0, 1] : a n (x) ≥ a b n , ∀n ≥ 1 = dim H x ∈ [0, 1] : a n (x) ≥ a b n , for infinitely many n = 1 b + 1 .
3. Proofs

Dimension of E(ψ).

We first calculate the Hausdorff dimension of E(ψ) as defined in (1.4). We will only give the proof for 1 < b < ∞. The case b = ∞ can be obtained by a standard limit procedure. Upper bound: For x ∈ E(ψ), let S n (x) := log a 1 (x) + • • • + log a n (x). Then for any δ > 0, there are infinitely many n's such that

(3.1) S n (x) ≥ ψ(n)(1 -δ).
For each such n there exists an i ≤ n such that

(3.2) log a i (x) ≥ ψ(n) 2n (1 -δ).
Moreover, for infinitely many i's we can find n ≥ i satisfying (3.1) such that (3.2) holds. Indeed, if i 0 was the largest i with this property, for every n > i 0 satisfying (3.1) we would have

S n (x) = S i 0 (x) + n k=i 0 +1 log a k (x) < S i 0 (x) + 1 -δ 2 ψ(n) and hence, ψ(n) < 2(1 -δ) -1 S i 0 (x).
Thus ψ(n) for n satisfying (3.1) would be uniformly bounded. This contradicts the assumption ψ(n)/n → ∞.

By the definition (1.6) of b, for any small ε > 0 (ε

< (b-1)/100 is enough) we have ψ(n) > (b -ε) n > 1 and (b -ε) n (1 -δ)/2n > (b -2ε
) n for all n large enough. Thus, by (3.2) there are infinitely many i's, such that

log a i (x) > (b -ε) n 2n (1 -δ) > (b -2ε) n ≥ (b -2ε) i .
It then follows that the set E(ψ) is included in the set

x ∈ [0, 1] : a i (x) > e (b-2ε) i , for infinitely many n .

By Lemma 2.4, the Hausdorff dimension of E(ψ) is bounded by 1/ 1 + (b -2ε) from above. Letting ε → 0, we obtain the upper bound.

Lower bound: We will construct a Cantor type subset of E(ψ).

We want to construct a sequence {c n } n≥1 of positive real numbers such that

(3.3) lim sup n→∞ log c 1 + • • • + log c n ψ(n) = 1, and 
(3.4) lim sup n→∞ log c n+1 log c 1 + • • • + log c n ≤ b -1 + ε.
The condition (3.3) will be used to construct points in E(ψ) while the condition (3.4) will be helpful for estimating the Hausdorff dimension.

Let us begin by defining an auxiliary function

φ(n) = min k≥n ψ(k).
As ψ(n) → ∞, φ(n) is well defined for all n. Obviously, φ ≤ ψ and φ is a nondecreasing function. One can easily check that there exist infinitely many n's for which φ(n) = ψ(n). One more property that we will soon use is 1) and

(3.5) φ(n) = ψ(n) =⇒ φ(n) = min k≥n ψ(k) = min k>n ψ(k) = φ(n + 1). Let c 1 = e φ(
c 2 = min e φ(2) c 1 , c b-1+ε 1 .
Assume that c n-1 has already been well defined, then set

c n = min e φ(n) n-1 k=1 c k , n-1 k=1 c b-1+ε k . (3.6)
Observe that as φ is nondecreasing, c n ≥ 1 for all n ≥ 1.

We can check that lim sup

n→∞ log c n+1 log c 1 + • • • + log c n ≤ lim sup n→∞ log n k=1 c b-1+ε k log n k=1 c k = b -1 + ε.
Thus (3.4) holds.

To prove (3.3) we will need several steps. By the definition (1.6) of b, we claim that

c n = e φ(n) n-1 k=1 c k for infinitely many n. (3.7)
Indeed, if it is not true then for some N and for all n ≥ N we have , which together with (3.9) and φ ≤ ψ is in contradiction with (1.6).

