Practical coexistence in the chemostat with arbitrarily close growth functions
Résumé
We show that the coexistence of different species in competition for a common resource may be substantially long when their growth functions are arbitrarily closed. The transient behavior is analyzed in terms of slow-fast dynamics. We prove that non-dominant species can first increase before decreasing, depending on their initial proportions.
Nous montrons que la coexistence entre différentes espèces en compétition sur une même ressource peut durer sensiblement, lorsque leurs courbes de croissance sont arbitrairement proches. Le comportement transitoire est analysé en termes de dynamiques lente-rapide. Nous prouvons que des espèces non dominantes peuvent d’abord croître avant de décrroître, en fonction de leurs proportions initiales.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|