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FROBENIUS AND NON LOGARITHMIC RAMIFICATION

Stéphanie Reglade

Abstract: A ℓ-extension is said logarithmically unramified if it is locally cyclotomic. The purpose of this

article is to explain the construction of the logarithmic Frobenius, which plays the role usually played by

the classical Frobenius, but in the context of the logarithmic ramification.The interesting point is that usual

and logarithmic Frobenius coincide when usual and logarithmic ramification are the same.
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Introduction:

The notion of logarithmic ramification was developped by Jaulent in [2]. The starting
point of this article is the following fact: let L/K be an extension of number fields, let
p be a prime of K, p is logarithmically unramified in L if LP ⊆ K̂c

p , where K̂c
p is the Ẑ-

cyclotomic extension of Kp. Consequently the decomposition sub-group is cyclic. Thus we
may naturally wonder if there exists, in this decomposition sub-group, an element which
is going to play the role usually played by the classical Frobenius ?
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Following Neukich’s abstract theory [1, chap.II], we first build the logarithmic local symbol.
Neukirch’s context starts with an abstract Galois theory and an abstract profinite group
G. The key points of this formal theory are two fondamental morphims (the degree map
and the valuation) and the class field axiom (cohomological condition on the G-module A
we work with).
In this article, the local object we study is the ℓ-adification of the multiplicative group of a
local field defined by Jaulent in [2]. It is endowed with the logarithmic valuation (we recall
its construction). We first define the degree map. We then prove that Neukich’s abstract
theory applies. This allows us to define the logarithmic local symbol. In particular we get
an explicit expression for the logarithmic local symbol on the ℓ-adification of Qp:

Proposition. Let ζ be a root of unity of order a ℓ-th power, and a ∈ RQp == Zℓ ⊗Z Q×
p .

The logarithmic local symbol is:

(a, (Qp(ζ)/Qp)ℓ)(ζ) = ζnp

with

np =





pvp(a) for p 6= ℓ and p 6=∞
(1 + ℓ)−ṽℓ(a) for p = ℓ

sgn(a) for p =∞

where (Q(ζ)/Q)ℓ denotes the projection on the ℓ-Sylow sub-group of Gal(Q(ζ)/Q).

Thus we study the global case. Finally, after choosing the logarithmic uniformizer π̃p, we
obtain the explicit construction of the logarithmic Frobenius:

Definition. Let L/K be an abelian ℓ-extension of number fields. Let p be a prime of K
logarithmically unramified in L. The logarithmic Frobenius attached to p is:

(
L̃/K

p
) = ([π̃p], L/K)

where [π̃p] is the image of the uniformizing element π̃p, through the logarithmic global symbol
defined on the ℓ-adic idele group JK =

∏RKp.

We are now able to extend this map by multiplicativity. By this way, we obtain the
logarithmic Artin map:

Definition. Let L/K be a finite and abelian ℓ-extension and p a prime of K logarithmically
unramified in L. Let DℓK be the group of logarithmic divisors of K, f̃L/K the logarithmic

global conductor of L/K and Dℓ
f̃L/K

K the sub-module of logarithmic divisors prime to the

conductor f̃L/K . We define the logarithmic Artin map on Dℓ
f̃L/K

K as follows:

˜
(
L/K

.
) : p ∈ Dℓ

f̃L/K

K 7→ (
L̃/K

p
) ∈ Gal(L/K)

We study the properties of this map and give an expression of its kernel. We then focus
on the quadratic case and generalize it to the case of a ℓ-extension.
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Notations

Let ℓ be a fixed prime number. Let’s introduce the notations.

For a local field Kp with maximal ideal p and uniformizer πp, we let:

RKp = lim←−k
K×

p �K×ℓk
p : the ℓ-adification of the multiplicative group of a local field

UKp = lim←−k
Up�U ℓk

p : the ℓ-adification of the group of units Up of Kp

U1
p : the group of principal units of Kp

µ0
p: the subgroup of Up, whose order is finite and prime to p

µp: the ℓ- Sylow subgroup of µ0
p

For a number field K we define:
RK = Zℓ ⊗Z K× : the ℓ-adic group of principal ideles
JK =

