N

N

Approximation of solutions of some heat problems with
third boundary conditions by means of functional
integrals

Jean-Paul Morillon

» To cite this version:

Jean-Paul Morillon. Approximation of solutions of some heat problems with third boundary conditions
by means of functional integrals. Third International Congress on Industrial and Applied Mathematics,
Jul 1995, Hambourg, Germany. hal-00999788

HAL Id: hal-00999788
https://hal.science/hal-00999788

Submitted on 4 Jun 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00999788
https://hal.archives-ouvertes.fr

Approximation of solutions of some heat problems

with third boundary conditions

by means of functional integrals

J.-P. MORILLON
Université de La Réunion

Laboratoire PIMENT
Email : jean-paul.morillon@univ-reunion.fr

ICIAM 95 — Hamburg
Tuesday, July 4, 1995.



1 Introduction

Numerical solution of boundary value problems can be performed by the usual finite difference or
finite element methods and adequate space mesh. Monte Carlo methods can also be relevant ; they
lead, after equations discretization, to specific treatments related to domain local geometry (see, for
instance, References 1-4).

This work is also investigating another method which provides integral representations of the solution
to stationary deterministic linear boundary value problems. In particular, the Dirichlet problem is
known to have an integral representation® which is used to obtain an algorithm which computes the
solution by implementing a random walk simulation.®

The ensuing numerical methods do not require the storage of a grid discretization in computer
memory. Programming is short, easy to check step by step ; moreover, the implementation to a higher
dimension requires but a few additional lines.

More specifically, a stationary deterministic linear boundary value problem is to be solved with
boundary condition of Fourier or mixed types. We show, in particular, using examples, that the
boundary condition treatments can be reduced to the counting of absorptions and reflections on the
boundaries.

Section 2 is devoted to the stochastic representations of solutions. In Section 3, we present the
approaches of these representations by the realizations of random processes, and we establish the
corresponding computational algorithms. In Section 4, numerical simulations of random walks provide
results associated with two- or three-dimensional geometries. These methods are discussed in the last
section.



2 Representation of solutions

This section is devoted to the stochastic representations of solutions of linear boundary value prob-
lems by means of stochastic integrals. The Fourier, and mixed boundary conditions are presented.

Let us consider an open bounded region G in R¢ (the dimension d being fixed). Let us denote
x € R? the space variable and n the unit inward normal defined on the boundary 9G.

We will show how, from stochastic differential equations (SDE) (for these SDE, see for instance
References 7-10, and references therein), we can represent solutions of some boundary value problems.
We will use the expectation of integrals, i.e. functionals of trajectories and random functions which
are solutions of SDE. The application of Ito’s formula associated with SDE leads to a representation
of solutions.

From a functional point of view, the obtained representations have only been established according
to regularity hypotheses on the geometry of domain G, and on the boundary data. Nevertheless, we
are using here the stochastic representations even when data are not necessarily smooth : for instance,
the boundary dG of domain can show corners or edges (this procedure previously proved to be effective
in References 1, 2 and 4 for the discretized equations and in Reference 6 for the Dirichlet problem).

2.1 Problem with Fourier boundary condition
Let us consider the following problem with Fourier boundary condition :

1Ay = f inG,

g, " kU = g on 0G , (1)

where the function u, defined from G into R, is to be determined, and the data are the functions :

f: G — R, and g: G — R,



and u is a strictly positive constant.

Let us introduce the Markov process defined in G by the Laplace operator within the domain, or by
reflection on the boundary in the direction of the inward normal :

t
x;=x+m+/naG(xg)n(xg)dg;, (>0, (2)
0

where W, is the standard Wiener process with values in R? so that : Xj = x, 1jg is the indicator of
dG, and & is a non-decreasing process which increases only when ¢ hits the set {s > 0| X € 9G }, so
that : §§ = 0.

Some functional results regarding SDE (2) with reflection on dG, are given in References 5 and 11.

