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UPPER AND LOWER FAST KHINTCHINE SPECTRA IN

CONTINUED FRACTIONS

LINGMIN LIAO AND MICHA L RAMS

Abstract. For an irrational number x ∈ [0, 1), let x = [a1(x), a2(x), · · · ]
be its continued fraction expansion. Let ψ : N → N be a function with
ψ(n)/n → ∞ as n → ∞. The (upper, lower) fast Khintchine spec-
trum for ψ is defined as the Hausdorff dimension of the set of numbers
x ∈ (0, 1) for which the (upper, lower) limit of 1

ψ(n)

∑n
j=1 log aj(x) is

equal to 1. The fast Khintchine spectrum was determined by Fan, Liao,
Wang, and Wu. We calculate the upper and lower fast Khintchine spec-
tra. These three spectra can be different.

1. Introduction

Each irrational number x ∈ [0, 1) admits a unique infinite continued frac-
tion expansion of the form

x =
1

a1(x) +
1

a2(x) +
1

a3(x) +
. . .

,(1.1)

where the positive integers an(x), called the partial quotients of x, can be
generated by using the Gauss transformation T : [0, 1) → [0, 1) defined by

T (0) := 0, and T (x) :=
1

x
(mod 1), for x ∈ (0, 1).

In fact, let a1(x) = ⌊x−1⌋ (⌊·⌋ stands for the integer part), then an(x) =
a1(T

n−1(x)) for n ≥ 2. For simplicity, (1.1) is often written as x = [a1, a2, · · · ].
For any irrational number x ∈ (0, 1), its Khintchine exponent is defined

by the limit (if it exists)

ξ(x) := lim
n→∞

log a1(x) + · · ·+ log an(x)

n
.(1.2)

Khintchine [8] (see also [9, p. 93]) proved that for Lebesgue almost all points
x, we have

ξ(x) =

∫ 1

0

log a1(x)

(1 + x) log 2
dx = log(2.6854...) =: ξ0.

Though Khintchine did not use ergodic theory in his orignal proof, his result
is a consequence of Birkhoff Ergodic Theorem, by the fact that the Gauss
transformation T is ergodic with respect to the measure dx/((1 + x) log 2)
and that the average in (1.2) can be written as a Birkhoff ergodic average.
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From a multifractal point of view, one is also interested in the sets of
points with a given Khintchine exponent which is different from ξ0. The
Hausdorff dimension (denoted by dimH) of the level sets

E(α) :=

{
x ∈ [0, 1) : lim

n→∞

log a1(x) + · · ·+ log an(x)

n
= α

}
, α > 0,

was calculated in [4]. It turns out that the Khintchine spectrum, i.e., the
function α 7→ dimH E(α) is a real-analytic curve increasing on [0, ξ0] and
decreasing on (ξ0,∞). Further, the Hausdorff dimension of E(+∞) is equal
to 1/2, which means that there are lots of numbers with infinite Khint-
chine exponent. This thus leads to the question of detailed classification of
numbers with infinite Khintchine exponent.

Let α > 0 and let ψ : N → N such that ψ(n)/n → ∞ as n → ∞. We
consider the following subsets of E(+∞):

E(ψ,α) :=

{
x ∈ [0, 1) : lim

n→∞

log a1(x) + · · ·+ log an(x)

ψ(n)
= α

}
α > 0.

The so-called fast Khintchine spectrum, i.e., the Hausdorff dimension of
E(ψ, 1) was obtained in [5]. Let ψ and ψ̃ be two functions defined on N. We

say ψ and ψ̃ are equivalent if ψ(n)

ψ̃(n)
→ 1 as n→ ∞. Define

β = β(ψ) := lim sup
n→∞

ψ(n+ 1)

ψ(n)
.(1.3)

The authors of [5] proved the following theorem.

Theorem 1.1 ([5], Theorem 1.1). Let ψ : N → N with ψ(n)/n → ∞ as

n → ∞. If ψ is equivalent to a nondecreasing function, then E(ψ, 1) 6= ∅
and

dimH E(ψ, 1) =
1

1 + β(ψ)
.

Otherwise, E(ψ, 1) = ∅.

