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Abstract

On water deficit, abscisic acid (ABA) induces stomata closure to reduce water loss by transpiration. To identify Arabidopsis
thaliana mutants which transpire less on drought, infrared thermal imaging of leaf temperature has been used to screen for
suppressors of an ABA-deficient mutant (aba3-1) cold-leaf phenotype. Three novel mutants, called hot ABA-deficiency
suppressor (has), have been identified with hot-leaf phenotypes in the absence of the aba3 mutation. The defective genes
imparted no apparent modification to ABA production on water deficit, were inherited recessively and enhanced ABA
responses indicating that the proteins encoded are negative regulators of ABA signalling. All three mutants showed ABA-
hypersensitive stomata closure and inhibition of root elongation with little modification of growth and development in non-
stressed conditions. The has2 mutant also exhibited increased germination inhibition by ABA, while ABA-inducible gene
expression was not modified on dehydration, indicating the mutated gene affects early ABA-signalling responses that do
not modify transcript levels. In contrast, weak ABA-hypersensitivity relative to mutant developmental phenotypes suggests
that HAS3 regulates drought responses by both ABA-dependent and independent pathways. has1 mutant phenotypes were
only apparent on stress or ABA treatments, and included reduced water loss on rapid dehydration. The HAS1 locus thus has
the required characteristics for a targeted approach to improving resistance to water deficit. In contrast to has2, has1
exhibited only minor changes in susceptibility to Dickeya dadantii despite similar ABA-hypersensitivity, indicating that
crosstalk between ABA responses to this pathogen and drought stress can occur through more than one point in the
signalling pathway.
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Introduction

Environmental abiotic stresses, such as drought, high salinity

and cold, have a major effect on plant development and yield.

An efficient response to these stresses will increase a plant’s

chance of survival. The levels of the plant hormone abscisic acid

(ABA) rise in response to such stresses leading to the activation of

signal induction pathways that induce diverse adaptive respons-

es, such as reduction of stomata aperture, and the expression of

stress-related genes [1]. Despite its reputation as a stress

hormone, ABA is also involved in the control of other

physiological processes. It participates in plant vegetative

development in a concentration-dependent manner, stimulating

growth at low concentrations and inhibiting growth at high

concentrations [2,3]. It is also essential for seed development:

during maturation it promotes the acquisition of reserves and

desiccation tolerance and induces dormancy by inhibiting

germination [4].

ABA accumulation is dependent on the respective levels of

biosynthesis and degradation. ABA synthesis in plants occurs via

an indirect pathway using carotenoids, as precursors. In the final

step, abscisic aldehyde is oxidised in a reaction requiring two

genes, AAO3 coding for the abscisic aldehyde oxidase and ABA3

encoding an enzyme necessary for the sulfuration of the AAO3

molybdenum cofactor [1]. Reduction of active ABA levels is

achieved by either conjugation to form a glucosyl ester or

oxidation. The major oxidative pathway in Arabidopsis (Arabidopsis

thaliana) is through hydroxylation of ABA on C-89 by members of

the cytochrome P450 monooxygenase CYP707A family [5,6],

followed by spontaneous isomerisation to phaseic acid.
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Recent advances have finally enabled a complete mechanism

for ABA signalling to be described (reviewed in [7,8]) and an entire

pathway from ABA perception to the induction of ABA-responsive

genes has been demonstrated in vitro [9]. A key breakthrough has

been the demonstration that the PYR (pyrabactin resistance)/PYL

(PYR1-like)/RCAR (regulatory component of ABA) family of

START proteins act as intracellular coreceptors of ABA by

binding ABA in a gate-latch-lock mechanism that allows their

interaction with the protein phosphatase 2C (PP2C) enzymes

ABI1, ABI2, HAB1 and PP2CA/AHG3 [10,11,12]. The intra-

cellular localisation of the START proteins means that ABA must

cross the cell membrane. In its anionic form ABA is potentially

membrane permeable, however, ATP-binding cassette (ABC)

transporters have now been identified that transport ABA either

into or out of cells [13,14]. Putative extracellular ABA-receptors,

such as GTG1 and 2, and a plastid located receptor, ABAR/

CHLH, have also been identified, but remain to be linked with

other ABA signalling elements [15,16].

Water is a major input for crop production and water shortages

have profound effects on yield. Understanding plant responses to

water limitation is fundamental for the improvement of water use

efficiency. Resistance to water deficit can occur through

physiological responses that enable either drought avoidance or

drought tolerance [17]. Avoidance involves the maintenance of

tissue water potential despite water deficit and can be achieved by

limiting water loss, for example by reducing stomata aperture and

leaf surface, or improving water uptake by roots. Tolerance

involves the induction of protective mechanisms, such as osmotic

adjustment and synthesis of osmoprotectants, which limit cellular

damage at low water potentials [18]. ABA is involved in both

avoidance and tolerance mechanisms through rapid ABA-induced

stomata closure and the induction of stress responsive genes.

Water stressed plants can have modified responses to pathogens

and there is increasing evidence that ABA levels can impact on

biotic stress responses [19]. The role of ABA seems, however, to be

complex as its effect depends on the type of pathogen, its invasion

strategy and the tissue affected [20]. ABA has been reported to act

as a negative regulator of plant defence responses to a variety of

biotrophic and necrotrophic pathogens [21] and mutants affected

in ABA biosynthesis or perception have been found to be more

resistant to the bacterium Dickeya dadantii (ex Erwinia chrysanthemi)

[22]. Although certain ABA responses, such as stomata closure,

could directly provide biotic stress resistance, defence mechanisms

would also appear to be stimulated via ABA interplay with other

hormones involved in pathogen resistance, such as jasmonic acid

and salicylic acid [23,24–26].

A limiting factor for plant amelioration is the identification of

genes that can be modified to improve resistance to water deficit,

while maintaining plant growth and yield when water is available.

Furthermore, despite recent advances in our comprehension of

ABA metabolism and signalling events, much still remains to be

understood. Mutants identified in novel screens have been

fundamental tools for the identification of pathway components

and potential genes that can be modified to improve drought

resistance. In order to identify additional loci involved in ABA

accumulation or signalling, we have carried out a screen for

suppressor mutants of the ABA-deficient mutant aba3-1. Leaf

temperature, measured by thermal imaging, was used as an

indication of stomata conductance under water deficit and ABA

biosynthesis mutants, such as aba3, have colder leaves than wild-

type [27]. This technique has previously been used to identify

novel mutants that affect Arabidopsis stomata closure [27–29].

