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A Bayesian Evidence Synthesis for Estimating
Campylobacteriosis Prevalence

Isabelle Albert,1,∗ Emmanuelle Espié,2 Henriette de Valk,2 and Jean-Baptiste Denis3

Stakeholders making decisions in public health and world trade need improved estimations of
the burden-of-illness of foodborne infectious diseases. In this article, we propose a Bayesian
meta-analysis or more precisely a Bayesian evidence synthesis to assess the burden-of-illness
of campylobacteriosis in France. Using this case study, we investigate campylobacteriosis
prevalence, as well as the probabilities of different events that guide the disease pathway,
by (i) employing a Bayesian approach on French and foreign human studies (from active
surveillance systems, laboratory surveys, physician surveys, epidemiological surveys, and so
on) through the chain of events that occur during an episode of illness and (ii) including expert
knowledge about this chain of events. We split the target population using an exhaustive and
exclusive partition based on health status and the level of disease investigation. We assume an
approximate multinomial model over this population partition. Thereby, each observed data
set related to the partition brings information on the parameters of the multinomial model,
improving burden-of-illness parameter estimates that can be deduced from the parameters
of the basic multinomial model. This multinomial model serves as a core model to perform
a Bayesian evidence synthesis. Expert knowledge is introduced by way of pseudo-data. The
result is a global estimation of the burden-of-illness parameters with their accompanying un-
certainty.

KEY WORDS: Bayesian evidence synthesis; burden-of-illness; campylobacteriosis; expert opinion;
multinomial model; surveillance data

1. INTRODUCTION

Assessing the burden of foodborne infectious
diseases is a challenging statistical and epidemio-
logical objective for public health and world trade
decisions. Good estimates of burden-of-illness are
needed to improve the quality of quantitative risk
assessment (QRA) models. In particular, the use of
available human data regarding studied food dis-
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ease can provide better accuracy in dose-response
models.(1)

In a case study in France, Albert et al.(2) demon-
strated that including Campylobacter—one of the
most common causes of acute bacterial gastroenteri-
tis in industrialized countries—epidemiological data
in a global Bayesian approach may improve the
QRA model. However, only a unique foreign sur-
vey(3) examined the prevalence of the disease (the
number of campylobacteriosis cases (32 cases) for the
equivalent of 4,026 person-years determined by this
U.K. survey was introduced in the illness module of
the food chain modeling). This was not satisfactory; it
would be better to include all related human studies
of the disease, i.e., to use a collection of data sources
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not possibly directly linked to the prevalence of the
disease but that could inform it.

In this article, we estimate the campylobacte-
riosis burden in France by taking advantage of all
known available and pertinent data. There is a large
amount of missing data because for many people, this
illness is not a dramatic event, and many cases go un-
diagnosed or unreported. In this context, a common
practice is to use point estimates from each of the
available surveys and combine them into a surveil-
lance or burden-of-illness pyramid to assess the num-
ber of cases.(4,5) This pyramid describes the chain
of events occurring from any illness episode. Each
step of the pyramid corresponds with a surveillance
step (e.g., seeking medical care, providing a stool
specimen, and getting laboratory testing, etc.), which
is associated with conditional probabilities (e.g., the
probability of asking for a stool culture from peo-
ple seeing a physician due to acute gastroenteritis).
Some links can be missing, however; in such cases, es-
timates are often taken from similar diseases or sim-
ilar countries.(5) Also, as not all cases are included
in surveillance systems (e.g., ill persons do not seek
medical care, specimens are not obtained, etc.), vari-
ous surveillance multipliers are applied to obtain the
true number of cases in the general population from
the number of registered cases. At best, a sequence
of negative binomial distributions is used in Monte
Carlo simulations to estimate the number of cases
missed at each step of the pyramid.(6) However, un-
certainties or variability associated with the estimates
are not consistently conveyed because different point
estimates are used in the Monte Carlo simulations
without regarding the size of the different data sets
involved: for example, a discrete uniform distribution
was used to choose between three point estimates of
the number of cases per person-years.

In this article, a Bayesian meta-analysis or more
precisely a Bayesian evidence synthesis is proposed
to assess burden-of-illness parameters in human
studies through the chain of events occurring in an
illness episode. Goubar et al.(7) recently proposed a
similar approach for HIV infection, an illness that
has received much more attention. In that case, the
context was favorable because there are different
active surveillance systems to detect inconsistencies
between redundant data sets.(8) The term “meta-
analysis” refers to a broader class of analyses encom-
passing results from studies that have addressed the
same question in a similar way and therefore pro-
vide information on common parameters of interest
(one level of parameters).(9) Whereas the term “evi-
dence synthesis” refers to analyses encompassing di-