We remark that the level α = 1 of the level set E(ψ, 1) in Theorem 1.1
can be replaced by any level α > 0. In fact, observing that for all α > 0,

E(ψ,α) = E(ψ̂, 1) with ψ̂ = α−1 · ψ and that β(ψ̂) = β(ψ), we obtain

dimH E(ψ,α) = dimH E(ψ̂, 1) =
1

1 + β(ψ̂)
=

1

1 + β(ψ)
, ∀α > 0.

Similarly, when ψ is not equivalent to a nondecreasing function, we have
E(ψ,α) = ∅ for all α > 0.

In this note, we consider the following sets

E(ψ) =

{
x ∈ [0, 1] : lim sup

n→∞

log a1(x) + · · ·+ log an(x)

ψ(n)
= 1

}
,(1.4)

and

E(ψ) =

{
x ∈ [0, 1] : lim inf

n→∞

log a1(x) + · · ·+ log an(x)

ψ(n)
= 1

}
.(1.5)

Their Hausdorff dimensions are called upper and lower fast Khintchine spec-

tra.
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Remark that we only consider the level α = 1 here, since for other levels
the Hausdorff dimension will not change, as in Theorem 1.1.

Our main result is as follows.

Theorem 1.2. Assume that ψ : N → N satisfies ψ(n)/n → ∞ as n → ∞.

Write

lim inf
n→∞

logψ(n)

n
= log b and lim sup

n→∞

logψ(n)

n
= logB.(1.6)

Assume b,B ∈ (1,∞]. Then

dimH E(ψ) =
1

1 + b
and dimH E(ψ) =

1

1 +B
.

We remark that b ≤ B ≤ β. The first inequality is directly from the
definitions (1.6). For the second, by (1.3), for any small ε > 0, there exists
n0 such that ψ(i + 1)/ψ(i) ≤ β + ε for all i ≥ n0. Then

ψ(n) = ψ(n0) ·
n−1∏

i=n0

ψ(i+ 1)

ψ(i)
≤ ψ(n0) · (β + ε)n−n0 .

Hence the second inequality follows from the definition (1.6) of B. However,
one can construct some ψ such that the three values b, B and β are all
different.

We also remark that from Theorem 1.2, the sets E(ψ) and E(ψ) are
always nonempty.

Our result can be considered as a contribution to the multifractal anal-
ysis of Birkhoff sums (averages) of dynamical systems. In history, the first
multifractal analysis of Birkhoff averages may be due to Besicovitch who
studied the frequencies of digits in binary expansions. Let x ∈ [0, 1] and let
x = .x1x2 . . . , with xi ∈ {0, 1} denote its binary expansion. Besicovitch ([1,
p. 322]) obtained the Hausdorff dimension of the following level sets

{
x ∈ [0, 1] : lim sup

n→∞

x1 + · · ·+ xn
n

≤ α

}
, α ∈ [0, 1/2].

Let (X, d) be a metric space, T be a (piecewise) continuous transformation
on X, and φ : X → R be a real-valued (piecewise) continuous function. The
Hausdorff dimension of the level sets of Birkhoff averages:

{
x ∈ X : lim

n→∞

φ(x) + φ(Tx) + · · ·+ φ(T nx)

n
= α

}
, α ∈ R,

were widely studied ([13, 3, 12]). In [6, Theorem 3.3], a multifractal anal-
ysis result of the above level sets replacing lim by lim sup and lim inf was
established for the full shift over two symbols and was applied to the study
of dynamical Diophantine approximation.

In contrast to continued fractions, in symbolic dynamical systems of
finitely many symbols there is no fast spectrum since the Birkhoff aver-
ages are usually bounded (for example, when φ is continuous). Thus the
fast spectra studied in this note and in [4, 14, 15, 10] are new subjects
for continued fractions and can have generalization in symbolic dynamical
systems of infinitely many symbols.
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The result of [6, Theorem 3.3] shows that in symbolic dynamical systems
with finitely many symbols, the multifractal spectra remain the same when
lim is replaced by lim sup or lim inf. However, our main result Theorem 1.2
proves that in the case of fast Khintchine spectra, if we change lim to lim sup
or lim inf, the result changes essentially. This uncovers a new phenomenon
in continued fractions and in symbolic dynamical systems of infinitely many
symbols.