∏res
p∈P lK

RKp : the ℓ-adic idele group
UK =

∏
p∈P lK

UKp : the subgroup of units
CK = JK/RK : the ℓ-adic idele class group

In the logarithmic context, we denote:
Q̂c

p : the cyclotomic Ẑ-extension of Qp

Qc
p : the cyclotomic Zℓ-extension of Qp

ṽp : the logarithmic valuation attached to p sur RKp

ŨKp = Ker(ṽp) : the sub-group of local logarithmic units

ŨK =
∏

p∈P lK
ŨKp : the sub-group of logarithmic units

ẽp = [Kp : Q̂c
p ∩Kp] : the logarithmic absolute ramification index of p

f̃p = [Q̂c
p ∩Kp : Qp] : the logarithmic absolute inertia degree of p

ẽLP/Kp
= [LP : K̂c

p ∩ LP] : the relative logarithmic ramification index of p

f̃LP/Kp
= [K̂c

p ∩ LP : Kp] : the logarithmic relative inertia degree of p

J (m)
K =

∏
p∤mRKp

∏
p|m Ũ

vp(m)
Kp

J m
K =

∏
p∤mRKp

∏
p|m ŨKp

Ũ (m)
K =

∏
p∤m UKp

∏
p|m Ũ

vp(m)
Kp

R(m)
K = RK ∩ J (m)

K

˜div : α = (αp) ∈ J m
K 7−→ d̃iv(α) =

∏
pṽp(αp) ∈ DℓmK

DℓmK = d̃iv(J m
K ) : logarithmic divisors prime to m

Pℓ(m)
K = d̃iv(R(m)

K ) : principal logarithmic divisors attached to m

f̃L/K : the logarithmic global conductor L/K

f̃p: the logarithmic local conductor attached to p

( L̃/K
p

): the logarithmic Frobenius attached to p

AℓL/K the logarithmic Artin group of L/K
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1 Recall: Logarithmic ramification

We first recall the notion of logarithmic ramification developped by Jaulent in [2].
Let K,L be number fields, p a prime number, p a prime of K above p and P a prime of L
lying above p. Let’s denote Q̂c

p the Ẑ-cyclotomic extension of Qp, i.e. the compositum of
all Zq-cyclotomic extensions of Qp for all primes q.

Definition 1. Absolute and relative indexes : [2, definition 1.3]

i) the absolute and relative logarithmic ramification index of p are respectively:

ẽp = [Kp : Q̂c
p ∩Kp] ẽLP/Kp

= [LP : K̂c
p ∩ LP]

ii) the absolute and relative logarithmic inertia degree of p are respectively:

f̃p = [Q̂c
p ∩Kp : Qp] f̃LP/Kp

= [K̂c
p ∩ LP : Kp]

iii) K/Q is said logarithmically unramified at p if ẽp = 1, which means Kp ⊆ Q̂c
p.

iv) L/K is said logarithmically unramified at p if ẽLP/Kp
= 1, which implies LP ⊆ K̂c

p .

v) These indexes satisfy the relations: ẽP = ẽLP/Kp
.ẽp et f̃P = f̃LP/Kp

.f̃p

According to the diagramm: [7, 1.1.3]

LP

ẽLP/Kp

f̃P

s
s
s
s
s
s
s
s
s
s

LP ∩ Q̂c
p

ẽp

ẽP

y
y
y
y
y
y
y
y
y

K̂c
p ∩ LP

f̃LP/Kp

Qp
f̃p

Kp ∩ Q̂c
p

ẽp
Kp

Proposition 1.0.1. [2, theorem 1.4] With the pevious notations, classical and logarithmic
indexes are linked by this formula:

ẽp.f̃p = ep.fp = [Kp : Qp]

Fundamental remark: [2, p. 4] Assume K/Q is a finite ℓ-extension such that [K : Q] =

ℓn with n ≥ 1. Then Q̂c
p/Q

c
p only contains sub-extensions of order prime to ℓ.

In particular the degree of [Q̂c
p ∩Kp : Qc

p ∩Kp] is prime to ℓ and as it also divides ℓn, we

deduce [Q̂c
p ∩ Kp : Qc

p ∩ Kp] = 1. The equality of fields Q̂c
p ∩ Kp = Qc

p ∩Kp implies this
equivalence:

ẽp = 1⇔ Kp ⊆ Qc
p and f̃p = 1⇔ Qc

p ∩Kp = Qc
p.

As Qc
p/Qp is a Galois extension, the previous condition means that the extensions Kp et

Qc
p are linearly separated on Qp.