verse results from diverse sources that inform indi-
rectly the parameters of interest through parameters
that are functions of them (two levels of parameters).
The synthesis of diverse sources of evidence on par-
ticular quantities of interest is increasingly employed
in epidemiology as a means of exploiting all avail-
able information, even from studies of differing de-
signs.(10−12) In a Bayesian setting, priors are assumed
on parameters of the upper level giving a joint prior
distribution and each piece of evidence contributes
to the likelihood through its likelihood function. The
likelihood of the model is then the product of the
likelihood functions. The posterior distribution of the
parameters of interest is obtained via Bayes’s theo-
rem. The Bayesian evidence synthesis we proposed
is a complex evidence structure compared to usual
evidence synthesis because it uses sometimes three
levels of parameters and expert opinions are added
in the synthesis to exploit even better all available in-
formation.

The objective of this study is to provide a con-
sistent estimate of campylobacteriosis prevalence for
1 year in France given the present conditions. We
only use human surveys about the disease selected
by the epidemiologists in charge of this disease in
France. Other estimated parameters from the pro-
posed model are indicators of the disease burden
(e.g., the probability of having a campylobacterio-
sis and consulting a doctor). We obtained estimates
of all parameters associated with the modeled chain
of events. The proposed Bayesian evidence synthe-
sis retains and conveys uncertainties and variability
of all model parameters. In the spirit of Bayesian up-
dating, this evidence structure can be improved by
adding new data.

Section 2 provides the available data for the case
study and the suggested method to estimate illness
burden parameters. Section 3 presents the results,
which are discussed in Section 4.

2. MATERIAL AND METHODS

2.1. Data and Modeling

We gathered publications and reports that pro-
vided data that could contribute to the assessment
of the situation concerning campylobacteriosis in
France (see Table I). These included reports from na-
tional and regional Campylobacter surveillance sys-
tems, reports from the national reference laboratory
for Campylobacter, reports from the sentinel gen-
eral practitioners (GP) surveillance system for acute
gastroenteritis, studies on laboratory practices and
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Table I. Data Sets and Related Modeling (See Table II for the Definitions of the Qs)

Source Provided Information Modeling

Vaillant et al.(13) r1,1 SCa out of n1,1 people (Charente-Maritime
region, 1996)

r1,1 ∼ Bin(n1,1, Q1)

r1,2 SCa out of n1,2 people (Mayenne region,
1998)

r1,2 ∼ Bin(n1,2, Q1)

r1,3 SCa out of n1,3 people (Mayenne region,
1999)

r1,3 ∼ Bin(n1,3, Q1)

r1,4 SCa out of n1,4 people (Mayenne region,
2000)

r1,4 ∼ Bin(n1,4, Q1)

r1,5 SCa out of n1,5 people (CNAMTSb, 2004) r1,5 ∼ Bin(n1,5, Q1)
r5 positive CSCc out of n5 CSCc (Epicop survey,

1997)
r5 ∼ Bin(n5, Q5)

Gallay and Mégraud(14) r6,1 positive CSCc and r7,1 CSCc out of n6,1 SC
(hospital’s labs, 2000)

(r6,1, r7,1−r6,1, n6,1−r7,1) ∼
Multinomial3(n6,1, Q6, Q7 , 1−Q6 −Q7)

r6,2 positive CSCc and r7,2 CSCc out of n6,2 SC
(private labs, 2000)

(r6,2, r7,2−r6,2, n6,2−r7,2) ∼
Multinomial3(n6,2, Q6, Q7 , 1−Q6 −Q7)

Surveillance network data r6 positive CSCc out of n6 SCa (period:
2002–2005)

r6 ∼ Bin(n6, Q6)

r6,3 positive CSCc and r7,3 CSCc out of n6,3 SCa

(period: 2005–2006)
(r6,3, r7,3−r6,3, n6,3−r7,3) ∼
Multinomial3(n6,3, Q6, Q7, 1−Q6 −Q7)

CNAMTSb r1,6 SCa out of n1,6 people (CNAMTSb, 2006) r1,6 ∼ Bin(n1,6, Q1)
Sentinelles’ network r9 people having an AGEd and seeing a doctor

out of n9 exposed individuals (year: 2006)
r9 ∼ Bin(n9, Q9)

Wheeler et al.(3) r2 campylobacteriosis out of n2 individuals over
1 year

r2 ∼ Bin(n2, Q2)

r3,1 people having an AGEd out of n3,1 exposed
people over 1 month

r3,1 ∼ Bin(n3,1, Z3) Z3 = 1−(1−Q3)1/12

Incidence estimate of AGEd over 1 year, Inc1

and its 95% confidence interval
r3,Inc1 ∼ Poisson(l1n3,Inc1)e

l1 = n3,Inc1ln(1/(1−Q3))
r4 people having a campylobacteriosis and

seeing a doctor out of n4 exposed people
r4 ∼ Bin(n4, Q4)