2. Preliminaries

For any n ≥ 1 and (a1, a2, · · · , an) ∈ N
n, define

In(a1, a2, · · · , an) =
{
x ∈ [0, 1) : a1(x) = a1, · · · , an(x) = an

}
,

which is the set of numbers starting with (a1, · · · , an) in their continued
fraction expansions, and is called a basic interval of order n. The length of
a basic interval will be denoted by |In|.

Proposition 2.1 ([9], p. 66, p. 68). For any n ≥ 1 and (a1, · · · , an) ∈ N
n,

(2.1)

(
2n

n∏

k=1

ak

)−2

≤ |In(a1, · · · , an)| ≤

(
n∏

k=1

ak

)−2

.

The following lemma is used to calculate the lower bound of the Hausdorff
dimension of E(ψ).

Let ℓ ≥ 2 be some fixed real number and {sn}n≥1 be a sequence of real
numbers such that sn ≥ 1. Set

F ({sn}
∞
n=1; ℓ) :=

{
x ∈ [0, 1) : sn ≤ an(x) < ℓsn, for all n ≥ 1

}
.

Lemma 2.2 ([4], Lemma 3.2). Under the assumption that sn → ∞ as

n→ ∞, one has

dimH F ({sn}
∞
n=1; ℓ) =

(
2 + lim sup

n→∞

log sn+1

log s1s2 · · · sn

)−1

.

We remark that the Hausdorff dimension of the set F ({sn}
∞
n=1; ℓ) does not

depend on ℓ. The original version of Lemma 2.2 asks for the sequence {sn}
and the number ℓ to be positive integers. However, a slight modification of
the proof also works for real numbers.

In fact, Lemma 2.2 has a more general form. Let s := {sn}n≥1 and
t := {tn}n≥1 be two sequences of real numbers such that sn ≥ 1, tn > 1 for
all n ≥ 1. Consider the following set

F (s, t) :=
{
x ∈ [0, 1) : sn ≤ an(x) < sntn, for all n ≥ 1

}
.

Naturally, we do need to assume that for each n there is an integer between
sn and sntn, otherwise F (s, t) would be empty.

Lemma 2.3. Assume that F (s, t) 6= ∅, sn → ∞ as n→ ∞, and

lim
n→∞

log(tn − 1)

log sn
= 0.

Then

dimH F (s, t) =

(
2 + lim sup

n→∞

log sn+1

log s1s2 · · · sn

)−1

.
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The proof of Lemma 2.3 is essentially contained in the proof of the lower
bound of the dimension of E(ψ) in Subsection 3.2. So the details are left for
the reader. A special case of Lemma 2.3 can be found in [10, Lemma 2.3].

The next lemma will be used to obtain the upper bound of the Hausdorff
dimensions of E(ψ) and E(ψ).

Lemma 2.4 ([11], Main Theorem). For any a > 1, b > 1,

dimH

{
x ∈ [0, 1] : an(x) ≥ ab

n
,∀n ≥ 1

}

=dimH

{
x ∈ [0, 1] : an(x) ≥ ab

n
, for infinitely many n

}
=

1

b+ 1
.

3. Proofs

3.1. Dimension of E(ψ). We first calculate the Hausdorff dimension of
E(ψ) as defined in (1.4). We will only give the proof for 1 < b < ∞. The
case b = ∞ can be obtained by a standard limit procedure.

Upper bound: For x ∈ E(ψ), let Sn(x) := log a1(x) + · · · + log an(x).
Then for any δ > 0, there are infinitely many n’s such that

(3.1) Sn(x) ≥ ψ(n)(1− δ).

For each such n there exists an i ≤ n such that

(3.2) log ai(x) ≥
ψ(n)

2n
(1− δ).

Moreover, for infinitely many i’s we can find n ≥ i satisfying (3.1) such
that (3.2) holds. Indeed, if i0 was the largest i with this property, for every
n > i0 satisfying (3.1) we would have

Sn(x) = Si0(x) +

n∑

k=i0+1

log ak(x) < Si0(x) +
1− δ

2
ψ(n)

and hence,

ψ(n) < 2(1 − δ)−1Si0(x).