As we work with ℓ-extensions, we may replace in the previous definitions Q̂c
p by Qc

p.
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2 The local case

2.1 The degree map

Let Kab
p be the maximal abelian pro-ℓ-extension of Kp. On the Galois group Gal(Kab

p (ζℓ∞)/Kp),
the Teichmuller’s character ω is defined as the character of the action on roots of unity. It
is defined for pro-ℓ-extensions as the restriction to the pro-ℓ-part of the whole character.
We thus define the degree map:

deg : G = Gal(Kab
p /Kp) → Zℓ

φ 7→ ω(φ)

where Kab
p is the maximal abelian pro-ℓ-extension of Kp.

We then follow Neukich’s abstract construction. If LP is a finite ℓ-extension of Kp, the
logarithmic ramification index and the logarirhmic inertia degree appear naturally:

f̃LP/Kp
= [LP ∩Kc

p : Kp] ẽLP/Kp
= [LP : LP ∩Kc

p ]

Those definitions coincide with those given by Jaulent [2] .
Remark: We replace here in the definitions K̂c

p by Kc
p because we work with ℓ-extensions.

2.2 The G-module

We introduce the ℓ-adification of the multiplicative group of a local field: RLP
= lim←−k

L×
P�L×ℓk

P

defined by Jaulent [3, def.1.2]. The G-module we study is the same as before [5, §2.2]:
A = limRLP

, where LP runs through all finite sub-extensions of Kp. It can be canonically
identified to: A =

⋃
[LP:Kp]<∞RLP

. If LP is a finite extension of Kp, ALP
= RLP

is the

Gal(LP/Kp)-module we are going to work with.

2.3 Logarithmic valuation and ℓ-adic degree

Definition 2. Let K be a finite extension of Q, p a prime number. Let’s denote Q̂c
p the

Ẑ-cyclotomic extension of Qp and let p be a prime of K above p.

i) The ℓ-adic degree of p is: degℓ(p) =

{
LogIw(p) if p 6= ℓ
LogIw(1 + ℓ) if p = ℓ

ii) The ℓ-adic degree of p is: deg(p) = f̃p · degℓ(p)

iii) Let vp be the usual normalized valuation on Kp, the absolute principal ℓ-adic valua-
tion, defined on K×

p is:

if p ∤ ℓ then |xp| =< Np−vp(x) >

if p|ℓ then |xp| =< NKp/Qℓ
(x)Np−vp(x) >

where Np is the absolute norm of p and u −→< u > is the canonical surjection from
Zℓ

× to the group of principal units.

iv )the logarithmic valuation attached to p is: ṽp(x) = −LogIw(NKp/Qp
(x))/degℓ(p) ,

defined on RKp valued to Zℓ, [1][Prop.1.2]
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Remark: This definition of the logarithmic valuation is here different from the one given
by Jaulent [2, définition 1.1]. Indeed the ℓ-adic degree of ℓ, degℓ(ℓ), is equal to ℓ initially
and to LogIw(1 + ℓ) in our case. This is motivated by the fact that we want an explicit
expression for the logarithmic uniformizers.

Proposition 2.3.1. [2, proposition 1.2]
Let p be a prime number, Qc

p the Ẑ-cyclotomic extension of Qp, Kp/Qp a finite extension

of degree dp and |.|p the principal absolute ℓ-adic valuation on K×
p . Then:

i) for all x ∈ K×
p the expression hp(x) = −Log(|x|p/dp.degℓ(p) does not depend on the

choice of the extension of Qp containing x ;

ii) the restriction hp of hp to the multiplicative group of K×
p , yields a Zℓ-morphism from

RKp to Qℓ, whose kernel is ŨKp and whose image is the Zℓ-lattice 1/ẽp · Zℓ

iii) the logarithmic valuation satisfies: ṽp = ẽp · hp.

iv) let p be a prime of K which is not above ℓ, classical and logarithmic valuations are
proportional:

ṽp =
fp

f̃p
· vp =

ẽp
ep
· vp

Proposition 2.3.2. The logarithmic valuation ṽp checks two properties:

i) ṽp(RKp) = Z with Z ⊂ Z et Z/n.Z ≃ Z/n.Z for all n ;

ii) ṽp(NLP/Kp
RLP

) = f̃LP/Kp
Z for all finite extension LP of Kp .