Nonetheless, the majority of mutants identified in these screens,

using mutagenised wild-type populations, were affected in genes

already known to be involved in ABA biosynthesis or signalling

[27,30]. Previous suppressor screens for ABA-signalling have used

seed germination phenotypes [31–33] and to our knowledge this

study is the first to use infrared thermography. Three hot ABA-

deficiency suppressor (has) mutants were isolated that retained more

water on drought stress and had recessive mutations that modified

stomata closure in the absence of ABA deficiency. All of the

mutants showed an enhanced response to ABA indicating that the

three HAS loci encode negative regulators of ABA signal

transduction. Increased susceptibility to the pathogen Dickeya

dadantii confirmed the involvement of these loci in ABA mediated

crosstalk between biotic and abiotic stress signalling pathways.

Results

Identification of hot aba3-1 suppressor mutants
A c- irradiation induced mutant population had been derived

from seeds of the ABA deficient aba3-1 mutant. Seedlings from M2

pools were screened by infrared thermography for suppression of

the cold leaf phenotype observed in the original aba3-1 mutant. Of

130 plants that exhibited a hot leaf phenotype in the primary

screen, 17 showed a heritable phenotype in the M3 generation and

were named hot ABA deficiency suppressor (has) aba3-1 (as shown in

Figure 1A-1C for has1 aba3-1 to has3 aba3-1). The presence of the

original aba3-1 mutation (G3707 to A) was confirmed in the

mutants by sequencing of genomic DNA. In addition, the absence

of a functional sulfurylated molybdenum cofactor was verified by

the absence of xanthine dehydrogenase activity, another enzyme

that requires the same cofactor as AAO3 (Figure S1). This

indicated that the loci were all extragenic suppressors of the aba3-1

mutation.

The aba3-1 mutant cold leaf phenotype is associated with

increased transpiration and mutant plants are less resistant to

water deficit than wild-type [34]. To confirm that the hot leaf

suppressor mutations were related to improved resistance to water

stress, 3-week old plants were examined for their water loss when

subjected to a progressive drought stress. Water was withheld for 7

days and soil allowed to dry so that all plants were subjected to a

similar soil water deficit. Seven of the suppressor mutants clearly

retained more water on water deficit than the mutant aba3-1 alone

(as shown in Figure 2 for has1 aba3-1 to has3 aba3-1). These

mutants were backcrossed to the aba3-1 mutant and the

segregation of the suppressor phenotype analysed. Among the

suppressor mutations, has1, 2 and 3 were chosen for further

analysis because they segregated as single Mendelian recessive loci

(Table 1), exhibited clear hot leaf phenotypes (Figure 1 A–1C) and

had a similar plant stature to that of the original aba3 mutant in

non-stressed conditions.

The three has aba3-1 mutants were identified from different M1

seed pools indicating that they were generated from different

mutation events. For mapping of these defective loci, crosses were

carried out between has1 aba3-1, has2 aba3-1 and has3 aba3-1 in the

Columbia (Col-0) accession and the aba3-11 mutant in the

Landsberg erecta (Ler) accession. The aba3-11 mutant, previously

named VI-48, was identified in an earlier thermal imaging screen

[27]. As the mutant lacked xanthine dehydrogenase activity, it was

suggested to be an aba3 allele. Sequencing of the ABA3 gene

identified a point mutation in aba3-11 (G2085 to A) that would

result in an amino acid change Gly-280 into Ser.

Linkage analyses to molecular markers enabled the localization

of the HAS loci to three different chromosomal positions (Table 2).

The presence of the CYP707A1 gene, involved in ABA catabolism,

in the mapping interval for the has3 mutation made it a strong

candidate for being the affected locus. Nevertheless, has3 is not a

Hot ABA-Deficiency Suppressor Mutants
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cyp707a1 mutant allele as allelism tests carried out with cyp707a1-1

resulted in phenotypic complementation (Figure S2). Furthermore,

no mutation was identified in the CYP707A1 DNA sequence in the

has3 mutant (from 1549 bp upstream of the ATG to 326 bp

downstream of the STOP).

The mapping interval containing the HAS1 locus included the

PP2CA/AHG3 gene whose mutation results in ABA-hypersensitiv-

ity. Nevertheless, pp2ca/ahg3 mutant phenotypes are very different

to those of has1, although mutants have ABA-hypersensitive

stomata closure, they also show ABA-hypersensitive root growth

and seed germination, with the latter being particularly marked

[35,36]. In addition, the pp2ca/ahg3 single mutant is not resistant

to water deficit on rapid dehydration and it is only in combination

with other PP2C mutants that enhanced resistance to drought

stress is observed [36]. It seems unlikely, therefore, that has1 is an

allele of pp2ca/ahg3.

Hot has phenotypes are not due to increased ABA levels
To investigate whether the has mutants had phenotypes in the

absence of the aba3-1 mutation, crosses were carried out with wild-

type Col-0 to separate the mutations. Each has aba3-1 mutant was

crossed to the Col-0 wild-type (Figure S3; Protocol S1). F2 progeny

that were heterozygous for aba3-1 were selected using a dCAPS

marker for the aba3-1 mutation. The infrared phenotype of their

F3 descendants was then examined and F2 parents with no cold

offspring were retained, as the cold leaf phenotype in the quarter

Figure 1. Hot leaf phenotype of has aba3-1 and has mutants visualised by thermal imaging. False colour infrared image of the
temperature of drought stressed plants. (A–C) leaf temperature of has aba3-1 mutants compared to wild-type (WT) and the aba3-1 mutant. (D–F) leaf
temperature of has mutants compared to wild-type. Plants were 14 days old and watering had been withheld for 2 days. Scale indicates temperature
(uC).
doi:10.1371/journal.pone.0020243.g001
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of the plants homozygous for the aba3-1 mutation would only be

suppressed in the presence of a homozygous has mutation. The

dCAPS marker was then used to identify F3 plants that were also

homozygous for the wild-type ABA3 allele, and these mutants were

then named has.

Analysis of has plants by infrared thermography showed that all

three has mutants had a higher leaf temperature when compared to

the wild-type (Figure 1D–1F). Prior to or after rapid dehydration, no

difference in ABA accumulation was detectable in has mutants

compared to wild-type and in has aba3-1 mutants compared to aba3-1

(Figure 3). Therefore it is unlikely that altered ABA metabolism

causes the hot phenotype conferred by has mutations.