Thus ψ(n) for n satisfying (3.1) would be uniformly bounded. This contra-
dicts the assumption ψ(n)/n → ∞.

By the definition (1.6) of b, for any small ε > 0 (ε < (b−1)/100 is enough)
we have ψ(n) > (b − ε)n > 1 and (b − ε)n(1 − δ)/2n > (b − 2ε)n for all n
large enough. Thus, by (3.2) there are infinitely many i’s, such that

log ai(x) >
(b− ε)n

2n
(1− δ) > (b− 2ε)n ≥ (b− 2ε)i.

It then follows that the set E(ψ) is included in the set
{
x ∈ [0, 1] : ai(x) > e(b−2ε)i , for infinitely many n

}
.

By Lemma 2.4, the Hausdorff dimension of E(ψ) is bounded by 1/
(
1+ (b−

2ε)
)
from above. Letting ε→ 0, we obtain the upper bound.

Lower bound: We will construct a Cantor type subset of E(ψ).
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We want to construct a sequence {cn}n≥1 of positive real numbers such
that

(3.3) lim sup
n→∞

log c1 + · · · + log cn
ψ(n)

= 1,

and

(3.4) lim sup
n→∞

log cn+1

log c1 + · · · + log cn
≤ b− 1 + ε.

The condition (3.3) will be used to construct points in E(ψ) while the con-
dition (3.4) will be helpful for estimating the Hausdorff dimension.

Let us begin by defining an auxiliary function

φ(n) = min
k≥n

ψ(k).

As ψ(n) → ∞, φ(n) is well defined for all n. Obviously, φ ≤ ψ and φ is
a nondecreasing function. One can easily check that there exist infinitely
many n’s for which φ(n) = ψ(n). One more property that we will soon use
is

(3.5) φ(n) 6= ψ(n) =⇒ φ(n) = min
k≥n

ψ(k) = min
k>n

ψ(k) = φ(n+ 1).

Let c1 = eφ(1) and

c2 = min

{
eφ(2)

c1
, cb−1+ε

1

}
.

Assume that cn−1 has already been well defined, then set

cn = min

{
eφ(n)

∏n−1
k=1 ck

,

n−1∏

k=1

cb−1+ε
k

}
.(3.6)

Observe that as φ is nondecreasing, cn ≥ 1 for all n ≥ 1.
We can check that

lim sup
n→∞

log cn+1

log c1 + · · ·+ log cn
≤ lim sup

n→∞

log
(∏n

k=1 c
b−1+ε
k

)

log
∏n
k=1 ck

= b− 1 + ε.

Thus (3.4) holds.
To prove (3.3) we will need several steps. By the definition (1.6) of b, we

claim that

cn =
eφ(n)

∏n−1
k=1 ck

for infinitely many n.(3.7)

Indeed, if it is not true then for some N and for all n ≥ N we have

(3.8) cn =

n−1∏

k=1

cb−1+ε
k

and

(3.9) eφ(n) >

n−1∏

k=1

cb+εk .
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The formula (3.8) implies

n∏

k=1

ck =

(
N∏

k=1

ck

)(b+ε)n−N

,

which together with (3.9) and φ ≤ ψ is in contradiction with (1.6).
Observe now that by (3.5) and (3.6), if the equality in (3.7) holds for some

n such that φ(n) 6= ψ(n) then it will hold for n+ 1 as well (and cn+1 = 1).
Since φ(n) = ψ(n) infinitely often, repeating this argument until we get to
some n+ k for which φ(n+ k) = ψ(n + k), we prove

cn =
eψ(n)

∏n−1
k=1 ck

for infinitely many n.(3.10)

Denoting by {nj} the sequence of numbers satisfying (3.10), we get

lim sup
n→∞

log c1 + · · · + log cn
ψ(n)

≥ lim sup
j→∞

log c1 + · · ·+ log cnj
ψ(nj)

= 1.