Observe now that by (3.5) and (3.6), if the equality in (3.7) holds for some n such that φ(n) = ψ(n) then it will hold for n + 1 as well (and c n+1 = 1). Since φ(n) = ψ(n) infinitely often, repeating this argument until we get to some n + k for which φ(n + k) = ψ(n + k), we prove

c n = e ψ(n) n-1 k=1 c k for infinitely many n. (3.10)
Denoting by {n j } the sequence of numbers satisfying (3.10), we get lim sup

n→∞ log c 1 + • • • + log c n ψ(n) ≥ lim sup j→∞ log c 1 + • • • + log c n j ψ(n j ) = 1.
On the other hand, by (3.6), lim sup

n→∞ log c 1 + • • • + log c n ψ(n) ≤ lim sup n→∞ log c 1 + • • • + log c n φ(n) ≤ 1.
Hence (3.3) holds. Define

E({c n }) := {x ∈ [0, 1) : c n ≤ a n (x) < 2c n , for all n ≥ 1}.
Since ψ(n)/n → ∞ as n → ∞, by (3.3), E({c n }) ⊂ E(ψ). Now we would like to apply Lemma 2.2 to estimate the Hausdorff dimension of E({c n }). However, observe that (3.3) does only imply that lim sup c n = ∞, but not that c n → ∞. For example, if ψ (or φ) has a long plateau then we can find many n's with c n = 1, and hence for a function ψ with infinitely many long plateaux there might exist a subsequence c n i ≡ 1. On the other hand, to apply Lemma 2.2 we need the condition c n → ∞ as n → ∞. So, some modifications on the subset E({c n }) are needed.

By the condition that ψ(n)/n → ∞ as n → ∞, we can choose an increasing sequence

{n k } ∞ k=1 such that for each k ≥ 1 ψ(n) n ≥ k 2 , when n ≥ n k . Take α n = 2 if 1 ≤ n < n 1 and α n = k + 1, when n k ≤ n < n k+1 . Let k(n) be such that n k(n) ≤ n < n k(n)+1 . Then lim n→∞ log α 1 + • • • + log α n ψ(n) ≤ lim n→∞ n • (k(n) + 1) n • k(n) 2 = 0 and lim n→∞ log α n+1 log α 1 + • • • + log α n ≤ lim n→∞ log(n + 1) n • log 2 = 0.
Since c n ≥ 1 and α n ≥ 2 for all n ≥ 1, we have

log c n ≤ log(c n + α n ) ≤ log c n + 2 log α n ∀n ≥ 1.
So, by taking s n = c n + α n for each n ≥ 1, we get s n → ∞ as n → ∞ and lim sup

n→∞ log s 1 + • • • + log s n ψ(n) = 1. Define E({s n }) := {x ∈ [0, 1) : s n ≤ a n (x) < 2s n , for all n ≥ 1}. Then E({s n }) ⊂ E(ψ). As s n → ∞ as n → ∞, by Lemma 2.2, we have dim H E({s n }) = 2 + lim sup n→∞ log s n+1 log s 1 + • • • + log s n -1 . Note that lim sup n→∞ log s n+1 log s 1 + • • • + log s n = lim sup n→∞ log(c n+1 + α n+1 ) log(c 1 + α 1 ) + • • • + log(c n + α n ) ≤ lim sup n→∞ log c n+1 + 2 log α n+1 log(c 1 + α 1 ) + • • • + log(c n + α n ) ≤ lim sup n→∞ log c n+1 log c 1 + • • • + log c n + lim sup n→∞ 2 log α n+1 log α 1 + • • • + log α n ≤ b -1 + ε. Hence, dim H E(ψ) ≥ dim H E({s n }) ≥ 1 b + 1 + ε .

Dimension of E(ψ).

As in the calculation of the Hausdorff dimension of E(ψ), we will only give the proof for 1 < B < ∞ and the easy case B = ∞ is left for the reader.

Upper bound: By the definition (1.6) of B, for any ε > 0, there is a sequence {n i } such that

ψ(n i ) > (B -ε) n i . Denoting S n (x) = log a 1 (x) + • • • + log a n (x), for all x ∈ E(ψ), for any δ > 0, we have S n (x) ≥ ψ(n)(1 -δ), ∀n ≥ 1. Thus S n i (x) ≥ (B -ε) n i (1 -δ). Then there exists j ≤ n i such that (3.11) log a j (x) ≥ (B -ε) n i (1 -δ)/2n i > (B -2ε) j .
By the same argument as in the previous subsection, we have infinitely many such j's for which we can find n i satisfying (3.11). Thus by Lemma 2.4, the Hausdorff dimension of E(ψ) is bounded by 1/(1 + (B -2ε)) from above.