The application of Ité’s formula to :

u(Xf)eXp<—/f« /OtﬂaG(Xf)dgf)

leads to the representation of the solution of (1) in the form :
u(x)=E[Y], xe€ga, (3)

with the random variable :

Y = /O oof(Xf)exp(—,u/O ]laG(sz)dgj)dt (4)
_ /OOg(th)eXp<—,u/ ]IBG(XSX)dg;“)]laG(Xf)dgf.
0 0



2.2 Problem with mixed boundary conditions

The partition 0G = I'p U 'k is considered, where the parts I'p, and I'r correspond respectively to
the Dirichlet, and Fourier boundary conditions. Let us now consider the following problem with mixed
boundary conditions, and written down with the above notation :

—5Au = f  (G)
g1 (Ip) (5)
g—z —pu = g (I'r)
where u is a strictly positive constant. t
Let us introduce the Markov process : X;' = x + W, + / 1r.(X7)n(X])) d& , t >0, where 1, is
0

the indicator of the set I'r , and where & is a non-decreasing process which only increases when ¢ hits
the set {s > 0| X € I'r }, so that §] = 0.

The hitting time t of I'p is defined by : T =inf{ > 0| X" € Ip}.

The application of Ité’s formula to :

t
) e (< [ 10 ds; )
0
leads to the representation of the solution of (5) in the form :
u(x) = E[Y] (6)

<
I

with the random variable :

y = / FOX) exp (—u / 1 (X) ds;) dt + gu(XF) exp (—u [ L (X) ds:)nm:)
0 0 0
- [ gz<Xf>eXp(—u [ dsf)ﬂrF<Xf> dg 7)
0 0
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3 Resolution algorithms

The main purpose of this section is to give an approach of the representations of Section 2 by means
of realization of random processes, in order to compute the solutions of boundary value problems.

The solution u to problem (1), respectively (6), is represented as the mean of a random variable Y
involving functions of a reflected random walk, respectively. of a reflected then absorbed random walk.

The representation (3—5), respectively (6-7), shows that it is sufficient to compute N T approximated

values of Y, i.e. Yi, ..., Yyr, in order to obtain an estimation of u(x) as the mean :
| M7
ux) =— Y,.
() ===,
n=0

Each value Y, results from a simulation of a random walk reflected by the domain boundary and
limited by a fixed number NR of reflections, respectively reflected by the boundary part I'r, and lastly
absorbed by I'p. Each simulated random walk is instantaneously reflected by the boundary. Since the
simulated process happens to leave the domain, its trajectory resumes to the interior last position ; this
procedure goes on until the number of steps reaches the value NR, respectively until the absorption
by I'p. Each random walk is then finite.

The random processes X' and &' are discretized in time by the Euler method ; in particular, if 4 is
the fixed step size of a simulated reflected random walk, then the space, time and reflection increments
are defined by :

AX*=h, At=h*/d and AE =h.

The space step & > 0 being fixed, the process X} is simulated by the sequence of random vectors
Xo, X1, ... defined by means of the recurrent formulae :

Xy = x € G (being the initialization), and Xyy1 = Xy +h Dy, k € N,



where Dy is a random vector so that, if e;, i = 1,...,d, is the canonical basis of R¢, Dj verifies :

1
Prob(Dy = e;) = Prob(Dy = —e;) = R i=1,....d.

In the two-dimensional case, for each time interval, the fixed space step h is stepping along one
of the two axes of an orthonormal basis. This random axis is chosen with probability 1/2; either in
the positive or negative direction, being also chosen with probability 1/2 (see the following basic step
algorithm, written in pseudo-Pascal, where the function random gives a real number in [0, 1]).

Algorithm of random basic step

Ul := random; U2 := random;
if Ul < 0.5 then if U2 < 0.5 then X2 := X2 +
else X2 := X2 -
else if U2 < 0.5 then X1 := X1 +
else X1 := X1 -

= o e = R o

In the two-dimensional case, the boundary reflections is reflecting along one of the two axes of an

orthonormal basis (see the following reflection algorithm).