On the other hand, by (3.6),

lim sup
n→∞

log c1 + · · ·+ log cn
ψ(n)

≤ lim sup
n→∞

log c1 + · · ·+ log cn
φ(n)

≤ 1.

Hence (3.3) holds.
Define

E({cn}) := {x ∈ [0, 1) : cn ≤ an(x) < 2cn, for all n ≥ 1}.

Since ψ(n)/n → ∞ as n→ ∞, by (3.3), E({cn}) ⊂ E(ψ).
Now we would like to apply Lemma 2.2 to estimate the Hausdorff di-

mension of E({cn}). However, observe that (3.3) does only imply that
lim sup cn = ∞, but not that cn → ∞. For example, if ψ (or φ) has a
long plateau then we can find many n’s with cn = 1, and hence for a func-
tion ψ with infinitely many long plateaux there might exist a subsequence
cni ≡ 1. On the other hand, to apply Lemma 2.2 we need the condition
cn → ∞ as n → ∞. So, some modifications on the subset E({cn}) are
needed.

By the condition that ψ(n)/n → ∞ as n→ ∞, we can choose an increas-
ing sequence {nk}

∞
k=1 such that for each k ≥ 1

ψ(n)

n
≥ k2, when n ≥ nk.

Take αn = 2 if 1 ≤ n < n1 and

αn = k + 1, when nk ≤ n < nk+1.

Let k(n) be such that nk(n) ≤ n < nk(n)+1. Then

lim
n→∞

logα1 + · · ·+ log αn
ψ(n)

≤ lim
n→∞

n · (k(n) + 1)

n · k(n)2
= 0

and

lim
n→∞

log αn+1

log α1 + · · · + logαn
≤ lim

n→∞

log(n+ 1)

n · log 2
= 0.
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Since cn ≥ 1 and αn ≥ 2 for all n ≥ 1, we have

log cn ≤ log(cn + αn) ≤ log cn + 2 log αn ∀n ≥ 1.

So, by taking sn = cn + αn for each n ≥ 1, we get sn → ∞ as n→ ∞ and

lim sup
n→∞

log s1 + · · · + log sn
ψ(n)

= 1.

Define

E({sn}) := {x ∈ [0, 1) : sn ≤ an(x) < 2sn, for all n ≥ 1}.

Then
E({sn}) ⊂ E(ψ).

As sn → ∞ as n→ ∞, by Lemma 2.2, we have

dimH E({sn}) =

(
2 + lim sup

n→∞

log sn+1

log s1 + · · · + log sn

)−1

.

Note that

lim sup
n→∞

log sn+1

log s1 + · · ·+ log sn

= lim sup
n→∞

log(cn+1 + αn+1)

log(c1 + α1) + · · ·+ log(cn + αn)

≤ lim sup
n→∞

log cn+1 + 2 log αn+1

log(c1 + α1) + · · ·+ log(cn + αn)

≤ lim sup
n→∞

log cn+1

log c1 + · · · + log cn
+ lim sup

n→∞

2 log αn+1

logα1 + · · ·+ log αn
≤ b− 1 + ε.

Hence,

dimH E(ψ) ≥ dimH E({sn}) ≥
1

b+ 1 + ε
.

3.2. Dimension of E(ψ). As in the calculation of the Hausdorff dimension
of E(ψ), we will only give the proof for 1 < B <∞ and the easy case B = ∞
is left for the reader.

Upper bound: By the definition (1.6) of B, for any ε > 0, there is a
sequence {ni} such that

ψ(ni) > (B − ε)ni .

Denoting Sn(x) = log a1(x)+ · · ·+log an(x), for all x ∈ E(ψ), for any δ > 0,
we have

Sn(x) ≥ ψ(n)(1 − δ), ∀n ≥ 1.

Thus
Sni(x) ≥ (B − ε)ni(1− δ).

Then there exists j ≤ ni such that

(3.11) log aj(x) ≥ (B − ε)ni(1− δ)/2ni > (B − 2ε)j .

By the same argument as in the previous subsection, we have infinitely many
such j’s for which we can find ni satisfying (3.11). Thus by Lemma 2.4, the
Hausdorff dimension of E(ψ) is bounded by 1/(1 + (B − 2ε)) from above.
The upper bound then follows by letting ε→ 0.
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ni

logψ(n)

log logAi

slope= log(B + ε)

ti

Figure 1. Finding Ai.