Frosst et al.(15) r3,2 people having an AGEd out of n3,2 exposed
people over 1 month

r3,2 ∼ Bin(n3,2, Z3) Z3 = 1−(1−Q3)1/12

Incidence estimate of AGEd over 1 year, Inc2

and its 95% confidence interval
r3,Inc2 ∼ Poisson(l2n3,Inc2)e l2 =
n3,Inc2ln(1/(1−Q3))

Anonymous(16) r3,3 people having an AGEd out of n3,3 exposed
people over 1 month

r3,3 ∼ Bin(n3,3, Z3) Z3 = 1−(1−Q3)1/12

Incidence estimate of AGEd over 1 year, Inc3

and its 95% confidence interval
r3,Inc3 ∼ Poisson(l3n3,Inc3)e

l3 = n3,Inc3ln(1/(1−Q3))
r8,1 people having an AGEd and seeing a doctor

out of n8,1 people having an AGEd
r8,1 ∼ Bin(n8,1, Q8)

Anonymous(17) Incidence estimate of AGEd over 1 year, Inc4

and its 95% confidence interval
r3,Inc4 ∼ Poisson(l4n3,Inc4)e l4 =
n3,Inc4ln(1/(1−Q3))

r8,2 people having an AGEd and seeing a doctor
out of n8,2 people having an AGEd

r8,2 ∼ Bin(n8,2, Q8)

Kuusi et al.(18) r8,3 people having an AGEd and seeing a doctor
out of n8,3 people having an AGEd

r8,3 ∼ Bin(n8,3, Q8)

aSC = stool cultures.
bCNAMTS = French Health Insurance Fund.
cCSC = stool cultures of Campylobacter.
dAGE = acute gastroenteritis.
eFor the incidence estimate, Inci (i = 1, . . , 4), a Poisson distribution was retained because some Inci were greater than 1. From the value of
the estimate and its associated confidence interval, the size of the sampled population, n3,Inci, was numerically retrieved and the number of
cases, r3,Inci, deduced.
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results of stool cultures, and outbreak reports. We
also consulted the national health insurance database
on reimbursement of stool cultures. The studies had
been selected by the InVS (French Institute for
Public Health Surveillance), on criteria of data valid-
ity and representativeness to estimate the burden of
gastrointestinal illness in France.(13) Foreign surveys
have been used when no French data existed and
when the foreign context was analogous to a French
context (similar food hygiene, similar consumption
habits, etc.). Table I describes the selected data and
the associated models; Table II summarizes and pro-
vides the probabilities of events (Qk, k = 1, . . . , 9)
directly informed by the selected data sets. We care-
fully selected models considering the representative-
ness of the data and their associated variability.
Simple models were often chosen (nonhierarchical
binomial or multinomial) due to data poverty. Never-
theless, this modeling is a key feature of the synthesis
of multiple data sources.

For example, several sources provide informa-
tion on the probability of having a stool culture (Q1

in Tables I and II) derived from data on stool cul-
tures collected from different French regions, from
the number of stool cultures registered by the French
National Health Insurance Fund (CNAMTS), and
over different years. Assuming data independence
and that they are representative of the current pop-
ulation (omitting spatial and temporal hierarchical
modeling in agreement with the epidemiologists),
each data set provides “cases” (r1,i ) from a sample
of the population (n1,i ). The first index of r and n is
1 because it refers to Q1 and the second index refers
to the data set i (i = 1 , . . . , 6), which informs Q1. The
second index is only introduced in Table I when sev-
eral sources inform the same Q.

For most of the data, a binomial model was re-
tained. We do not report all the decisions made that
led to the chosen model in this article; rather, we
merely underline that these decisions constitute the
model’s foundation and must be made in close col-
laboration between epidemiologists and statisticians.
Some assumptions may appear strong, but are in-
tended to shed light on the French situation using all
the data of interest.

Q2 is the probability of having a campylobacte-
riosis within 1 year, which represents the main ob-
jective of this study. The data set associated directly
with Q2 comes from an English study and cannot ac-
count for the unique source of data to produce an es-
timation of a French Q2. Thus, our main objective is
to estimate Q2 for France, taking into account all the
available data sets gathered in Table I, along with the

associated uncertainty linked to sample size. In Sec-
tion 2.2.2 we show how to introduce expert opinions
to take both the retained data and expert knowledge
into account.