Effect of has mutations on vegetative development and
photosynthesis

When plants bolted, the rosettes of has2 and has3 mutants grown

in long-day photoperiods were slightly smaller than those of wild-

type (Figure 4A) although at maturity these differences in rosette

size were less evident. This size reduction was also observed for

plants grown in a short-day photoperiod (Figure 4B) and for 14 d-

old drought-stressed plants (Figure 1 B, C, E and F). Furthermore,

has2 and has3 had a reduced number of rosette leaves at flowering

(wild-type: 2060.7; has1: 19.360.9; has2: 16.360.7; has3:

16.7561.0). Flowering time was, however, not affected in has1

and has2 in long- and short-day conditions or for has3 in long-day

conditions. Interestingly, in short-day conditions, bolting of floral

stems was earlier in the has3 mutant (wild-type: 62.3 days60.9;

has3: 55.760.7), indicating that in certain circumstances has3 is an

early-flowering mutant. Primary root length was also reduced in

the has2 and has3 mutants, in accordance with the reduced rosette

size (Figure 4C).

As increased leaf temperatures and modified growth character-

istics could result from defects in the transfer of light energy during

photosynthesis, assays of photosynthetic capacity were carried out.

The level of photosynthesis was measured using net CO2 uptake at

different CO2 concentrations in an oxygen atmosphere of 21% (v/

v) (ambient air) or 0.5% (v/v) (non-photorespiratory conditions).

All three has mutants showed wild-type CO2 responses indicating

that photosynthesis is not affected in the mutants (Figure S4;

Protocol S2). Furthermore, no significant modifications of stomatal

density (abaxial or adaxial leaf surface) were observed compared to

the wild-type (Figure S5; Protocol S3). This is consistent with the

fact that leaf temperature differences were only observed under

conditions of water deficit.

Resistance to rapid dehydration and expression of stress
responsive genes

As well as being less drought-resistant, the aba3-1 mutant shows

increased water loss in rapid dehydration assays of detached

rosettes [34]. Similar assays were performed to determine whether

the suppressor loci also improved resistance to rapid dehydration.

The only mutation that significantly reduced water loss when

subjected to this rapid and drastic water deficit was has1 either

alone or in the aba3-1 mutant context (Figure 5A).

To assess the responses of has mutants to water deficit at the

molecular level, we examined the expression of four drought-

inducible genes, known to differ in the cis-acting elements present

in their promoters. Expression of the responsive to dehydration

(RD)29B gene is mainly controlled via ABA and in accordance

its promoter contains two ABRE [37,38]. The RD22 promoter

contains binding regions for MYC and MYB transcription factors,

involved in the ABA-dependent induction of genes during late

drought responses [39,40]. RD29A expression is controlled by both

ABA-dependent and independent pathways [41] and as well as an

ABRE its promoter contains a dehydration responsive element

(DRE), that is recognised by a subfamily of transcription factors

with an APETALA2 domain and is required for ABA-independent

Figure 2. has aba3-1 suppressor mutants show reduced water
loss on progressive drought stress. Watering was withheld from
three-week old plants for seven days and soil allowed to dry, not
watered, or continued, water control. Water content (WC) was
calculated as the % (w/w) of rosette weight corresponding to water,
as determined from plant weight before and after freeze-drying. WT,
wild-type. Error bars represent SE values (n = 4). Similar results were
obtained in 2 independent experiments.
doi:10.1371/journal.pone.0020243.g002

Table 1. Segregation analysis of three HAS loci in backcrosses
to original aba3-1 mutant indicates that the three mutations
are recessive.

Crossa
F1 progeny IR
phenotype F2 progeny IR phenotype

cold:hot chi-square test

aba3-16has1 aba3-1 cold 150:54 0.24, p.60%b

aba3-16has2 aba3-1 cold 61:29 2.50, p.10%b

aba3-16has3 aba3-1 cold 82:33 0.84, p.30%b

Infrared (IR) thermography was carried out on 14-day-old plants that had been
subjected to water deficit for 2 days.
aAll crosses are written as female parent6male parent.
bNull hypothesis of 3:1 HAS (cold):has (hot); degrees of freedom = 1. p,

probability.
doi:10.1371/journal.pone.0020243.t001

Table 2. Chromosome location of three HAS loci.

Locus Chromosome Location in Mb (AGI) BAC or YAC interval

HAS1 3 3.157–3.651 F14P13 – F24K9

HAS2 4 8.255–9.362 FCA1 – FCA6

HAS3 4 10.366–10.609 F13C5 – F24J7

Mapping was carried out with PCR-based SSLP markers. The BAC or YAC interval
indicates the BACs or YACs containing the markers delimiting the mapping
interval.
doi:10.1371/journal.pone.0020243.t002

Hot ABA-Deficiency Suppressor Mutants
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drought-induced gene expression [42]. The EARLY RESPONSIVE

TO DEHYRATION (ERD)1 gene is also induced via ABA-

independent pathways, but that do not involve DRE cis-elements;

two distinct promoter sequences bind either NAC (NAM, ATAF,

CUC2) family or ZFHD (zinc-finger homeodomain) transcription

factors [43–45].

In agreement with previous studies, all four genes were induced

by water deficit in the wild-type (Figure 5B–5E). Expression levels

of ERD1 transcripts were similar to those of wild-type for all three

mutants indicating that the HAS loci are not involved in the ABA-

independent signalling pathway that induces this gene (Figure 5C).