Lower bound: As in the previous subsection, a Cantor type subset of
E(ψ) will be constructed.

For any ε > 0, define

Ai = sup
n≥i

exp{ψ(n)(B + ε)i−n}.(3.12)

Since lim supn→∞
logψ(n)

n = logB, we have for n large enough

ψ(n) ≤ (B + ε/2)n.

This implies

ψ(n)(B + ε)i−n ≤ (B + ε/2)n(B + ε)i−n → 0 (n→ ∞).

Hence in the definition (3.12) of Ai the supremum is achieved.
Denote by ti ≥ i the smallest number for which Ai = exp{ψ(ti)(B +

ε)i−ti}. Figure 1 shows a way to find ti and Ai.
We remark that such defined Ai is the smallest function satisfying

(3.13) Ai+1 ≤ AB+ε
i and Ai ≥ eψ(i).

Let

Z := lim inf
n→∞

∑n
i=1 logAi
ψ(n)

.

By (3.13), we have

Z ≥ lim inf
n→∞

logAn
ψ(n)

≥ 1.

We will use these Ai and Z to construct our Cantor type subset. Before
the construction, let us prove the following proposition.

Proposition 3.1. We have Z <∞.

Proof. Remark that for many consecutive i’s the ti will be the same. More
precisely, ti = ti+1 = · · · = tti . Let {ℓj} be the sequence of all ti’s in the
increasing order, without repetitions. Notice that for these ℓj, we have

logAℓj = ψ(ℓj),
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and for k ∈ (ℓj−1, ℓj ],

logAk = ψ(ℓj)(B + ε)k−ℓj .

Thus for 0 < ε < B − 1

(3.14)

ℓj∑

k=ℓj−1+1

logAk =

ℓj∑

k=ℓj−1+1

ψ(ℓj)(B + ε)k−ℓj ≤
B + ε

B + ε− 1
· ψ(ℓj).

Denote Snψ :=
∑n

k=1 ψ(k). Proposition 3.1 follows directly from the
following two lemmas.

Lemma 3.2. We have

lim inf
n→∞

Snψ

ψ(n)
<∞.

Proof. For ε > 0, we will show that there exist infinitely many n, such that
ψ(n) > εSn−1ψ. If this was not true, then for all large n we would have

Snψ = Sn−1ψ + ψ(n) ≤ (1 + ε)Sn−1ψ.

Thus by Stolz-Cesàro Theorem

lim sup
n→∞

logSnψ

n
≤ lim sup

n→∞

log Snψ − logSn−1ψ

n− (n− 1)
≤ log(1 + ε),

which is impossible since we have

lim sup
n→∞

logSnψ

n
≥ lim sup

n→∞

logψ(n)

n
= B > log(1 + ε).

Denote by {nj} a sequence such that ψ(nj) > εSnj−1ψ. Then

Snjψ

ψ(nj)
=
Snj−1ψ + ψ(nj)

ψ(nj)
≤ 1 +

1

ε
<∞,

and the conclusion follows. �

Lemma 3.3. The following limit is finite:

lim inf
j→∞

Sℓjψ

ψ(ℓj)
<∞.

Proof. Denote L := lim infn→∞
Snψ
ψ(n) . Fix 0 < ε < B − 1 and let {mk} be

the sequence such that
Smkψ

ψ(mk)
≤ L+ ε.

Each mk is in some (ℓj−1, ℓj ], hence for this j

Sℓjψ = Smkψ +

ℓj∑

i=mk+1

ψ(i) ≤ (L+ ε)ψ(mk) +

ℓj∑

i=mk+1

ψ(i)

≤ (L+ ε)

ℓj∑

i=mk

ψ(i).

By definition of ℓj , for i ∈ [mk, ℓj ] ⊂ (ℓj−1, ℓj]

ψ(i) ≤
1

(B + ε)ℓj−i
ψ(ℓj),
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Thus

Sℓjψ ≤
B + ε

B + ε− 1
· (L+ ε)ψ(ℓj).

