
HAL Id: hal-01000038
https://hal.science/hal-01000038v1

Submitted on 27 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

NeMo: Fast Count of Network Motifs
Michel M. Koskas, Gilles G. Grasseau, Etienne E. Birmelé, Sophie S. Schbath,

Stephane S. Robin

To cite this version:
Michel M. Koskas, Gilles G. Grasseau, Etienne E. Birmelé, Sophie S. Schbath, Stephane S. Robin.
NeMo: Fast Count of Network Motifs. Journées Ouvertes Biologie Informatique Mathématiques
(JOBIM), Jun 2011, Paris, France. pp.53-60. �hal-01000038�

https://hal.science/hal-01000038v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


NeMo: Fast Count of Network Motifs

Michel KOSKAS
1, Gilles GRASSEAU

2, Etienne BIRMELÉ
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Abstract Networks is now the most popular way to describe interaction between biological ob-

jects. Studying network motifs is of particular interest in systems biology because these building

blocks constitute functional units. We propose a tool to compute and statistically study the total

number of occurrences of a given connected sub-graph, called topological motif, in a network.

This tool relies on two very efficient algorithms to enumerate and/or count all the occurrences of a

given topological motif in a given graph. Moreover, it implements approximate p-value computa-

tion in several probabilistic graph models extending some previous statistical results. The method

is available through an R package named NeMo.

Keywords Network motif, Motif count, Motif enumeration, R package.

1 Introduction

Networks is now the most popular way to describe interaction between biological objects. A classical

approach to mathematically analyse networks from a static point of view aims at uncovering structures which

can help in the understanding of the system. Global and local strategies can be considered and our work focuses

on the latter. Studying substructures, called network motifs, is of particular interest in systems biology because

these building blocks constitute functional units which combine to ensure cell regulatory processes ([1]). More

than a pure structural role, motifs are conserved among species, suggesting that some local topologies are

preferred from an evolutionary point of view ([2], [3], [4], [5]). Motifs of interest can be detected as exceptional

motif, i.e. motifs with unexpected counts with respect to some reference model.

Several definition of network motifs can be considered. When vertices are colored (w.r.t. gene annotation

for instance), a coloured motif is simply a multiset of colours whose occurrences correspond to connected sub-

graphs with vertices having the relevant colors ([6], [7]). An algorithm to count the number of occurrences of

such coloured motifs is proposed by [8] and their statistical significance is addressed in [9]. More commonly

used, the topological motifs are connected sub-graphs with a fixed topology. These motifs can be directed or

non-directed, depending on the nature of the biological network: protein-protein interaction (PPI) networks are

in general non-directed whereas regulatory networks are directed. Globally over-represented topological motifs

are often studied in regulatory networks because they reveal fundamental regulatory units ([10], [11], [1]). One

may also be interested by detecting topological motifs locally over-represented ([12]). Further work has been

done by collecting interest motifs among species and contracting vertices belonging to same ortholog groups,

simplifying graphs and research of over-represented motifs onto a set of species ([30]).

Three steps are necessary to decide whether a motif m is over-represented in a given network Gobs.

– Counting the number of occurrences, denoted by Nobs = NGobs
(m), of the motif within the observed

network;

– Defining some probabilistic random graph model which fits some desirable characteristics of the ob-

served network Gobs;

– Deriving the (approximate) p-value Pr{N ≥ Nobs} under the model.



This global strategy has already been used in several papers cited above (e.g. [1]) and in [13]. In this paper, we

focus on the first step.

Counting or enumerating network motifs is very computationally demanding and turns out to be a practical

bottleneck for large graphs. Algorithms have been proposed by [1], [14] or [15]. Enumerating and counting

motif occurrences are theoretically two very different problems. The first one consists in giving the list of

occurrences of a motif. The second one consists in giving the cardinality of the enumeration. These two

problems were up to now treated the same way: one counts the motif occurrences by enumerating them.