Furthermore, in the has2 mutant RD29B, RD22 and RD29A

transcript abundance were also equivalent to wild-type gene

(Figure 5 B, D and E). In contrast, these three genes were

overexpressed in has1, suggesting that the HAS1 locus is involved in

both ABA-dependent and independent signalling pathways. The

has3 mutant appears to be affected in an ABA-independent

pathway that is separate from that inducing ERD1, as only RD29A

transcript abundance was significantly increased (Figure 5D).

has mutants show ABA-hypersensitive stomatal closure
As the increased leaf temperature in the has mutants did not

result from either increased ABA accumulation, reduced stomata

density or reduced dissipation of heat due to altered photosyn-

Figure 3. The has loci do not modify ABA accumulation. A, The
ABA-deficient phenotype is not suppressed in has aba3-1 mutants.
Results presented are representative of those obtained in 2 indepen-
dent experiments. B, has mutants do not have higher ABA levels than
wild-type. ABA contents were determined in rosette leaves after 4 h of
dehydration (dehydrated) and compared with non-dehydrated (control)
plants. No significant difference was found in Student t-tests comparing
has aba3-1 to aba3-1 or has to wild-type. WT, wild-type; DW, dry weight.
Error bars represent SE values (n = 3).
doi:10.1371/journal.pone.0020243.g003

Figure 4. Reduced rosette size and root length of has2 and has3
mutants. Wild-type has1, has2 and has3 A, rosettes grown in long-day
photoperiod for 14–18 days. B, rosettes grown in short-day photope-
riod for 55 to 73 days. C, primary root length of 13 d old seedlings
grown in long-day photoperiod. WT, wild-type. Error bars represent SE
values (b, n = 4; c, n = 24). Similar results were obtained in 2
independent experiments. Student t-test p,1%, ** or p,0.1%, ***.
doi:10.1371/journal.pone.0020243.g004

Hot ABA-Deficiency Suppressor Mutants
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thetic capacity, the response of stomata to ABA was examined.

After 5 h in the light in stomata opening solution has mutant and

wild-type stomata opened to the same extent (Figure 6A; Figure

S6). Low ABA concentrations resulted in a limited reduction in

stomata aperture for wild-type that was not significantly different

from untreated stomata (Figure 6A). In contrast, all three mutants

showed a significant reduction in stomata aperture in the presence

of ABA, with has1 and has2 being more ABA-hypersensitive. At

high ABA concentrations wild-type showed the expected reduction

in stomatal aperture, but closure was no longer significantly

different in has mutants (Figure S6). An increased response of

stomata to low ABA concentrations would be expected to result in

elevated leaf temperatures and improved drought resistance on

water deficit.

Root growth and germination responses to ABA
Analyses of root growth and germination were carried out to

determine whether has mutant ABA-hypersensitivity extends to

Figure 5. The has1 mutation improves resistance to rapid dehydration and causes the overexpression of RD29B, RD29A and RD22. A,
Rapid dehydration of plants carrying the has1 mutation alone or with the aba3-1 mutation. Water loss is expressed as a percentage of the initial fresh
weight (FW). Error bars represent SE values (n = 4). Results presented are representative of those obtained in 4 independent experiments. Quantitative
RT-PCR analysis of drought inducible gene expression in wild-type and has mutants, B, RD29B, C, ERD1, D, RD29A and E, RD22 transcript abundance in
leaves after 4 h at a water-deficit equivalent to the loss of 25% (w/w) of the fresh weight (stressed) compared to controls (non-stressed). Steady-state
mRNA levels are represented as a percentage of the constitutive EF1a-4a gene (EF) abundance. Error bars represent SE values (n = 3). WT, wild-type.
Similar results were obtained for samples derived from 2 independent plants.
doi:10.1371/journal.pone.0020243.g005

Hot ABA-Deficiency Suppressor Mutants
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other tissues than guard cells. ABA inhibition of root growth and

germination is dose dependent as can be seen by a reduction of

primary root length and the number of germinating seeds for wild-

type (Figure 6B–6C). Root growth of all three has mutants was

significantly reduced on 1 mM ABA compared to wild-type

(Figure 6B). At higher ABA concentrations has2 root growth was

still hypersensitive, whereas has1 roots were only more sensitive at

3 mM, and the has3 mutant was inhibited in a similar manner to

wild-type. In contrast, ABA-hypersensitive germination was only

clearly observed for has2 seeds (Figure 6C). The has2 mutant seeds

also showed increased dormancy and sensitivity to the gibberellin

biosynthesis inhibitor paclobutrazol, in accordance with the ABA-

hypersensitive phenotype (Figure S7).

Biotic stress response
Recent results have emphasized the involvement of ABA in

plant responses to a large number of pathogens [46,47]. As the

genes affected in the has mutants are potential targets for the

improvement of drought resistance it was important to verify

whether their mutation modifies disease resistance. In order to

address this question, the pectinolytic bacterium Dickeya dadantii

was used in infection assays. ABA biosynthesis and signalling

mutants exhibit improved resistance to this pathogen [22,48],

which causes soft rot of leaves, stems and storage organs. The

disease progression was evaluated by the level of maceration

observed between one and five days after inoculation (Figure S8).

All three has mutants were less resistant to Dickeya dadantii than

wild-type (Figure 7). The degree of sensitivity varied between the

mutants, with has1 being the least affected and has2 and has3

clearly more susceptible than the wild-type.

Discussion

This paper describes the isolation of three new mutants affected

in stomata responses to ABA using a novel screen for suppression

of the cold leaf phenotype exhibited by the ABA-deficient mutant

aba3-1. No allele was identified twice independently indicating that

the screen carried out was not at saturation. It should be possible,

therefore, to extend this screen in the future and identify further

new mutants. Leaf temperature could be altered by other

physiological parameters than stomata aperture, such as the

amount of epicuticular wax [49], and less than half of the

suppressor mutants initially identified retained more water on

progressive drought stress. This demonstrates that although

infrared thermography is an excellent tool for high-throughput

screening and has the advantage of being non-destructive,

additional criteria are required to distinguish mutants affected in

stomatal conductance.

The aba3-1 mutant has reduced levels of ABA in vegetative

tissues under stressed and non-stressed conditions, nevertheless

residual ABA levels are higher than in most other ABA-deficient

mutants [34]. Suppression of an ABA-deficient phenotype by

restoring ABA content would theoretically be more easily detected

using such a mutant. No suppressor mutant was identified,

however, where ABA levels had been re-established in vegetative

Figure 6. has mutants show ABA-hypersensitivity compared to
wild-type. A, Induction of stomatal closure by ABA in wild-type and
has mutants. Stomata aperture ratios (width/length) were measured
after a 2 h pre-treatment in the light in stomata opening solution
followed by a 3 h incubation with or without ABA at the concentrations
indicated. Data are means 6 SE of 3 independent experiments with 40
apertures measured per experiment and condition. Significance in
Student t-tests comparing samples with and without ABA for the same
genotype; **, p,1% or ***, p,0.1% level. B, ABA inhibition of root
growth. Primary root length of 13 d old seedlings grown in long day
photoperiod ABA was included in the growth media at the
concentrations indicated. Error bars represent SE values (n = 24). Results
presented are representative of those obtained in 2 independent
experiments. C, ABA inhibition of seed germination after 7 d at 25uC.