Reflection algorithm

Procedure Reflection(X1,X2)
{(X1,X2) is the position hitting by the random walk }
{(D1,D2) is a shift generating reflection }

if D1 <> 0 then X1 := X1 - D1

if D2 <> 0 then X2 := X2 - D2



Each simulation gives a realization X, 0 < k < NR, respectively. 0 < k < N, of a random walk in
G so that :
X()=)C€G,...,XNR_1€G, and XNREG,

respectively :
X()=)C€G,...,XN_1€G, and Xy € Ip,

which trajectory is the polygonal line connecting successively the points X; and X1, where NR is a
fixed number, respectively. N depends on each random walk.

Then this procedure is iterated N T times in order to obtain a sample of ¥, and an estimation of its
mean, i.e. u(x). The integer NT corresponds to the number of simulated random walks. This integer
NT is the maximum index of the main loop of the associated program. The second (and latter) loop
follows, step by step, each random walk by adding up successively the values of the source function
f, then those of the reflection effect, respectively. and lastly the absorption effect. Finally the score of
each corresponding Y, is added up.

3.1 Problem with Fourier boundary conditions

We fix the maximum number of reflections NR. Let NP be the number of steps of a NR reflections
random walk (NP depends on NR). For each simulated reflected random walk (Xi; 0 <k < NP),
the following score is computed :

NP k
Y, = Aty f(Xi)-exp (—As J AR T (Xz))
k=1 =1

k

NP
— A& g (Xp)-exp (—As ey Tag (Xz)) Log (X).
k=1

=1



For each reflection, a counter COUNT is incremented, and the values of the effects of the Fourier
boundary condition and the source function are stored.

The algorithm requires two embedded loops checked at each step. The main loop index increases up
to the number NT of random walks, the latter loop index up to the number NR of reflections. Let us
consider a domain G in R? and a point (X1D, X2D) given in G. Then a possible algorithm A1 of the
Fourier problem can be written in the form :

YM := 0.0;
for i:=1 to NT do
begin
X1:= X1D; X2:= X2D; YA:= 0.0; COUNT:= 0;
while COUNT < NR do
begin
YA := YA + F(X1,X2) * EXP(-MU*xCOUNT#*H); { Source effect inside }
X1:= X1 + random basic step; X2:= X2 + random basic step;

INTER(C X1, X2, IMMO );
if IMMO = true then

begin
Procedure Reflection(X1,X2); COUNT := COUNT + 1;
YAF := YAF + G(X1,X2) *x EXP(-MU*COUNT*H); { Fourier condition }
YA := YA + 2 % F(X1,X2) * EXP(-MU*COUNT*H); { Source effect }
end;
end;
YM :=YM + H=*H=x*xYA/ 2 - H * YAF;

end;
U:= YM / NT; { Solution as the arithmetic mean }



where MU is a strictly positive constant, and with the procedure INTER checking the reflection of the
random walk in progress. The logical variable IMMO takes the value true when the random walk hits
the boundary. The function F defines the effect of the source for each reached point of the walk inside
G, and G defines the reflection effect for a hitting point.

3.2 Problem with mixed boundary conditions

The integer NT corresponds to the number of simulated random walks, first reflected by the bound-
ary part I'r, then absorbed by I'p, and consequently to the number of absorptions by I'p. The number
of steps of such random walks is denoted N. For each simulated random walk (X;; 0 <k < N ), we
compute the following score :

N k N
Y, = At- Z f(Xk) -exp <—A§ W Z 1, (Xz)) + g1 (Xy) -exp <—A§ - Zﬂrp (XZ)) Ir, (Xn)
k=1 =1