We propose two efficient algorithms: one dedicated to enumeration and the other to counting without

complete enumeration. These two algorithms are exact. Thanks to their efficiency, they can handle large graphs

(millions of vertices and motif of size few dozens of vertices in less than a minute on an average computer),

avoiding commonly used sampling strategies ([16]), which only provide approximate counts. We also introduce

the R package named NeMo dedicated to the detection of over-represented Network Motifs.

2 Methods

2.1 Motif Occurrence and Count

A topological motif (simply called motif in the sequel) m of size k (k ≥ 3) is defined like a connected

graph with k vertices.

Let G be a graph with n vertices labelled by I = {1, 2, . . . , n} and let denote by Gα the vertex-induced

sub-graph of G on the set of vertices α = (i1, . . . , ik), for some given i1, . . . , ik in I . We will say that an

occurrence of motif m exists at position α in the graph G if and only if the vertex-induced sub-graph Gα is

isomorphic to m or if Gα has a spanning subgraph isomorphic to m. For instance, in a triangle, we will count

3 occurrences of the ’∨’ motif and one of the ’∇’ motif.

Note that our definition of an occurrence differs from the occurrence of a vertex-induced sub-graph iso-

morphic to motif m, which is often used in the literature ([10,14]). With this later definition, in a triangle, one

would count no occurrence of the ’∨’ motif and one occurrence of the ’∇’ motif. Our definition gives access

to the total number of occurrences of the motif of interest. It is easy to switch between both way of counting,

thanks to linear combinations ([17]). This way of counting occurrences is furthermore more robust to the fact

that there might miss edges in the motif.

2.2 Enumerating Motif Occurrences

The first algorithm we propose is an exact enumeration (and counting) algorithm, based on a carefully

organized backtracking. By convention, each adjacency of the graph (i.e. the pairs of indices of the connected

vertices) is sorted. This algorithm relies on the following trick: the k vertices of the motif m are re-ordered,

such that for all 1 ≤ u ≤ k, the sub-motif m truncated to its first u vertices is connected (not strongly connected

if the graph and motifs are oriented). This can be done for any connected motif.

This trick allows an early pruning of the exploration tree during backtracking. Indeed, an occurrence of m

in the graph is a mapping ϕ from the set of vertices of m to the set of vertices ofG such that for all u, v vertices

of m, if u and v are connected in m then ϕ(u) and ϕ(v) are connected in G. Therefore, if a vertex u of the

motif is connected to several vertices with lower indices, say u1, . . . , ud, the candidates in the graph to be ϕ(u)
will be at the intersection of the matching adjacencies of ϕ(u1), . . . , ϕ(ud). Intersecting sorted lists of integers

can be very efficiently done thanks to a heap.

A simple backtracking using these features gives the following algorithm. In this algorithm, we call a

predecessor of a vertex v of m the set of vertices of m connected to v but whose indexes are lower than index

of v.

For both enumeration and counting algorithms, when searching the occurrences of a given motif, we avoid

the search of automorphic occurrences by partitioning the vertices of the motif into classes such that two

vertices v and v′ of the motif m are in the same class if and only if there exists ψ an automorphism of m such



that ψ(v) = v′ or ψ(v′) = v (one of these conditions is sufficient to define the classes). When exploring the

graph, we prune the backtrack by considering only mappings ϕ such that if v and v′ are in the same class,

v < v′ ⇒ ϕ(v) < ϕ(v′).

ALGORITHM 1.