ABA was included in the growth media at the concentrations indicated.
Germination was determined from the number of seedlings with green
cotyledons compared to the total number of seeds sown. Error bars
represent SE values (n = 3). Results presented are representative of
those obtained in 2 independent experiments. Significance in Student t-
test when comparing mutant and wild-type at a given ABA
concentration, p,0.1%, ***. WT, wild-type.
doi:10.1371/journal.pone.0020243.g006
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tissues (Figure 3). Increased ABA content could be achieved by an

augmentation of the expression of an ABA biosynthesis gene or by

reducing ABA catabolism, for example through the mutation of a

cis-acting regulator. The NCED and CYP707A multigene families

encode enzymes that carry out key steps of ABA biosynthesis or

catabolism, respectively [50,51]. The desulfo-molybdenum cofac-

tor produced by ABA3 is required for the catalysis of the last step

of the biosynthesis pathway, and acts downstream of NCED

activity. Increasing precursors prior to this last step might not,

therefore, significantly increase ABA production; the aba3

mutation is likely to cause a bottleneck that would already be

saturated by precursors. Reduction of ABA catabolism should,

however, be independent of such an effect.

Of the four CYP707A genes implicated in the inactivation of

ABA, two have been demonstrated to contribute to the regulation

of transpiration, CYP707A1 and CYP707A3 [51,52]. Reporter gene

analysis indicates that they are mainly expressed in stomata and

vascular tissue, respectively and the cyp707a1 mutant showed

ABA-hypersensitive stomata closure and germination [52,53]. In

high humidity conditions ABA levels were nearly three-fold higher

in a cyp707a3 mutant than those of wild-type controls, whereas a

cyp707a1 mutant showed only a limited ABA increase, despite both

mutants exhibiting similar reductions in stomata aperture in these

conditions [52]. Consequently, modifications in ABA levels might

not be detected even if CYP707A1 expression is affected. Although

this gene is present in the mapping interval for the has3 mutation

allelism tests and sequencing confirmed that the has3 is not a

cyp707a1 mutant allele.

Three independent mutations generating moderate ABA
hypersensitive phenotypes

The three has mutants are affected at independent loci (Table 2),

and their phenotypic differences, in particular the downstream

target genes induced on dehydration (Figure 5B–5E), indicate that

they are involved in different ABA response pathways (Figure 8).

As the mutations are inherited as recessive loci and cause ABA-

hypersensitivity the three HAS genes are predicted to encode

negative regulators of ABA signalling. Not all ABA-hypersensitive

mutants are drought-resistant, such as fry1 and sad1, despite

inducing the expression of ABA response genes [54,55]. All three

has mutants, however, retained more water on progressive drought

stress and showed ABA-hypersensitivity in both stomata closure

and root growth (Figure 2; Figure 6A–6B). Interestingly, the has

mutant hypersensitive phenotypes in vegetative tissues were visible

at relatively low ABA concentrations (Figure 6) yet had little or no

effect on vegetative growth or photosynthesis under well-watered

conditions (Figure 4; Figure S4). This indicates that has mutant

responses are sufficient to reduce water loss when soil water

potential is low, while minimizing the effect on photosynthesis and

growth when water is available. On water deficit, however, has

mutants were smaller than wild-type which could be due to direct

ABA effects on growth due to hypersensitivity or as a consequence

of increased stomata closure reducing photosynthesis. Functional

redundancy between members of multigene families encoding

elements of the ABA-signalling pathway can restrict mutant

phenotypes. Mutants in PP2C family members have enhanced or

constitutive ABA-response phenotypes when combined together

Figure 7. Level of Dickeya dadantii bacterial infection of has mutants. Degree of infection of wild-type, has1, has2 and has3 plants (40 to 48
individuals) and its evolution over 5 days after inoculation. The scale of infection is denoted by: 0: no symptom; 1: maceration limited to the
inoculation point; 2: maceration extends from the infection point; 3: maceration covers half the lamina; 4: maceration spread over the whole lamina;
5: maceration spread over the whole leaf (lamina and petiole). Similar results were obtained in 2 independent experiments. *, significant differences,
p,0.05%, between wild-type and mutants in Fisher tests comparing infection scores of $3.
doi:10.1371/journal.pone.0020243.g007
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[36]. Similar functional redundancy could explain the limited

growth defects of has mutants.

has3 exhibits mild ABA-hypersensitive phenotypes
Of the three mutants, has3 showed the weakest ABA-

hypersensitive responses; in both leaves and roots significant

hypersensitivity was only observed at one ABA concentration

(Figure 6A–6B). Yet this mutant had the most clear developmental

phenotypes, including early flowering in short day conditions and

reduced rosette size and root length (Figure 4). Furthermore, of the

four drought-inducible genes examined only RD29A expression

was more strongly increased by dehydration in the mutant

compared to wild-type (Figure 5D). This gene contains both

ABRE and DRE cis-elements in its promoter, and the RD29B gene

with ABRE was not induced, suggesting that induction is ABA-

independent. This implies that although HAS3 affects ABA

responses and stomata aperture, it also induces drought avoidance

mechanisms that respond to water-deficit by modifying vegetative

growth, and that HAS3 acts through both ABA-dependent and

independent signalling pathways.

The has2 mutation causes ABA hypersensitivity in
stomata, roots and seeds

Like many previously identified recessive, drought-resistant

mutants, has2 ABA hypersensitivity was not limited to stomata

and roots, but also affected ABA responses in seeds (Figure 6C). In

agreement with the role for ABA in seed dormancy imposition, the

increased ABA sensitivity of has2 seed correlated with delayed

germination and an increased requirement for GAs biosynthesis

(Figure S7). As has2 ABA responses were affected in all tissues

examined this suggests that HAS2 function is involved in early or

common ABA signalling events. Expression in has2 of the four

drought-inducible genes examined was equivalent to that of wild-

type (Figure 5B–5E). As the transcription of these genes is induced

on drought via diverse regulatory networks this suggests that the

modification of ABA responses in has2 is either through the

induction of genes in an as yet uncharacterised signalling network or

does not involve transcriptional activation. The mapping interval

established for the has2 mutant does not contain any previously

characterised gene whose mutation causes drought resistance and

ABA hypersensitivity, the gene affected is likely, therefore, to encode

a novel negative regulator of a primary ABA signalling pathway.