Thus the logarithmic valuation is henselian with respect to the degree map, according to
Neukirch’s definition.

Proof. For the first criterium (i) we use the definition of the logarithmic valuation :
ṽp(RKp) = Zℓ ; ainsi Z = Zℓ et Z/n.Z ≃ Z/n.Z for all n.

For the second criterium (ii) we use this diagramm [2, proposition 1.1] :

K×
p

extension−−−−−−→ L×
P

Norm−−−−→ K×
py
y hp

Qℓ −−−−→ Qℓ
[LP:Kp]−−−−−→ Qℓ

It follows hp(NLP/Kp
) = [LP : Kp] hP. From, ṽp(NLP/Kp

RLP
) = ẽp hp(NLP/Kp

RLP
) we de-

duce ṽp(NLP/Kp
RLP

) = [LP : Kp] ẽp hP(RLP
) thus ṽp(NLP/Kp

RLP
) = [LP : Kp] ẽp/ẽP Zℓ

by [2, proposition 1.2], then hP(RLP
) = 1/ẽP Zℓ. According to [proposition 5.1.1],we get:

[LP : Kp] = f̃LP/Kp
ẽLP/Kp

; so [LP : Kp] ẽp/ẽP =
f̃P ẽP ẽp

f̃p ẽp·ẽP
Thus ṽp(NLP/Kp

RLP
) =

f̃P
f̃p

Zℓ

and finally ṽp(NLP/Kp
RLP

) = f̃LP/Kp
Z.
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2.4 The logarithmic local symbol

Theorem 2.4.1. (deg, ṽp) is a class field theory and RKp satisfies the class field axiom
[5, theorem 2.5.1]. Thus for all finite and abelian ℓ-extension LP of Kp (finite extension
of Qp) we have this isomorphism :

Gal(LP/Kp) ≃ RKp/NLP/Kp
RLP

Definition 3. It allows us to define a surjective homomorphism: the logarithmic local
symbol

( , LP/Kp) : RKp −→ Gal(LP/Kp)

Moreover, for all archimedean place p of Q, we have [2, i), p. 4]

RQp =

{
µp.p

Zℓ for p 6= ℓ

(1 + ℓ)Zℓ · ℓZℓ for p = ℓ

Thus we have a decomposition of the shape : RQp ≃ ŨQp .π̃p
Zℓ .

Proposition 2.4.1. We have an explicit expression for the logarithmic local symbol. Let
ζ be a root of unity of ℓ-th power and a ∈ RQp. The logarithmic local symbol is:

(a, (Qp(ζ)/Qp))ℓ = ζnp

with

np =





pvp(a) for p 6= ℓ and p 6=∞
(1 + ℓ)−ṽℓ(a) for p = ℓ

sgn(a) for p =∞
where (Q(ζ)/Q)ℓ denotes the projection on the ℓ-Sylow sub-group of Gal(Q(ζ)/Q).

Remark: If p is real and ℓ = 2 then we have RQ∞
≃ Z

2Z , it is trivial in any other cases, [3,
Prop.1.2] : sgn(a) is ±1 in the first case and 1 in the other cases.

Proof. Let ζ be a ℓm-th root of unity, with ℓm 6= 2. We take a ∈ RQp and write a = up·pvp(a)
for p 6= ℓ, where vp is the usual normalized valuation of Qp, which coincide in this particular
case with the logarithmic valuation. For p = ℓ, we write a = ℓvℓ(a).(1 + ℓ)ṽℓ(a). For p 6= ℓ
and p 6=∞ the extension Qp(ζ)/Qp is an unramified extension. The fundamental principle
[1, Th. 2.6, p. 25] states that the local symbol associates the Frobenius elements to the
uniformizing elements; we have already seen that (p, (Qp(ζ)/Qp))ℓ is the usual Frobenius
automorphism φp : ζ −→ ζp. Moreover this diagramm is commutative:

K×
p

( · ,̇ Gal(LP/Kp))−−−−−−−−−−−→ Gal(LP/Kp)y
y

RKp

( · ,̇ Gal(LP/Kp))ℓ−−−−−−−−−−−→ Gal(LP/Kp)ℓ

where the symbol on the top is the usual local symbol and the symbol on the bottom is
the ℓ-adic local symbol. That is why we deduce:

(a, (Qp(ζ)/Qp)ℓ)ζ = ζnp
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with

np =

{
pvp(a) for p 6= ℓ and p 6=∞
sgn(a) for p =∞

But we want to have [a, (Q(ζ)/Q)ℓ] = 1 for a ∈ RQ in order to be able to define the
valuation in the logarithmic global context:

[a, (Q(ζ)/Q)ℓ]ζ =
∏

p

(a, (Qp(ζ)/Qp)ℓ)ζ = ζα.