2.2. Method: Estimating the Burden-of-Illness
Parameters and Associated Uncertainty

The proposed approach comprises three main
steps: (i) the definition of a target-population par-
tition associated with a multinomial model cover-
ing indirectly the independent likelihoods of all data
sets; (ii) the introduction of expert knowledge as
pseudo-data into the model to take all information
into account improving unobserved data parameter
estimation, and recalibrating the retained data; (iii)
the Bayesian inference produced on the data and
pseudo-data using poorly informative priors through
a Dirichlet distribution for the probability parame-
ters of the basic multinomial model.

2.2.1. Synthesis

To link the probabilities informed by the data
sets in the same framework, the population of in-
terest (i.e., the population from which probability of
illness is inferred) is split based on the character-
istics (events) informed by the data sets (shown in
italics in Table II). This partitioning of the target pop-
ulation is built on the individual level of health sta-
tus and disease investigation. The partition provides
a formal framework that represents the population
of interest and the probabilities associated with each
basic event. The partition is defined in Table III as
the combination of the health status (C, O, or R; C
for “having a Campylobacteriosis,” O for “having an-
Other acute gastroenteritis” and R for “Remaining
possibilities”) associated with the level of investiga-
tion (y, n, s, d, or r; y for “having a positive stool
culture to Campylobacter,” n for “having a Nega-
tive stool culture to Campylobacter,” s for “having
a Stool culture without Campylobacter research,” d
for “having consulted a Doctor but no stool culture
taken” and r for “Remaining possibilities”). Any per-
son in the target population belongs to only one class
of the partition. It means that an individual of the
French population is only in one class of the parti-
tion (defined in Table III) in 1 year, which seems
to be reasonable given the small size of each class
and the fact that both events (acute gastroenteritis
and campylobacteriosis) are relatively rare. In Ta-
ble III, we define the probabilities (Ps) that a per-
son from the French population is in each class of the
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Table II. Qs probabilities and Related Data Sets or/and Expert Opinion; Qs in Terms of Ps (See Table III) and Posterior Credible
Intervals at 95%

Qk Definition
Related Data Sets and/or Expert

Opinion Combination of Ps CI95%

Q1 Probability of having a stool
culture

French health statistics(13) and
CNAMTS data (year 2006)

Py+ + Pn+ + Ps+ [8.90�; 8.94�]

Q2 Probability of having a
campylobacteriosis

English national surveillance data
and expert opinion (n2,p =
685, r2,p = 13)

P+C [7.15�; 12.68�]

Q3 Probability of having an acute
gastroenteritis

English national surveillance
data,(3) Canadian study,(15)

Irish survey,(16) and Australian
national gastroenteritis
survey(17)

P+C + P+O [34.80%; 36.85%]

Q4 Probability of having a
campylobacteriosis and
consulting a doctor (for an
acute gastroenteritis)

English national surveillance
data(3)

PyC + PnC + PsC + PdC [3.74�; 4.60�]

Q5 Probability of having a positive
stool culture to
Campylobacter on the
condition of having a stool
culture to Campylobacter

French health statistics(13) Py+/(Py+ + Pn+) [4.22%; 4.34%]

Q6 Probability of having a positive
stool culture to
Campylobacter on the
condition of having a stool
culture

French laboratory survey,(14)

French surveillance network
(years 2002–2005), and French
surveillance network (years
2005–2006)

Py+/(Py+ + Pn+ + Ps+) [2.55%; 2.62%]

Q7 Probability of having a
negative stool culture to
Campylobacter on the
condition of having a stool
culture

French laboratory survey,(14)

French surveillance network
(period: 2002–2005), and
French surveillance network
(period: 2005–2006)

Pn+/(Py+ + Pn+ + Ps+) [57.62%; 58.01%]

Q8 Probability of consulting a
doctor on the condition of
having an acute
gastroenteritis

Irish survey,(16) Australian
national gastroenteritis
survey,(17) Norwegian
survey,(18) and expert opinion
(n8,p = 87, r8,p = 21)

(PyC + PnC + PsC + PdC

+PyO + PnO + PsO + PdO)
/(P+C + P+O)

[23.42%; 24.99%]

Q9 Probability of consulting a
doctor and having an acute
gastroenteritis

French Sentinelles’ network
(year 2006)

PyC + PyO + PnC + PnO +
PsC + PsO + PdC + PdO

[8.53%; 8.88%]

Q10 Probability of having a
negative stool culture to
Campylobacter on the
condition of having a stool
culture to Campylobacter
and having a
campylobacteriosis

Expert opinion (n10,p = 79, r10,p =
23)

PnC/(PyC + PnC) [20.80%; 40.87%]

Q11 Probability of not having an
acute gastroenteritis on the
condition of having a stool
culture

Expert opinion (n11,p = 419, r11,p

= 31)
(PyR + PnR + Ps R)/(Py+ +
Pn+ + Ps+)

[5.40%; 10.65%]