Program SearchMotifs(Graph G, Motif m)

Input: a graph G

a Motif m

Output: The list L of occurrences of m in G

Variables: Partial list PL of vertices

Begin

L =<>

For each vertex i in G Do

PL =< i >

GoDeeper(G, m, PL, L)

EndFor

Return L

End

Procedure GoDeeper(Graph G, Motif m,

List of indices PL,

list of occurrences L)

Input: a graph G

the searched motif m

The partial list of vertices

(they are semantically the images

of the first vertices of the

motif in the graph G)

The list of occurrences of m in G

Output: Nothing (the goal

of this procedure is to fill L)

Begin

If (PL.size() = M.size())

Store PL in L

return

EndIf

i = PL.size()

V I = i-th vertex of PL

Pr = list of predecessors

of the i-th vertex in m

Pr2 = list of the vertices of PL (in G)

corresponding to the vertices

of Pr

Cand = intersection of the adjacencies

of the vertices Pr2 greater than the

image of the last vertex belonging to the same class as i

For each element e of Cand Do

PL = PL + e

GoDeeper(G, m, PL, L)

PL = PL - e

End For each

End

Let us emphasize the following points.

1. The condition regarding the connectedness of any first vertices of the motif is crucial: it allows an early

pruning of the exploration of the graph. A backtracking could take very significantly more time without

this condition.

2. It is more efficient to index the vertices of the motif in order to maximize the degrees of the vertices to their

predecessors in the motif.

3. The list of occurrences may be very huge even for small motifs (four vertices) and graphs (few thousands

vertices). It usually will be impossible to store the occurrences in the memory of a machine and this list

will usually be stored on a hard drive.



4. The intersection of a given number of lists is another crucial point of this algorithm. The adjacencies are

considered as sorted lists of integers (the indexes of the connected vertices). It is very important to use a

heap to perform efficiently this computation. The computation time is then K log h where h is the number

of lists (the heap size) and K is the total number of elements of the union of these lists lower than or equal

to the minimum of the maximums of the lists.

5. The graph might be oriented or not. In both cases the preceding algorithm holds. In the case of an oriented

graph, the adjacencies are two arrays of sorted lists, the outgoing adjacencies and the incoming adjacencies

for the graph and the motif. The adjacencies of whom one computes the intersection must have then the

same direction in the motif and in the graph.

6. The efficiency is also increased by taking an order on the vertices of the network and computing the equiv-

alence classes of m. Stopping the backtracking whenever there exist u and v in the same equivalence class

satisfying u < v and φ(u) > φ(v) ensures to visit each occurrence of the motif only once [18].

2.3 Counting Motif Occurrences

As any enumerating algorithm, the preceding algorithm may easily be changed into a counting algorithm:

it suffices to replace the storage of the found occurrences with the incrementation of a counter. The second

algorithm we propose allows counting without enumeration, which improve dramatically the performances, as

shown in the next section.

Remind that we only consider motifs with at least three vertices which implies that at least one vertex has

degree at least 2.

But in many cases, there is no need to explore the graph for the whole motif. Let V be the set of vertices

of m. Let S be the set of vertices of m connected to a single vertex of m and let m′ be the motif m reduced

to V ′ = V \ S. Let us denote OutDeg(v′) the degree of vertex v′ ∈ V ′ towards the vertices of S and Deg(v)
the degree of a vertex v in the motif. Let us call residual degree (denoted by ResDeg()) the degree of vertex

v′ ∈ V ′ its number of connections to its neighbors in m
′.

Then let us suppose that we found an occurrence O of m′ in G (we denote by ϕ′ the mapping from V ′ to

the vertices of G). Then the number of occurrences of m in G being a prolongation of O can be computed

straightforwardly, taking care of possible crossings between the lists of neighbours.

Like in the enumeration algorithm, we avoid exploring automorphic occurrences.

We also remove from the graph its vertices of degree 1 (we obtain what we call here the reduced network,

these vertices being unable to be any part of the reduced motif).

We hence modify the enumeration Algorithm 1 as follows:

ALGORITHM 2.