The HAS1 locus is an excellent candidate for improving
plant drought resistance

The phenotypes observed in the has1 mutant were relatively

limited, but very marked, with the only differences to wild-type

being observed in response to stress or ABA; reduced water loss on

rapid dehydration and progressive drought, enhanced responses of

stomata and roots to ABA and increased induction of ABA

response genes on water deficit. These data indicate that the HAS1

gene is specifically required for ABA responses that improve

drought resistance through rapid response mechanisms (Figure 8).

As mentioned above, mutants with increased stomata closure are

not always resistant to water-deficit. However, to our knowledge

all of the mutants characterised to date as having ABA-

hypersensitive stomata closure and root elongation also exhibit

ABA-hypersensitive seed germination making has1 a new category

of mutant.

Overlap between ABA induced responses to Dickeya
dadantii and drought stress occurs at multiple levels

Recent evidence has implicated ABA biosynthesis and signalling

pathways in crosstalk between responses to both abiotic and biotic

stress [48]; mutants can be either more susceptible or resistant

depending on the pathogen [20]. This means that for genes

involved in ABA responses to be exploited in improving drought

resistance their effect on biotic stress responses should be limited.

ABA-deficient mutants were more resistant to infection by the

pectinolytic bacteria Dickeya dadantii [22] whereas the three has loci

were more susceptible (Figure 7). As all three mutants show

enhanced ABA responses this confirms that increasing ABA

signalling exacerbates Dickeya dadantii susceptibility. Furthermore,

the HAS genes appear to be involved in diverse aspects of ABA-

signalling, yet for each the ABA hypersensitivity induced by their

mutation increased Dickeya dadantii susceptibility (Figure 6;

Figure 7). Nevertheless, disease symptoms for has1 were weaker

than for has2, although both mutants exhibited similar levels of

ABA hypersensitivity in vegetative tissues. This demonstrates that

crosstalk between ABA induction of responses to Dickeya dadantii

and drought stress occurs at more than one point in ABA

signalling responses (Figure 8). Modulation of plant biotic stress

responses by ABA is dependent on the pathogen concerned and it

will be interesting to examine the susceptibility of the has mutants

to other phytopathogens. Depending on the identity of the HAS1

gene it could be a suitable target for amelioration of plant drought

resistance as its mutation reduced water loss, yet had only limited

effects on growth and Dickeya dadantii susceptibility.

In conclusion, the novel suppressor screen described in this

paper has identified three new mutants that are hypersensitive to

relatively low ABA levels and yet display little or no growth defects

in well-watered conditions. Furthermore, biotic stress resistance for

one mutant is only slightly compromised. The future identification

of the HAS genes should yield new components of pathways

involved in both abiotic and biotic stress resistance.

Materials and Methods

Plant material
The aba3-1 mutant, Col-0 accession, was provided by M.

Koornneef [34]. The aba3-11 mutant, previously termed VI-48, is

in the Ler accession [27]. Dry aba3-1 seeds were irradiated in a

1.5 ml microtube at room temperature with c-rays generated by a

Co60 source (CIGAL, Cisbio International, http://www.cisbioin-

ternational.fr/) with a dose of 300 Gy. One hundred M2 seed

pools were then produced, each derived from 25 M1 plants. For

the 17 suppressor mutants showing a heritable hot leaf phenotype,

Figure 8. Schematic representation of the HAS loci mode of
action as putative negative regulators in ABA signalling
responses to Dickeya dadantii infection and water deficit.
Responses to water deficit and Dickeya dadantii infection are
highlighted in blue or orange, respectively. Line width reflects extent
of locus effect on a given response.
doi:10.1371/journal.pone.0020243.g008
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M4 seed lots were generated from 8 individual plants and analysed

by thermal imaging in order to identify a homozygous lot that

presented a homogenous phenotype. Absence of xanthine

dehydrogenase activity was determined using native gel electro-

phoresis as previously described [56]. Two successive backcrosses

were performed with the original aba3-1 mutant and phenotypes

confirmed in each generation.

Infrared thermography
For screening of the c-ray mutagenised aba3-1 population 50–

60 M2 seeds, mixed with 1.5 ml of Fontainebleau sand, were sown

onto the surface of 9 cm69 cm pots. The pots contained a 50:50

(v/v) mixture of compost and sand and were prepared and

cultured as described by Merlot et al. [27]. More than 400 M2

seeds were screened from each of the 100 pools. For confirmation

of phenotypes, surface-sterilised seeds from individual plants were

grown initially in vitro on Arabidopsis Gamborg B5 media (Duchefa;

http://www.duchefa.com/) supplemented with 30 mM sucrose,

with 3 days at 4uC in the dark followed by 3 days at a light intensity

of 50 mmol m22 sec21 with a 16 h photoperiod at 20uC. Seedlings

were then transplanted to 9 cm69 cm pots covered with a layer of

Fontainebleau sand and cultured as above. Thermal imaging was

carried out as previously described [27] using a Thermacam PM250

infrared camera (Inframetrics, FLIR Systems; http://www.flir.com)

equipped with a 16u lens.

Water loss assays
Rapid dehydration assays were carried out using 3-week-old

plants grown in compost (Tref Substrates, http://www.trefgroup.

com/) in the glasshouse (18–28uC, minimum 13 h photoperiod).

Four rosettes per genotype were cut from the root system and

water loss was measured as previously described [57]. Resistance

to progressive drought stress was carried out in the same 50:50 (v/

v) mixture of compost and sand used for thermal imaging in

67 cm3 baskets with a 0.5 cm layer of vermiculite at the bottom;

pots were adjusted to contain the same weight of growth medium.

Eight plants per genotype were transplanted and grown in the

glasshouse for three weeks. For each genotype watering was then

stopped for four plants. At the start of the experiment each plant/

pot was weighed and the rate of water loss from soil followed by

weighing pots each successive day at the same hour. The relative

positions of pots were modified after each weighing to avoid

position effects on drying. Water availability to plants from soil was

calculated each day and confirmed to be similar (maximum

variance 10% (w/w)). After seven days, soil was essentially dry

(,0.005 g water/g compost-sand) and aba3-1 plants had reached

wilting point. Rosettes were harvested, weighed, freeze-dried and

reweighed. Plant water content was calculated from the difference

in rosette weight before and after freeze-drying.