Note: all probabilities are over 1 year. The notation “+” in the subscript indicates a summation over the row or the column of the partition
given in Table III; for instance, Py+ = PyC + PyO + PyR.
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Table III. Ps Probabilities (Over 1 Year) Associated with the
Population Partition of Interest Using the Combination of
Health Status (C, O, and R) and the Level of Investigation

Partitions (y, n, s, d, and r)

C O R

y PyC PyO PyR

n PnC PnO PnR

s PsC PsO Ps R

d PdC PdO PdR

r PrC Pr O Pr R

Note: C is for “having a Campylobacteriosis”; O is for “having
anOther acute gastroenteritis”; R is for “Remaining possibili-
ties”; y is for “having a positive stool culture to CampYlobacter”;
n is for “having a Negative stool culture to Campylobacter”; s is
for “having a Stool culture without Campylobacter research”; d
is for “having consulted a Doctor but no stool culture taken”;
r is for “Remaining possibilities”; and the Ps are the probabili-
ties for a person sampled from the target population belonging
to the subpopulation defined by the associated row and column.
The sum over the 15 probabilities is 1 because each individual
belongs to one, and only one, of the15 defined categories.

partition. As required, all the probabilities provided
by the available data sets in Table II are expressed
in terms of Ps: Table II provides the Q probabilities
in terms of Ps. Regarding the models in Table I, the

data sets inform the Qs, and the Ps via the Qs. The
repartition of any subset of people could be modeled
as a multinomial distribution. From this core model,
the model likelihood is the product of the likelihoods
of each available data set. Fig. 1 provides a schematic
representation of the model showing how the data
sets are linked to the parameters, either directly on
Qs or indirectly (on functions of Qs) and indirectly
on Ps.

2.2.2. Introduction of Expert Opinions

To better estimate burden-of-illness probabili-
ties, it is natural to introduce expert opinions into
the model. Expert knowledge can inform the quan-
tities related to the partition defined above; there-
fore, expert knowledge adds confidence with respect
to the assessment of Ps, or their mappings as new
Qs. Expert opinions have to be independent of the
data used and related to the population to draw infer-
ences. Specifically, in this case study, an epidemiolog-
ical viewpoint of the people in charge of French dis-
ease surveillance was used (i) to simplify the model
and (ii) to provide information on the situation in
France.

[ ]1 :15P
1,ir

2r

2, pr

3, 3ln(1/ (1 ))i Incil n Q= − 1/12
3 31 (1 )Z Q= − −

4r

5r
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Fig. 1. Graphical representation of the model structure. A dashed line indicates a logical link and a solid line indicates a stochastic link (see
Table I column: modeling). Ellipses indicate the parameters and rectangles indicate data (the pseudo-data are in gray; see Tables I and II).
Surrounding rectangles, with i = 1, . . ., 3, 4, or 6 at the bottom, indicate a series of similar models of data/parameters indexed by i. The Ps
(see Table III) derive the Qs (see Table II) and all data sets are modeled with the help of Qs (see Table I column: modeling).
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(i) We supposed that

– it is possible to neglect positive Campy-
lobacter stool cultures when having an-
other acute gastroenteritis; that is, to
assume: PyO = 0; then, the probability of
having a Campylobacter infection concomi-
tantly with an acute gastroenteritis due to
another pathogen is considered to be zero.
This assumption is justified by the fact that
for an individual a Campylobacter infection
and acute gastroenteritis are relatively rare
events.

– it is possible to neglect positive Campy-
lobacter stool cultures when not having
an acute gastroenteritis; that is, to assume
PyR = 0; healthy carriers exist but usually
patients have a stool culture only in case
of symptoms. Therefore, we consider that
there is no person with a positive Campy-
lobacter stool culture without symptoms of
acute gastroenteritis.

– it is possible to neglect consultations for
acute gastroenteritis without having an
acute gastroenteritis; that is, to assume
PdR = 0; we assume that persons with no
symptom of acute gastroenteritis do not
consult for acute gastroenteritis.

This reduces the parametric dimension of the
model to 11 (because additionally Ps sum to
one).

(ii) Also, we had expert opinions about Q2, the
probability of having a campylobacteriosis; Q8, the
probability of consulting a doctor on the condition of
having an acute gastroenteritis; Q10, the probability
of having a negative stool culture to Campylobacter
and having a campylobacteriosis; and Q11, the proba-
bility of not having an acute gastroenteritis on condi-
tion of having a stool culture (see also Table II). For
each of these four probabilities, the expert opinion
was expressed as a confidence interval, interpreted as
a 95% credibility interval. Assuming that the under-
lying random variable followed a beta distribution,
this interval was translated into pseudo-data based
on the conjugacy between binomial and beta distri-
butions. More precisely, r successes out of n trials
were retained such that the 2.5th and 97.5th quan-
tiles of a beta(r, n−r) be the elicited interval. This
choice is consistent with the assumed prior Dirichlet
distribution for the basic P multinomial parameters.
Indeed, the distributions entailed for the Qs are beta
distributions since when a vector (X1, . . . , Xp) follows

a Dirichlet distribution and A and B are subsets of
{1, . . . , p}, then the ratio