=1

N-1 k
— AE-) g (Xp)-exp (—As e dpy (Xz)) Lr (Xp) -
k=1 I=1
The extension of algorithm A1 to the mixed case is easily implemented : the above loop has only to be
replaced by another loop which follows the trajectory of a random walk, step by step, until absorption.
A possible algorithm A2 to the problem with mixed boundary conditions admits the following interior
loop :
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while INSIDE = true do begin
YA := YA + F(X1,X2) * EXP(-MU*COUNT*H) ;
X1:= X1 + random basic step; X2:= X2 + random basic step;
INTER( X1, X2, INSIDE, IMMO_N, IMMO_F );
if IMMO_F = true then begin
Procedure Reflection(X1,X2); COUNT := COUNT + 1;

YAF := YAF + G2(X1,X2) * EXP(-MU*COUNT*H) ;
YA :=YA + 2 x F(X1,X2) * EXP(-MU*xCOUNT=*H) ;
end; { if }

end; { while }
YM := YM + Hx*xH *x YA/ D+ G1(X1,X2) *x EXP(-MU*xCOUNT*H) - H * YAF;

The computer program includes the functions F, G1, and G2 given by problem (5), the procedures
Basic step and Reflection previously described, as well as the modified procedure INTER :

Procedure INTER( X1, X2, INSIDE, IMMO_N, IMMO_F );
INSIDE := true; IMMO_F := false;

if (X1,X2 € [p) then INSIDE := false; if (X1,X2 € I'r) then IMMO_F := true;
As for the previous algorithm, algorithm A2 includes two loops :
— the main loop index increases up to the number of random walks until the fixed maximum NT ;
— the second loop generates a random walk reflected by I'r, and then absorbed by I'p.
When the trajectory hits I'r, one reflection occurs; if it hits I'r, counter COUNT increases. When an
absorption point is hit, a position test stops the simulated random walk.
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4 Numerical experiments

The validity and suitability of the present approach, i.e. the stochastic representations in Section 2
and their approximate solutions in Section 3, are investigated here by considering and evaluating a set
of boundary value problems. The results are compared with analytical solutions found in the literature.

The algorithms described above have been implemented. The programs, written in Fortran or Pascal,
have been run on Sun Spark work stations or compatible PC. We have used some generators of pseudo-
random numbers : random of Turbo-Pascal, and ran, r_addran() of Fortran 77.

4.1 Problems with Fourier boundary conditions

The following example is a problem with Fourier condition on the boundary of a square. The second
example is an extension to a cube.

Two-dimensional case. Let us consider problem (1), originating from Reference 12, on the square
G =1]0,1[ x]0, 1[, with the data :

V(.X,y)EG, f(xvy) = x(l—x)+)’(1—)’),

_fx(=x) f(0=<x=<lLy=0o0ry=1),
V(x,Y)EaG, g(x,)’) - {y(l_y) if(x=00rx=1,0§y§l),
u = 1.
This problem admits a unique solution written in the form : u(x,y) = x(1 — x) y(1 — y). Using

Algorithm A1, Tables I-1I show the results at the interior point (0.5;0.5), and boundary point (1.0;0.5)
respectively.

12



— Interior point : (0.5;0.5) € G — Exact value : u = 0.0625 — Step size h = 0.025 — Sample size
NT =10°.

Table 1. Problem with Fourier boundary conditions — Approximate solution u.(0.5;0.5)

Number of reflections Mean value | Relative error

NR Ue |(ue —u)/u|
200 0.062713 3.4-1073
1000 0.062525 0.4-1073

— Boundary point : (1.0;0.5) € 0G — Exact value : u = 0 — Step size : h = 0.005.