Program CountMotifs(Graph G, Motif m)

Input: a graph G

a Motif m

Output: The number of occurrences of m in G

Variables: Partial list PL of vertices

Begin

N = 0

For each vertex v in G Do

PL =< v >

GoDeeper(G, m, PL, N)

EndFor

Return N

End

Procedure GoDeeper(Graph G, Motif m,

List of indices PL,

integer N)

Input: a graph G



the searched motif m

The partial list of vertices

The partial number N of occurrences

of m in G

Output: Nothing (the goal

of this procedure is to compute N)

Begin

If (PL.size() = M.size())

int PartialResult = ComputeCount(G, m, PL)

Result = Result + PartialResult

return

EndIf

i = PL.size()

V I = i-th vertex of PL

Pr = list of predecessors

of the i-th vertex in m

Pr2 = list of the vertices of PL (in G)

corresponding to the vertices

of Pr

Cand = intersection of the adjacencies

of the vertices Pr2

For each element e of Cand Do

PL = PL + e

GoDeeper(G, m, PL, N)

PL = PL - e

End For each

End

Let us emphasize the following points.

1. This algorithm is faster than the preceding if and only if the motif has at least one vertex of degree 1, which

is the most likely.

2. The counting of the motif m necessitates the enumeration of the motif m′ (consisting of the vertices of m

of degree at least 2). A further step would be to deduce the counting of m from the one of m′, thanks to

prior computations on the graph G.

3. This counting algorithm is very close to an enumeration algorithm. Let us illustrate this point through an

example. Let us suppose the graph is composed of 9 vertices, the first three connected to each other, the

three next connected to the vertex 1 and the three last ones being connected to vertex 2. Let us suppose that

the wanted motif consists of 5 vertices, the three one connected to each other, the fourth one being connected

to vertex 1 and the fifth one being connected to vertex 2. Then the reduced graph and motif are both

triangles. Counting the occurrences is made as explained above but we could enumerate the occurrences of

the full motif in the full graph with a writing like {1, 2, 3, [4, 5, 6], [7, 8, 9]}, brackets meaning one can take

any vertex among theses ones.

4. The worst case for both algorithms is the case of cycles: both of these algorithms are relatively slow on

enumerating or counting them. For example, it takes on an average computer up to 2.98 seconds to count or

enumerate the squares in the PPI network of D. melanogaster (7068 vertices, 22532 edges). Into the same

graph, counting or enumerating 5 -cycles takes more than 1 minute and 20 seconds (1 minute and 21.968

seconds).

Complexity: When the motif m is fixed, all backtracking algorithms have a polynomial complexity. When the

degrees in the graph are bounded (it is usually the case in PPI graphs) then the complexity is bounded by a

linear function in the number of edges (or arcs) of the graph. If the motif changes, the problem is known to

be NP-hard in general and NP-complete for some particular families of motifs (the cliques for instance). The

present algorithms have the same asymptotical complexities than any backtracking algorithm.

2.4 Results

We compared our algorithms with one of the most popular motif detection tool: FANMOD ([14]). Up

to now, this software is the most efficient to count and enumerate all the present motifs in a network and



is generally used as a time reference to compare with other algorithms. Remind that FANMOD counts the

number of vertex-induced occurrences, whereas we count the total number of occurrences.

There is another important difference between the general strategies of FANMOD and NeMo. FANMOD

performs a systematic exploration of the network for sub-graphs of a given size k. This produces the list of

occurrences only for motifs that are actually present in the network. Our algorithms deal with one motif at

a time. They hence need to be run once for each possible motif of size k (called ’hereafter k-motifs’). We

therefore need to first generate the list of all possible k-motifs, which is a CPU time consuming task as the

number of operations increases as ∼ exp(k2). Nevertheless, for a given motif size k, this can be done once for

all, and stored to be reused for multiple network analysis.

The performances are presented here for two PPI undirected networks.

– E. coli PPI network (424 vertices and 519 edges with 1.22 mean degree) is a small network often found

in the literature dealing with the motif detection algorithm performances (see Table 1).

– S. cerevisae PPI network (4958 vertices and 17224 edges with 3.4 mean degree) offers a more dense

network than the previous one (see Table 2).