∑
i∈A

Xi

/ ∑
i∈{A∪B}

Xi

follows a Beta distribution. Pseudo-data were ob-
tained numerically with the help of an iterative al-
gorithm programmed in R (R Development Core
Team, 2008). Once the two parameters (alpha and
beta) of the beta distribution (rounded to the near-
est integer) followed by the elicited quantity (e.g., Q)
combination of Ps were obtained numerically from
the expert confidence interval, the information is in-
troduced independently into the model as pseudo-
data, which is the equivalent of a data set comprising
alpha successes (cases) for alpha + beta trials. That
is:

alpha ∼ Bin((alpha + beta), Q).

Table II provides the pseudo-data introduced
in the synthesis. In the framework of the Bayesian
paradigm, the basic idea is to generate pseudo-data
whose integration via statistical analysis leads to esti-
mates and uncertainties approaching the ideas of the
experts.

2.2.3. Model Inference and Computation

We adopted a Bayesian approach.(19) In the
first step, so-called prior probability distributions are
placed on the P parameters. Due to the relation-
ships indicated in Fig. 1 and specified in Table II,
prior distributions for the Q probabilities are implic-
itly deduced. Taking account of the observed values
of the data sets, the inference step produced poste-
rior distributions by conditioning the parameters on
the observed data. The difference between the prior
and the posterior can be interpreted as the modifi-
cation of previous knowledge provided by the data.
In this case study, an analytical solution of the pos-
terior distribution does not exist despite the con-
jugacy of the Dirichlet prior and the multinomial
model because the likelihood is not directly multi-
nomial. Indeed the data are not introduced in the
multinomial model, but are incorporated through the
Qs, which are sums, ratios, or both of the Ps. Nev-
ertheless, Bayesian inference can be made through
Markov chain Monte Carlo (MCMC) algorithms that
simulate the posterior distribution of the model pa-
rameters.(20) MCMCs are iterative algorithms that
produce, after convergence, simulated values of the
parameters according to the posterior distribution
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and are generally autocorrelated. In practice, the first
simulations (called the “burn in”) are eliminated, and
only a fraction of equally spaced simulations are re-
tained (thinning option) to avoid autocorrelations.

Bayesian inference has been performed on
pseudo-data to produce prior modeling using only
expert knowledge and poorly informative priors on
the P parameters of the multinomial distribution not
equal to zero (that is, 12 Ps). A Dirichlet distribu-
tion of order 12 with parameters αi = 1, i = 1, . . . , 12
was chosen as a vague prior distribution for the Ps.
The posterior distributions of the model parame-
ters were produced using the modeling and the data
sets presented in Table I. Prior and posterior dis-
tributions were obtained using MCMC algorithms
from Jags 1.0.3(21) and OpenBUGS 3.0.3(22) software
packages.

A burn-in period of 2.105 iterations was followed
by 106 iterations (thinned by 1/100). We produced
two chains using different initial values in each soft-
ware package. The results from both software pack-
ages are consistent when the Dirichlet distribution is
based on the gamma distributions—that is, when the
formula defining the prior:

P ∼ Dir(112)

is replaced with:

Pi = Gi

/ 12∑
i=1

Gi ∀i = 1, . . . , 12,

where

Gi ∼ Gamma (1, 1) ∀i = 1, . . . , 12 (independent).

Both parameterizations are mathematically
equivalent, but they do not lead to the same sam-
pling algorithms inside the MCMC procedure and
for both software packages, the multivariate Dirich-
let method generates problems (e.g., too many
iterations detected in the nonconjugate Dirichlet
sampling algorithm in OpenBugs and nonconver-
gence of the two chains in Jags). We considered that
similar results obtained by two independent soft-
ware packages from the gamma parameterization
reinforced the plausibility of convergence to the
posterior distribution.

2.2.4. Relevance of the Data for Estimating the
P Parameters

Roughly speaking, we wanted to estimate 11 P
parameters from data associated with 11 Q parame-

ters that are mappings of them. One can hope that
there is equivalence between Ps and Qs but this has
to be investigated since some redundancy can occur
within the Q parameters that are not independent.
This is related to the so-called identification point
in statistics. Even if, in the Bayesian framework, the
existence of a proper prior on the model parame-
ters relieves of such difficulty (if the prior is defined,
the posterior is defined), it is important to know
which mappings of the parameters are informed or
not by the data sets. For instance, this could bring
help about which new data sets would be necessary
to get a complete inference about the model. To in-
vestigate the point, we looked for a minimal set of
new parameters (denoted later Rs), equivalent to the
Qs and defined as simple functions of the Ps.