DNA sequencing and genetic analyses
Genomic DNA was extracted from flower buds as described

by Doyle and Doyle [58] and sequencing of the ABA3 gene

performed using the Applied Biosystems DNA sequencing kit

(BIGDYE TERMINATOR, version 3.0) and the ABI Prism 310

genetic analyzer (Applied Biosystems; http://www.appliedbiosys

tems.com). For mapping, crosses were performed between aba3-11

and has1 to 3 aba3-1. F2 progeny with hot leaf phenotypes were

selected by thermal imaging and DNA extracted in a 96-tube

format either as described by Macquet et al. [59] or Simon et al.

[60]; 147, 157 and 193 F2 plants were selected for has1, has2 and

has3, respectively. The different progeny were genotyped using

simple sequence length polymorphism (SSLP) markers and

approximate genome positions determined based on recombina-

tion percentages. The mapping interval was then reduced using

additional recombinants selected by genotyping series of plants

with markers at each extremity of the interval (Table S1), followed

by determination of their phenotype by infrared thermography. In

total mapping populations of 1600, 570 or 2000 F2 individuals

were analysed for has1, has2 and has3, respectively.

ABA content determination
Rosettes submitted to rapid dehydration or from control plants

were frozen in liquid nitrogen and freeze-dried. Individual

measurements were obtained from the leaf tissue in a single

rosette. Dried rosettes were ground in 3 ml of extraction solvent

(acetone, water, acetic acid, 80/19/1, v/v/v), in which 50 ng of
2H-ABA ((-)-5, 89, 89, 89-d4 ABA purchased from Irina Zaharia,

Plant Biotechnology Institute, National Research Council Canada,

http://www.nrc-cnrc.gc.ca) was added as an internal standard.

Samples were centrifuged and the supernatant recovered, the

pellet was then resuspended in a further 2 ml of extraction solvent

by sonication, recentrifuged and the supernatants combined. The

extraction solvent was then evaporated and the residue resus-

pended by sonication in 0.5 ml of chromatography mobile phase

(acetonitrile, water and acetic acid, 50/50/0.05 v/v/v) and filtered

through a 1.6 mm GFA filter (Whatman, http://www.whatman.

com/). ABA was quantified using a LC-ESI-MS-MS system

(Quattro LC, Waters, http://www.waters.com) in positive ionisa-

tion and multiple reaction monitoring mode.

Allometry measurements
After 1 week of in vitro culture (16 h photoperiod, 50 mmol

m22 sec21, 20uC, 70% relative humidity), plants were transplant-

ed to soil in growth chambers (21uC day, 17uC night,

150 mmol m22 s21 light intensity, short days 8 h photoperiod or

long days 16 h photoperiod, 65% relative humidity). Rosette

diameter was determined from photographs using IMAGEJ 1.34S

software (Freeware, National Institute of Health, USA, http://rsb.

info./nih.gov/ij/). Flowering time was taken as the day when the

first flowering stem measured 0.5–1 cm and the number of rosette

leaves counted.

For root length measurements, surface sterilised seeds were

sown in vitro on Arabidopsis Gamborg B5, 30 mM sucrose media

for 2 d as described above. Germinated seeds with protruding

radicles were then transferred to 144 cm2 square plates containing

the culture media described by Estelle and Somerville [61] with

1% (w/v) sucrose and 1.2% (w/v) Phytablend agarose (Caisson

Laboratories, http://www.caissonlabs.com/) which were then

incubated horizontally for 1 d and then vertically for a further

11 d in the same conditions. The plates were scanned and the

length of the primary root determined using IMAGEJ 1.34S.

Stomatal aperture and root length responses to ABA
Assays of ABA induced stomatal closure were performed

essentially as described by Pei et al. [62]. Plants, grown for 5- to

6- weeks in soil in a growth chamber (21uC day, 17uC night, 65%

RH, 160 mmol m22 s21 light intensity, 16 h photoperiod), were

watered and kept at 95% RH overnight before leaf harvest.

Rosette leaves were detached from plants and floated abaxial side

up on stomata opening solution (20 mM KCl, 10 mM CaCl2,

5 mM MES-KOH, pH 6.15). Leaves were incubated for 2 h in a

growth cabinet (23uC, light intensity 150 mmol m22 s21) then

ABA (JunDa Pharm Chem Plant Co. LTD.; http://jundapharm

chem.en.ecplaza.net/) was added to 0.1 and 0.01 mM and

incubation continued for a further 3 h. IMAGEJ 1.34S was used

to measure stomatal apertures on light microscopy images of

epidermal peels, obtained from leaves adhered to double-sided

Hot ABA-Deficiency Suppressor Mutants

PLoS ONE | www.plosone.org 10 May 2011 | Volume 6 | Issue 5 | e20243



sticky tape on a microscope slide and scraped with a scalpel to

remove the bulk of the leaf tissue [63]. Acquisition of a ll epidermal

images and measurements of stomata aperture were performed

without knowledge of the genotype being examined.

For root responses to ABA, plants were grown on vertical plates

as described above for biometry measurements, except that ABA

was added to the media to a final concentration of 1 mM, 3 mM or

10 mM. Measurements of root length were performed with IMAGEJ

1.34S as described above.

Germination experiments
For dormancy assays, surface-sterilised dry seeds were sown in

triplicate in Petri dishes containing 0.5% (w/v) agarose and placed

in a growth chamber (16 h photoperiod, 25uC, 70% relative

humidity). Germination was scored each day based on radicle

protrusion. For paclobutrazol and ABA resistance tests, surface-

sterilised seeds were sown on 0.5% (w/v) agarose supplemented

with paclobutrazol (Syngenta; http://www.syngenta-agro.fr/syn

web/default.aspx) or ABA at the concentrations indicated. Stratifi-

cation of seeds at 4uC for 3 d was only carried out for the ABA

test. Seeds were then incubated in the same conditions as the

dormancy assays for 4 d. Seedlings were scored as resistant if they

developed green cotyledons.