Thus, by the product formula, taking nℓ = (1 + ℓ)−vℓ(a), we get : α =
∏

p np = sgn(a) ·∏
p 6=∞ pvp(a) · ℓ−vℓ(a) · (1 + ℓ)−ṽℓ(a) = a · a−1 = 1, as waited.

3 The global case

3.1 G and the G-module

Let G be the Galois group of the maximal abelian pro-ℓ-extension of Q. We introduce the
ℓ-adic idele class group for a given number field K refer to Jaulent [3, definition 1.4]. Like
previously [5, §3.4] the G-module is the union of all ℓ-adic idele class groups CK , where K
runs through all finite extensions of K :

⋃
[K:Q]<∞ CK and CL is our Gal(L/K)-module.

3.2 The degree map

We fix an isomorphism: Gal(Q̃/Q) ≃ Ẑ. This allows to define:

d̃eg : G = Gal(Qab/Q) → Ẑ
φ 7→ φ|

Q̃

where Qab is the maximal abelian pro-ℓ-extension of Q. Let K/Q be a finite extension,
we define: fK = [K ∩ Q̃ : Q] and we get, by analogy with the abstract case [1, ch.2],

a surjective homomorphism d̃egK = 1
fK
· d̃eg such that d̃egK : GK −→ Ẑ defines the

Ẑ-extension K̃ of K.

3.3 The valuation

Due to the property, ∀a ∈ RK , [a, K̃/K] = 1. we put this definition:

Definition 4. We define the valuation ṽK : CK −→ Ẑ as follows:

CK
[ · ,K̃/K]−−−−−→ G(K̃/K)

d̃egK−−−−→ Ẑ

Lemma 3.3.1. This valuation ṽK is henselian with respect to the degree map d̃eg.

Proof. Arguments are the same as [5, lemma 3.6.4] replacing UKp by ŨKp .

Theorem 3.3.1. (d̃eg, ṽK) is a class field theory and CK [4, theorem 3.3.1] satisfies
the class field axiom. Thus for all finite and abelian ℓ-extensions L of K, we get an
isomorphism:

Gal(L/K) ≃ JK/NL/K(JL)RK

8



Definition 5. This allows to define a surjective homomorphism, called the global logarith-
mic symbol:

( · , L/K) : JK −→ Gal(L/K)

4 The logarithmic Frobenius

4.1 Logarithmic uniformizing elements on Qp

Logarithmic uniformizing elements on RQp :

If p ∤ ℓ : the classical uniformizing element p is also a uniformizing element for the
logrithmic valuation.

If p = ℓ : due to the expression of RQℓ
, we have

RQℓ
= UQℓ

ŨQℓ

with ŨQℓ
≃ ℓZℓ and UQℓ

≃ 1 + ℓZℓ.
We consider a logarithmic uniformizing element ℓ̃ such that

ṽℓ(ℓ̃) = 1 et ℓ̃ ∈ UQℓ
.

thus we obtain the decomposition:

RQℓ
= ℓ̃ZℓℓZℓ .

On Qℓ this is the choice of the denominator in the expression of the logarithmic
valuation, i.e. the ℓ-adic degree of ℓ, which enforces ℓ̃. The condition Log(ℓ̃) = degℓ(ℓ),
which comes from ṽℓ(ℓ̃) = 1, defines ℓ̃ up to a logarithmic unit. But we have ŨQℓ

∩UQℓ
= 1,

thus ℓ̃ is determined by the choice of the denominator.
For instance, if we choose the ℓ-adic degree of ℓ as equal to Log(1 + ℓ), we get: ℓ̃ = 1 + ℓ.

4.2 Logarithmic uniformizing elements on RKp

If p ∤ ℓ, the classical uniformizing element πp is also a uniformizer for the logarithmic
valuation, in this case both valuations are proportional: πp = π̃p.