3. RESULTS

It has been checked that nine simple sums of
the Ps, the R parameters defined in Table IV, were
equivalent to the Qs; this is a minimum set since they
are linearly independent. As the parametric dimen-
sion of the Ps is 11, this means that some part of them
is not given from the Qs. Besides it can be checked
that all the sums by row and by column of the par-
tition in Table III are linear combinations of the Rs;
this is a good point since they correspond to the two
generating partitions of the complete partition and
hence they are informed by the Qs. To be able to de-
rive all the Ps from the Rs (equivalently from the Qs),
only two well-chosen Ps are sufficient. There are only
15 couples of this kind among the 66 possible, for in-
stance (PsC,Ps R) or (PsO,PnO).

Fig. 2 shows the one-dimensional prior distribu-
tions (gammas(1, 1) + pseudo-data) of the Q and P
parameters. Fig. 3 gives the posterior distributions
of the Q and P parameters. Comparing priors and

Table IV. Rs Probabilities in Terms of Ps (See Section 2.2.4)

Ri Sums of Ps

R1 PyC

R2 PnC

R3 PsC + PdC

R4 PrC

R5 PnO + PsO + PdO

R6 Pr O

R7 PnR + Ps R

R8 PnO + PnR

R9 PsC + PsO + Ps R
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Fig. 2. Prior distributions of P and Q parameters (the dashed lines represent the posterior distributions for comparison). For each diagram,
the x axis is associated with the possible values of the probability parameter and the y axis is associated with the density values.

posteriors, we conclude that the data provide a lot of
information on the parameters with the exception of
Q10 and Q11, which seem to be informed only by the
pseudo-data given by the experts (see Section 2.2.2).

Some P posterior distributions are nearly multimodal
because they cannot be informed from the data in-
dividually (Fig. 3 and Section 2.2.4). Fig. 4 gives
the R posterior distributions and on the contrary we
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Fig. 3. Posterior distributions of the P and Q parameters (x-scales are magnified with respect to Fig. 2). For each diagram, the x axis is
associated with the possible values of the probability parameter and the y axis is associated with the density values.
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Fig. 4. Posterior distributions of the R parameters. For each diagram, the x axis is associated with the possible values of the probability
parameter and the y axis is associated with the density values.

observed that they are all unimodal, well informed by
the data sets. For the Q posterior distributions (Fig.
3), there are unimodal distributions summarized by
95% credible intervals in Table II.

Fig. 5 gives prior results from uninformative pri-
ors after excluding the pseudo-data versus the de-
fined prior distributions. We observed that even if
the experts give us little information, a lot of P dis-
tributions are wider; even the distribution of Pr O

is inverted. Indeed, a Dirichlet with all parameters
equal to one is the uniform distribution on the space
of the probability parameters. For the Qs, we ob-
served that the expert opinions bring a lot of infor-
mation on the four probabilities they informed, Q2,
Q8, Q10, and Q11; however, as all Qs are linked, the
expert opinion also provides information on other
Qs, for example, Q4. Also, the marginal distribu-
tion of Q7 is more uniform after the pseudo-data are
added compared to the uninformative priors. This is
an efficient way to discuss with the experts about the
information they give, clarifying how it propagates
in the model, especially into the burden-of-illness
parameters, which they did not directly provide,
but are modified by the mutual dependence of all
parameters.

Fig. 6 gives posterior results from noninforma-
tive priors and data (no pseudo-data) versus poste-
rior distributions of the Q and P parameters to ob-
serve the influence of expert opinions on the burden-
of-illness estimates. Some parameter distributions
are almost identical, but others are modified; among
them, the distribution of Q2, which is pulled to the
right by the expert opinion. Fig. 7 focuses on distri-
butions of Q2 based on the information introduced
for its estimation. The data introduced through the
partition (excluding the English study that informs
Q2 directly) poorly inform Q2 (note the comparison
of the solid line and the dashed line). When only
the English study is included, a binomial likelihood
and a beta(1,1) prior on the Q2 parameter are cho-
sen. Nevertheless, other data pull the mode of Q2

to the right using all the data but the pseudo-data.
What is marked in this figure is that expert opinion—
through pseudo-data—pulls the Q2’s distribution to
the right because the expert opinion was a 95% vari-
ation interval for Q2 between 1% and 3%. As ex-
pected, the posterior distribution we proposed offers
a sensible compromise between expert opinion and
the observed English data. The strength of the En-
glish data (large sample size, n2 = 4,026, compared to
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Fig. 5. Noninformative prior distributions of the P and Q parameters (the dashed lines represent the prior distributions with pseudo-data
for comparison). For each diagram, the x axis is associated with the possible values of the probability parameter and the y axis is associated
with the density values.
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Fig. 6. Posterior distributions of the P and Q parameters without pseudo-data (the dashed lines represent the posterior distributions with
pseudo-data for comparison). For each diagram, the x axis is associated with the possible values of the probability parameter and the y axis
is associated with the density values.
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Fig. 7. Posterior distributions of Q2 when only the English study
is introduced (dashed line), when all data are introduced except
pseudo-data (solid line), and when all data are introduced (dot-
ted line). The x axis is associated with the possible values of the
probability parameter and the y axis is associated with the density
values.