The upper bound then follows by letting ε → 0.

n i log ψ(n) log log A i slope= log(B + ε) t i Figure 1. Finding A i .
Lower bound: As in the previous subsection, a Cantor type subset of E(ψ) will be constructed.

For any ε > 0, define

A i = sup n≥i exp{ψ(n)(B + ε) i-n }. (3.12) Since lim sup n→∞ log ψ(n) n
= log B, we have for n large enough

ψ(n) ≤ (B + ε/2) n .
This implies

ψ(n)(B + ε) i-n ≤ (B + ε/2) n (B + ε) i-n → 0 (n → ∞).
Hence in the definition (3.12) of A i the supremum is achieved. Denote by t i ≥ i the smallest number for which A i = exp{ψ(t i )(B + ε) i-t i }. Figure 1 shows a way to find t i and A i .

We remark that such defined A i is the smallest function satisfying

(3.13) A i+1 ≤ A B+ε i and A i ≥ e ψ(i) .
Let

Z := lim inf n→∞ n i=1 log A i ψ(n) .
By (3.13), we have

Z ≥ lim inf n→∞ log A n ψ(n) ≥ 1.
We will use these A i and Z to construct our Cantor type subset. Before the construction, let us prove the following proposition. Proposition 3.1. We have Z < ∞.

Proof. Remark that for many consecutive i's the t i will be the same. More precisely, t i = t i+1 = • • • = t t i . Let {ℓ j } be the sequence of all t i 's in the increasing order, without repetitions. Notice that for these ℓ j , we have log A ℓ j = ψ(ℓ j ), and for k ∈ (ℓ j-1 , ℓ j ],

log A k = ψ(ℓ j )(B + ε) k-ℓ j . Thus for 0 < ε < B -1 (3.14) ℓ j k=ℓ j-1 +1 log A k = ℓ j k=ℓ j-1 +1 ψ(ℓ j )(B + ε) k-ℓ j ≤ B + ε B + ε -1 • ψ(ℓ j ).
Denote S n ψ := n k=1 ψ(k). Proposition 3.1 follows directly from the following two lemmas. Lemma 3.2. We have

lim inf n→∞ S n ψ ψ(n) < ∞.
Proof. For ε > 0, we will show that there exist infinitely many n, such that ψ(n) > εS n-1 ψ. If this was not true, then for all large n we would have

S n ψ = S n-1 ψ + ψ(n) ≤ (1 + ε)S n-1 ψ.
Thus by Stolz-Cesàro Theorem lim sup

n→∞ log S n ψ n ≤ lim sup n→∞ log S n ψ -log S n-1 ψ n -(n -1) ≤ log(1 + ε),
which is impossible since we have lim sup

n→∞ log S n ψ n ≥ lim sup n→∞ log ψ(n) n = B > log(1 + ε).
Denote by {n j } a sequence such that ψ(n j ) > εS n j -1 ψ. Then

S n j ψ ψ(n j ) = S n j -1 ψ + ψ(n j ) ψ(n j ) ≤ 1 + 1 ε < ∞,
and the conclusion follows.

Lemma 3.3. The following limit is finite:

lim inf j→∞ S ℓ j ψ ψ(ℓ j ) < ∞.
Proof. Denote L := lim inf n→∞ Snψ ψ(n) . Fix 0 < ε < B -1 and let {m k } be the sequence such that

S m k ψ ψ(m k ) ≤ L + ε.
Each m k is in some (ℓ j-1 , ℓ j ], hence for this j

S ℓ j ψ = S m k ψ + ℓ j i=m k +1 ψ(i) ≤ (L + ε)ψ(m k ) + ℓ j i=m k +1 ψ(i) ≤ (L + ε) ℓ j i=m k ψ(i). By definition of ℓ j , for i ∈ [m k , ℓ j ] ⊂ (ℓ j-1 , ℓ j ] ψ(i) ≤ 1 (B + ε) ℓ j -i ψ(ℓ j ), Thus S ℓ j ψ ≤ B + ε B + ε -1 • (L + ε)ψ(ℓ j ).
The result then follows.