The result then follows. �

By (3.14)
ℓj∑

k=1

logAk ≤ C · Sℓjψ.

Hence

Z ≤ lim inf
j→∞

∑ℓj
k=1 logAk
ψ(ℓj)

≤ C
Sℓjψ

ψ(ℓj)
<∞,

which completes the proof of Proposition 3.1 �

Now we continue the construction of the subset and the estimation of the
lower bound.

Choose a sequence εi → 0 such that

lim
n→∞

∑n
i=1 log(1± εi)

ψ(n)
= 0,(3.15)

lim
n→∞

|
∑n

i=1 log(2εi)|

logAn+1
= 0,(3.16)

and

for each i Wi ∩ N 6= ∅,(3.17)

where

Wi := [A
1/Z
i (1− εi), A

1/Z
i (1 + εi)].

Observe that the condition (3.16) implies the condition (3.17) for all i
large enough. Observe also that for large i, (3.16) and (3.17) say only that
εi is greater than some negative power of Ai (which is increasing super-
exponentially fast) while the condition (3.15) is satisfied for all decreasing
sequences, so there is no problem to find such a sequence {εi} satisfying all
the conditions (3.15)-(3.17).

Denote by E the set of numbers x such that for all i, ai(x) is in the
interval Wi. By (3.17), E is nonempty. By (3.15), for all x ∈ E

lim inf
n→∞

∑n
j=1 log aj(x)

ψ(n)
= lim inf

n→∞

1
Z

∑n
j=1 logAj

ψ(n)
= 1.

So E ⊂ E(ψ).
Now we will estimate the Hausdorff dimension of E from below. To this

end, we define a probability measure µ on E. For each position, we distribute
the probability evenly. That is, for each possible ai, we give the probability

pi =
1

1 + |[⌈A
1/Z
i (1− εi)⌉, ⌊A

1/Z
i (1 + εi)⌋]|

≈
1

2εiA
1/Z
i

.

Here and in what follows, we follow [7]. For simplicity we give only the main
term of the calculations.
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By the probability distribution, for each basic interval In = In(a1, . . . an),
we have

µ(In) =

n∏

i=1

pi ≈
n∏

i=1

(2εiA
1/Z
i )−1.

By (2.1),

|In| ≈
n∏

i−1

(A
1/Z
i )−2.

To calculate the local dimension of x ∈ E we will use a smaller interval Dn

included in In:

Dn = ∪
an+1≥A

1/Z
n+1(1−εn+1)

In+1(a1, · · · , anan+1).

Since ai ∈ [A
1/Z
i (1−εi), A

1/Z
i (1+εi)] and Ai grows super-exponentially, the

Hausdorff dimension will be determined by calculating the local dimension

lim inf
n→∞

log µ(Dn)

log |Dn|
.

(See Section 4 of Jordan and Rams [7].)
On the one hand,

− log µ(Dn) = − log µ(In) =

n∑

i=1

log(2εi) +
1

Z

n∑

i=1

logAi.

By the property that Ai+1 ≤ AB+ε
i , we deduce that for big n,

− log µ(Dn) ≥
n∑

i=1

log(2εi) +
1

Z

n∑

i=1

1

(B + ε)i
logAn+1

≈
1

Z(B + ε− 1)
logAn+1.

(3.18)

The last ≈ follows from (3.16).
On the other hand, the length of the interval Dn is

|Dn| ≈ |In| ·A
−1/Z
n+1 .

Thus

− log |Dn| ≈ − log |In|+
1

Z
logAn+1 ≈ −2 log µ(Dn) +

1

Z
logAn+1.

Hence

− log µ(Dn)

− log |Dn|
≈

− log µ(Dn)

−2 log µ(Dn) +
1
Z logAn+1

=
1

2 +
1
Z

logAn+1

− log µ(Dn)

.

Then by (3.18), we obtain

lim inf
n→∞

− log µ(Dn)

− log |Dn|
≥

1

2 + (B + ε− 1)
=

1

B + 1 + ε
.

Therefore the lower bound follows from the Frostman Lemma (see [2, Prin-
ciple 4.2]).
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