pseudo-data, n2,p = 685 [see Table II]) leads to a pos-
terior 95% credible interval of [0.72%; 1.27%] from
our posterior distribution (see Table II).

4. DISCUSSION

In this article, we synthesized complex published
data to estimate campylobacteriosis prevalence and
to simultaneously obtain estimates that guide the dis-
ease pathway. This synthesis is crude compared to
what can be done in many supervised diseases, such
as HIV infection.(7,8) However, it is important to
gather heterogeneous data that examine the preva-
lence of campylobacteriosis in France. Our final es-
timate of the actual campylobacteriosis prevalence
in France is between 0.72% and 1.27% (95% cred-
ible interval; see Table II). This result is in accor-
dance with the English estimate (mean point esti-
mate: 0.79%) but a little higher as shown in Fig. 7
due to the expectation of the experts for France (be-
tween 1% and 3%). Studies are at present ongoing
on a large randomly selected population sample to
study different parameters of interest such as consult-
ing a physician, having a stool culture, and having a
Campylobacter isolated. These data will allow to ob-
tain more precise estimates of the different probabil-
ities given in Table II.

Given the scarcity of data on this disease, we did
not consider more complex solutions such as random
hierarchical models taking temporal and spatial het-
erogeneity into consideration. As a consequence, the
posterior distributions can appear to be too narrow
compared to the probable heterogeneity of the data
because some variability is neglected. Nevertheless,
we propose a global estimate with accompanying un-
certainty introducing expert opinions (Fig. 7).

Another possibility could have been to introduce
bias parameters, for instance, to model the differ-
ence between the French and English situations as
proposed in Albert et al.(2) But estimating even one
of these parameters would be problematic given the
available data.

One advantage of the proposed Bayesian ap-
proach is that the obtained operational evidence
structure can be improved or corrected if new data
are collected. Additional statistical analyses includ-
ing future surveys on campylobacteriosis should be
done to check and possibly to correct the present re-
sults. In this respect, data exclusion contributing to
conflicts or extensions of modeling with more param-
eters could be considered, as in Presanis et al.(8) or in
Turner et al.(23)

It has been checked with the expression of the
R parameters (Table IV) that not all the P parame-
ters were inferred from the available data used in Ta-
ble I. Missing information can be completed focusing
on one couple of P parameters. From it, some new
collection of data can be proposed to obtain a com-
plete inference. For example, if we choose the cou-
ple (PsC,Ps R) as proposed in the first paragraph of
Section 3, it seems convenient to suggest that among
the individuals having a stool culture without Campy-
lobacter research, the proportion of them not hav-
ing acute gastroenteritis can be observed. This could
give access to Ps R. Also as the knowledge of campy-
lobacteriosis among acute gastroenteritis diseases is
obtained from a Campylobacter research in stools, it
seems that the second necessary survey would imply
such researches among cases not yet investigated by
the health system to obtainPsC . Of course, identifia-
bility is not sufficient and the precision of the estima-
tion must also be considered. In the Bayesian frame-
work, this can be done by the inspection of posterior
distributions of the targeted parameters.

As shown in this study, the expert opinions
provide a lot of information on some estimates.
Expert opinions and data are assumed to be
independent of each other, which may not be ac-
curate. Nevertheless, the experts gave opinions on
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campylobacteriosis. Therefore, in this context the
Bayesian framework offers—via the posterior
distribution—a synthesis of expert opinions and
foreign data. In applications where data are sparse,
it may be useful to acquire the opinions of many
experts. This multiparameter evidence synthesis
structure offers a convenient approach to discuss
with experts. Given the multidependence between
all the parameters (i.e., the Qs), the evidence
structure shows the repercussions in the overall
model introducing expert opinions in the marginal
distribution of each parameter.

Additional data collection (notably the French
data collection planned by the French Institute for
Public Health Surveillance) is necessary to improve
model fit. At the moment, however, the proposed
approach makes a multiple data-source synthesis ex-
plicit, transparent, and open to sensitivity analysis; it
also gives an indication of where new data must be
collected.
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