By (3.14)

ℓ j k=1 log A k ≤ C • S ℓ j ψ. Hence Z ≤ lim inf j→∞ ℓ j k=1 log A k ψ(ℓ j ) ≤ C S ℓ j ψ ψ(ℓ j ) < ∞,
which completes the proof of Proposition 3.1

Now we continue the construction of the subset and the estimation of the lower bound.

Choose a sequence where

ε i → 0 such that lim n→∞ n i=1 log(1 ± ε i ) ψ(n) = 0, (3.15) lim n→∞ | n i=1 log(2ε i )| log A n+1 = 0, ( 3 
W i := [A 1/Z i (1 -ε i ), A 1/Z i (1 + ε i )].
Observe that the condition (3.16) implies the condition (3.17) for all i large enough. Observe also that for large i, (3.16) and (3.17) say only that ε i is greater than some negative power of A i (which is increasing superexponentially fast) while the condition (3.15) is satisfied for all decreasing sequences, so there is no problem to find such a sequence {ε i } satisfying all the conditions (3.15)-(3.17).

Denote by E the set of numbers x such that for all i, a i (x) is in the interval W i . By (3.17), E is nonempty. By (3.15), for all

x ∈ E lim inf n→∞ n j=1 log a j (x) ψ(n) = lim inf n→∞ 1 Z n j=1 log A j ψ(n) = 1.
So E ⊂ E(ψ). Now we will estimate the Hausdorff dimension of E from below. To this end, we define a probability measure µ on E. For each position, we distribute the probability evenly. That is, for each possible a i , we give the probability

p i = 1 1 + |[⌈A 1/Z i (1 -ε i )⌉, ⌊A 1/Z i (1 + ε i )⌋]| ≈ 1 2ε i A 1/Z i .
Here and in what follows, we follow [START_REF] Jordan | Increasing digit subsystems of infinite iterated function systems[END_REF]. For simplicity we give only the main term of the calculations.

By the probability distribution, for each basic interval I n = I n (a 1 , . . . a n ), we have

µ(I n ) = n i=1 p i ≈ n i=1 (2ε i A 1/Z i ) -1 .
By (2.1),

|I n | ≈ n i-1 (A 1/Z i ) -2 .
To calculate the local dimension of x ∈ E we will use a smaller interval D n included in I n : (3.18)

D n = ∪ a n+1 ≥A 1/Z n+1 (1-ε n+1 ) I n+1 (a 1 , • • • , a n a n+1 ). Since a i ∈ [A 1/Z i (1 -ε i ), A
The last ≈ follows from (3.16).

On the other hand, the length of the interval D n is

|D n | ≈ |I n | • A -1/Z n+1 . Thus -log |D n | ≈ -log |I n | + 1 Z log A n+1 ≈ -2 log µ(D n ) + 1 Z log A n+1 . Hence -log µ(D n ) -log |D n | ≈ -log µ(D n ) -2 log µ(D n ) + 1 Z log A n+1 = 1 2 + 1 Z log A n+1 -log µ(Dn)
.

Then by (3.18), we obtain

lim inf n→∞ -log µ(D n ) -log |D n | ≥ 1 2 + (B + ε -1) = 1 B + 1 + ε .
Therefore the lower bound follows from the Frostman Lemma (see [2, Principle 4.2]).
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  .16) and for each i W i ∩ N = ∅, (3.17)

( 1 +

 1 ε i )] and A i grows super-exponentially, the Hausdorff dimension will be determined by calculating the local dimension lim infn→∞ log µ(D n ) log |D n | .(See Section 4 of Jordan and Rams[START_REF] Jordan | Increasing digit subsystems of infinite iterated function systems[END_REF].) On the one hand,log µ(D n ) =log µ(I n ) =By the property that A i+1 ≤ A B+ε i , we deduce that for big n,log µ(D n ) ≥ ε) i log A n+1 ≈ 1 Z(B + ε -1) log A n+1 .
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