Expression analysis
Rosettes used were from plants that had been grown in soil in

the glasshouse for 3 weeks. For dehydrated tissue, rosettes were

detached from plants and placed under a laminar flow hood until

they were at 75% of their original weight, placed in a plastic tube

and then incubated for 4 h in the dark. Total RNA was prepared

from frozen plant tissues using Sigma mammalian total RNA kit

(Sigma-Aldrich; http://www.sigmaaldrich.com) following the

manufacturer’s protocol and including an on-column DNase I

treatment (RNase-free DNase set; Qiagen). Total RNA (2 mg) was

used as a template to synthesize first-strand cDNA using an

oligo(dT) 18-mer primer and the SuperScript first-strand synthesis

kit (Invitrogen; http://www.invitrogen.com/site/us/en/home.

html) according to the manufacturer’s instructions. Quantitative

real-time PCR reactions were performed using the LightCycler

FastStart DNA master SYBR green I kit in a Roche LightCycler

1.0 (Roche; http://www.roche.com). Reactions used 5 mL of 1:50

diluted sscDNAs in a total volume of 20 mL. Gene-specific primers

that had been tested for their efficiency rates and sensitivity on

dilution series of cDNAs were as follows: EF1a-4a, forward primer,

59-CTTCTTGCTTTCACCCTTGGTGT-39, reverse primer,

59-TGTCAGGGTTGTATCCGACCTT-39; RD29B, forward

primer, 59-CTTCTTGCTTTCACCCTTGGTGT -39, reverse

primer, 59- TGTCAGGGTTGTATCCGACCTT -39; RD22,

forward primer, 59- CGTCAGGGCTGTTTCCACTGAG -39,

reverse primer, 59- AGTAGAACACCGCGAATGGGTA -39;

RD29A, forward primer, 59- CCGGTCTCTCTGCTTTCTGG -

39, reverse primer, 59- CCACTAAGATAGTCTGAAACAGCC-

GA -39; ERD1, forward primer, 59- AGAGCTGTGAAGAGGT-

CCCG-39, reverse primer, 59- CCAATCTCAGCATGGATTC-

TTCCG -39. The efficiencies of all the primer sets used were

almost identical. The reactions were incubated as follows,

denaturation of cDNAs and hot start of recombinant Taq DNA

polymerase at 95uC for 8 min, then 45 cycles of 95uC for 10 s,

59uC for 4 s and 72uC for 9 s. After the final PCR cycle, a fusion

curve was generated to verify the specificity of the PCR

amplification; samples were heated at 95uC for 1 s before cooling

to 65uC for 30 s, followed by an increase to 95uC with a

temperature transition rate of 0.1uC s21.

Dickeya dadantii pathogenicity assay
Seeds were sown on soil, stratified for 2 days at 4uC, and

incubated at 25uC/20uC (day/night) in short day conditions (8 h

photoperiod, 70% RH). After two weeks seedlings were trans-

planted to individual 49 cm2 pots. When plants were six weeks old

they were watered abundantly and covered with plastic cloches for

16 h to obtain 100% humidity, which favours infection. For

inoculation, the Dickeya dadantii 3937 bacterial strain was grown

overnight on Lurani-Bertani plates. Cells were then washed from

plates and suspended in 50 mM KPO4 pH 7 to a concentration of

104 CFU ml21. Inoculation was performed, after wounding one

leaf per plant with a needle, by depositing a 5 ml droplet of the

bacterial suspension on the wound. The cloches were then

replaced in order to maintain a high level of humidity throughout

the assay. Resistance to bacterial infection was scored each day for

5 days using the criteria described in Figure 7 and Figure S8.

Supporting Information

Figure S1 Confirmation of the absence of xanthine
dehydrogenase activity in has1 aba3-1, has2 aba3-1 and
has3 aba3-1. Zymogram of total protein extracts from leaves of

21 day-old plants. Band corresponds to coloured product

produced by xanthine dehydrogenase activity in the wild-type

(WT). Similar results were obtained in 2 independent experiments.

(TIF)

Figure S2 The has3 mutant is not a cyp707a1 mutant
allele. A, False colour infrared image of the temperature of

drought stressed plants showing that the F1 progeny of cyp707a1-1

crossed with has3 had colder leaves than the parental genotypes. B,

F1 progeny of cyp707a1-1 crossed with has3 were less resistant to a

progressive drought stress then the parental genotypes and wilted.

(TIF)

Figure S3 Schematic representation of the procedure
used for selection of has single mutants. Chromosomes

bearing the HAS or ABA3 loci are represented as purple or blue

bars, respectively, and the loci themselves as light blue or black

lines, respectively.

(TIF)

Figure S4 Photosynthesis is not modified in has mu-
tants. Photosynthesis rates based on leaf net CO2 uptake (A) were

measured as a function of Ci (internal CO2 molar ratio) under A,

ambient oxygen (21%) or B, low oxygen (0.5%) conditions. PPFD

during measurements was 800 mmol.m22.s21. WT, wild-type.

Error bars represent SE values (n$3).

(TIF)

Figure S5 Stomatal density is not modified in has
mutants. Number of stomata measured on abaxial surface,

black bars, or adaxial surface, white bars. WT, wild-type. Error

bars represent SE values (n$5). Similar results were obtained in 2

independent experiments.

(TIF)

Figure S6 Induction of stomatal closure by 10 mM ABA
in wild-type and has mutants. Stomata aperture ratios

(width/length) were measured after a 2 h pre-treatment in the

light in stomata opening solution followed by a 3 h incubation

with or without 10 mM ABA. Error bars represent SE values

(n = 40). No significant difference was observed in Student t-tests

comparing mutant and wild-type at a given ABA concentration.

WT, wild-type.

(TIF)
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Figure S7 The has2 mutation affects germination
characteristics in accord with seed ABA hypersensitivi-
ty. A, Germination of mature, surface-sterilised seeds. The

number of seeds with protruding radicles was scored and

compared with the total number of seeds sown. B, paclobutrazol

resistance of germinating seeds. The number of seeds with green

cotyledons was scored and compared with the total number of

seeds sown. WT, wild-type. Error bars represent SE values

(n = 3).

(TIF)

Figure S8 Symptom notation for Dickeya dadantii
infection. The scale of infection is denoted by: 0: no symptom;

1: maceration limited to the inoculation point; 2: maceration

extends from the infection point; 3: maceration covers half the

lamina; 4: maceration spread over the whole lamina; 5:

maceration spread over the whole leaf (lamina and petiole).

(TIF)

Table S1 Primer sequences and number of recombi-
nant F2 progeny for markers delimiting the has loci
mapping intervals.
(TIF)

Protocol S1 Selection of has single mutants.

(TIF)

Protocol S2 Photosynthesis measurements.

(TIF)

Protocol S3 Stomatal density measurement.

(TIF)
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