Table II. Problem with Fourier boundary conditions — Approximate solution u.(1.0;0.5)

Sample size : Number of reflections :
NT =10° NR = 5000
Number of reflections | Mean value Sample size | Mean value
NR Ue NT Uc
200 | —5.24-107% 10* | —2.77-107*
1000 | —2.27-107* 10° | —1.58-107*
5000 | —1.58-107* 2-10° 0.89-107*

13



Three-dimensional case. Let us consider problem (1), in the cube G =]0; 1[ x]0; 1[ x ]0; 1[, with
the following data :

V(x.y,2) € G, f(x.y) = x(I-x)+y(l—-y)+:z(1-2),
x(I1—-x)y(l—y) ifz=0o0rz=1,
V(x,y,z) €0G, g(x,y) = y(l—y)z(l—-z) ifx=0o0rx =1,
z(1—z)x(1—=x) ify=0o0ry=1,
uw = 1.
This problem admits the unique solution : u(x, y,z) = x(1—x) y(1—y) z(1 —z). Using Algorithm A1,
the results at point (1.0;0.5;0.5) belonging to dG, are shown in Table III, with the following data :

Step size : h = 0.005, Samplesize: NT = 10*, Exactvalue: u = 0.

Table III. Problem with Fourier boundary conditions — Approximate solution u.(1.0;0.5;0.5)

Number of reflections | Mean value

NR Ue

200 | —1.42-107*
1000 | —0.31-107*

14



(-1;1) (-0.4;1)

I'p
I'r
(0:0.6)
I'p
G I
(=1;0) I'p (0;0)

F1G. 1 — Non convex domain G for the problem with mixed boundary conditions — Mirror-reflection on I'r

4.2 Problems with mixed boundary conditions

Let us consider problem (5), originating from Reference 13, in the non convex domain
G =]-10[x]0; 1[\ {(x,y) € R? | x> + (y — 1)* <0.16} (cf. Figure 1), with the following data :

f = -2 in G,

gi(x,y) = x>+ (=12 onIp =0G\ I'F,
g = 0.32 onI'r={(x,y) eR*|x*+(y—1)?=016, x <0 y <1},
n = 3 on I'f.

This problem admits the unique solution : u(x, y) = x4+ (y — 1)%.
Let us consider the following modified reflection procedure (see also Figure 1) :

Procedure REBOUND(X1,X2);
if D1 <> 0 then X1 := X1 - D2;
if D2 <> 0 then X2 := X2 - Di;

15



The space, time and reflection increments are defined by :
5X;C=|Xk+1—Xk| =h, 6t= |lk+1—l‘k| = h2/2 and (S%'tx :|§k+1_§k| = hﬁ/4

Using Algorithm A2 with such reflection, the results at point (—0.5;0.5) belonging to dG, are shown
in Table IV. The empirical variance :

1 NT
2 4 . 2
ol = NT;(YH e

where Y, is the score obtained from the n-th random walk, and u, the mean value of the NT scores,
has been computed : o, = 0, 570.

Table IV. Problem with mixed boundary conditions — Approximate solution u.(—0.5;0.5)

Step size | Sample size | Mean value | Relative error

h NT Ue |ue —ul/u
0,005 2% 104 4,962 7,6x 1073
3 x 104 4,955 9,0x 1073

5 Concluding remarks

We have presented stochastic methods for the numerical approximation of some linear boundary
value problems (see also Reference 14). The representations are deduced from the application of the
Ito’s formula for the problems with Fourier or mixed conditions with non smooth boundary. These
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representations have given some easily implementable algorithms. The programs are short, easy to
write and check step by step.

The extension to an upper dimension problem, in particular the three-dimensional case, only requires
a minor modification of the basic step (two lines are only to be added), and a few additional lines in
the procedure INTER to locate the boundary. We do not have to store in memory any mesh of the
region G, nor deal with the corresponding numbering-lists.

As for the classical Monte Carlo schemes, this stochastic method admits an expected rate of con-
vergence of about 1/+/NT. The essential properties of Monte Carlo methods are maintained ; on the
one hand, this stochastic method of the solution approximation does not depend on the choice of the
point, on the other hand, its implementation on a parallel computer is intrinsically possible.

Lastly, the random walks are simulated simply by means of repeated Bernoulli’s elementary events.

Acknowledgements The support of the Conseil Général du Maine-et-Loire is gratefully acknowl-
edged.
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