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1 Introduction

The application of It’s formula induces some probabilistic representations of solutions of
deterministic linear problems with boundary conditions of Dirichlet, Neumann, Fourier, and
mixed types. These representations are used to establish some easily implementable algo-
rithms which compute an approximate solution by means of simulation of reflected random
walks. The boundary condition treatment can be reduced to the counting of absorptions and
reflections on the boundaries.

We recall first this simulation method and compare numerically some Euler’s and Runge-
Kutta’s schemes used to solve boundary value problems (see, for these schemes, [K92]).
Secondly, we consider the following problem with superabundant data on the boundary :
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(1)

where G is an open bounded region in R
d , with its boundary @G, u the unknown function,

defined on G, gi , i D 1; 2, some given functions, defined on @G, . ei / an orthonormal basis
of R

d . We then present a plan of my talk.

2 Stochastic representations of solutions

Section 2 is devoted to the stochastic representations of solutions with boundary condi-
tions of different types using It formula. The representations will be given in the full paper
without demonstration. See, for these representations, [F85] where the data are sufficiently
smooth.

3 Resolution algorithms

In Section 3, we present the approaches of these representations by the realizations of
random processes, and we establish the corresponding computational algorithms (see, for
these simulations and algorithms, [M95]). The algorithms written in pseudo-Pascal will be
given in the full paper.

1



4 Numerical experiments

The algorithms have been implemented. The programs, written in Fortran or Pascal,
have been run on Sun Spark work stations or compatible PC. Numerical experiments with
distributed source in two-dimensional geometries, and computational results with estimation
of empirical error, will be given in the full paper. For example, we consider problem (1) in
the ring G defined by :
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.x; y/ 2 R
2

ˇ

ˇ

ˇ 1 <
p

x2 C y2 < 3
o

with the functions f and gi defined in G and @G respectively such as : f .x; y/ D �2 ,
g1.x; y/ D 2 x , and g2.x; y/ D 2 y. This homogeneous Neumann problem has an exact
solution, defined up to an additive constant C : u.x; y/ D x2 C y2 C C .

5 Concluding remarks

The stochastic methods obtained in [M95] do not require selected configurations at the
neighborhood of the domain boundary, nor a discretization mesh. The associated simulation
methods are obtained and can be applied to problems with superabundant data without
specific treatments to domain local geometry.

Programming is short, easy to check step by step. As for the classical Monte Carlo, this
stochastic method admit an expected rate of convergence of about

p

1=NT where NT is the
sample size. Relative error and empirical variance can be computed. The essential properties
of Monte Carlo methods are maintained.
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