The three codes were compiled with the same compiler options (g++-4.4.3 with -O3 optimization

option) and run on the same computer (Intel Core i7 2.8 GHz with 2.9 Go memory, Ubuntu 10.04 LTS)

Motif Number Generation of the FANMOD Algorithm 1 Algorithm 2

size k of motifs motif list (sec) (sec) (sec) (sec)

5 21 0 3 0.4 0

6 112 1.7 74 11 0.1

7 853 48 1 490 163 2

8 11 117 23 455 26 238 3 420 14

Table 1. Performances for the count of all k-motifs in the E. coli PPI network (undirected).

Motif Number Generation of the FANMOD Algorithm 1 Algorithm 2

size k of motifs motif list (sec) (sec) (sec) (sec)

4 6 0 14 2.8 1.7

5 21 0 1 584 166 11

6 112 1.7 107 374 12 732 538

Table 2. Computation times to count all k-motifs in the S. cerevisae PPI network.

Algorithm 1 is 5 to 9 times faster than FANMOD. This gain is explained by the use of (at most) linear com-

plexity operations in the internal backtracking procedure and by the constraint mechanism to avoid exploring

the automorphisms of the same motif.

A drastic speed-up is obtained with Algorithm 2: from 750 to 1800 times for the E. coli PPI network and

around 150-200 concerning the S. cerevisae PPI network. These factors are obtained thanks to the motif reduc-

tion which implies two types of gains: first the backtracking is pruned earlier (each step avoided gains a factor

in computation time) and secondly the motifs are counted by groups (the same terminal case of the backtracking

gives numerous counted occurrences without any further exploration, which also divides the computation time

by the average number of counted occurrences at each terminal case).

3 Conclusion

3.1 The NeMo Package

We implemented the counting and enumerating algorithms in the R package NeMo which is dedicated to

the detection of network motifs with unexpected count in an observed network. For this purpose, the package

allows to assess the significance of observed counts with respect to three different random graph models:

– Erdös-Rényi ([19]), which is the simplest random graph model accounting only for the network density;

– Expected Degree Distribution ([20,21]), which fits the observed degree distribution, in average;



– MixNet ([22], also known as Stochastic Block-Model ([23]), which accounts for an arbitrary heterogene-

ity structure in the network.

The popular Fixed Degree Distribution (see e.g. [10]) is not among the proposed models, as it does not retrieve

correctly the variability of the count of star-like motifs (see [13]).

For each of these models, the package provides the exact mean and variance of the count. A p-value

based on the compound Poisson approximation, proposed in [13], is computed. We implemented the efficient

calculation of the tail of this distribution proposed by [24]. NeMo can both handle directed and undirected

networks.

As NeMo can both count and enumerate motif occurrences, it can be used in a 2 step strategy. Exceptional

motifs among all k-motifs can be efficiently detected at first using the counting algorithm (Algorithm 2). Then,

a deeper analysis can be carried for each exceptional motif, by looking at their location in the network using

the enumerating algorithm (Algorithm 1).

The NeMo package will be soon available on the CRAN repository.

3.2 Discussion

We proposed an efficient algorithm to count topological motif occurrences in biological networks that out-

performs other existing tools. The dramatic gain in the computation time provided by these algorithms allows

us to use motif counts intensively for network analysis. As a first application, such efficient algorithms make

possible the comparison of a large number of nerworks, based on motif counts ([25], [26], [27], [28]). More-

over, they allow to study the apparition of new motifs under complex evolutionary graph models. [29] proposed

an Approximate Bayesian Computation strategy to infer such a model, using motif counts as summary statis-

tics. The computation time dedicated to the counting is the bottleneck of their method, that can be overcome

by our algorithms.

We are currently working on two main improvements. Although it only needs to be performed once, the

generation of the list of all k-motifs is still demanding. We are currently working on the improvement of this

step. In addition, for large motifs it could be desirable to avoid the scan of the entire network whereas the motif

is not present in the network. This could be done, for example, in a forward way, first counting the motifs of

a given size k, and then pruning the list of larger motifs with size k′ > k, based on the presence or absence of

their sub-motifs of size k.
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