If p|ℓ, then we have in this case RKp ≃ U1
p π

Zℓ
p . By definition a uniformizing element is an

element π̃p of RKp such that :

LogIw(NKp/Qℓ
(π̃p)) = f̃p degℓ(ℓ) = LogIw(ℓ̃

f̃p).

This defines π̃p up to a logarithmic unit.

4.3 The logarithmic conductor

In usual local class field theory, we have the decreasing filtration of the group of units UKp

of K×
p :

U
(n)
Kp

= 1 + pn

where p is the maximal ideal of the ring of integers.

(U
(n)
Kp

)n are a system of neighboorhoods of 1 in K×
p . Thanks to this filtration, we define

the local and the global conductor attached to an extension.
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Let’s give a decreasing filtration of the group of logarithmic units (Ũn
Kp

)n∈N with Ũ0
Kp

=

ŨKp.

Definition 6. We are now able to define a logarithmic local and global conductor, as
follows:

i) Let LP/Kp be an abelian ℓ-extension and n the smallest integer such that Ũn
Kp
⊆

NLP/Kp
(RLP

) then the ideal:

f̃p = pn

defines the logarithmic local conductor attached to this extension.

ii) Let L/K be a finite and abelian ℓ-extension, the global logarithlic conductor is:

f̃L/K =
∏

p

f̃p

Proposition 4.3.1. The p-conductor f̃p is trivial if and only if the extension L/K is
logarithmically unramified at p. The logarithmic global conductor f̃L/K contains all the
primes of K which are logarithmically unramified in L and only those. Besides, if M is
between K and L then f̃M/K divides f̃L/K .

Proof. If p is a prime of K logarithmically unramified in L, we have ẽLP/Kp
= 1, and due

to [1]Prop.2.2.p.22 :
H0(Gal(LP/Kp), ŨLP

) = 1;

it follows:
ŨKp = NLP/Kp

(ŨLP
),

which means
ŨKp ⊆ NLP/Kp

(RLP
).

Conversely, let’s assume that fp is trivial, we deduce ŨKp ⊆ NLP/Kp
(RLP

). Let n = [RKp :

NLP/Kp
(RLP

)] ; from π̃n
p ∈ NLP/Kp

(RLP
) we get (π̃n

p )ŨKp ⊆ NLP/Kp
(RLP

). Thus it

follows LP ⊆ M , where M is the class field of (π̃n
p )ŨKp i.e. NM/Kp

(RM ) = (π̃n
p ) · ŨKp .

But ŨKp ⊆ NM/Kp
(RM ) which means that the p-conducteur is trivial. Applying the first

part, we deduce that M/Kp is logarithmically unramified. By ℓ-adic class field theory,

we obtain: Gal(M/Kp) ≃ (π̃p)ŨKp/(π̃
n
p )ŨKp . Consequently, M is the ℓ-extension of degree

n logarithmically unramified; and from LP ⊆ M , we conclude that p is logarithmically
unramified in L.

Examples

1) For Qℓ, we have ŨQℓ
≃ ℓZℓ ≃ Zℓ, that is why we get a filtration of ŨQℓ

by raising in

ŨQℓ
the canonical filtration Zℓ by ℓnZℓ, for n ∈ N.

2) Given a local field Kp, we get a filtration of the logarithmic units ŨKp as follows:

10



- if p|ℓ by raising the local norm NKp/Qℓ
the filtration of units on Qℓ : Ũn

Kp
= {x ∈

RKp | NKp/Qℓ
(x) ∈ (ℓ)ℓ

nZℓ}. So, we have
⋂

n Ũn
Kp

= {x ∈ RKp | NKp/Qℓ
(x) = 1}.

But by class field theory, the compositum KpQab
ℓ is fixed by the kernel of the

norm. Thus the decreasing sequence (Ũn
Kp

)n is not exhaustive.

- if p 6| ℓ, as ŨKp ≃ µp the natural filtration is 0 ⊂ µp.

4.4 The logarithmic Artin map

Let K be a number field, the ℓ-group of logarithmic divisors of K is [2, Def.2.1]:

DℓK = JK/ŨK ≃
⊕

p

Zℓ p

through the logarithmic valuations (ṽp)p it can be identified to a free Zℓ-module built on
finite primes of K.

Definition 7. Let L/K be a finite and abelian ℓ-extension, p a prime of K logarithmi-
cally unramified in L, DℓK be the group of logarithmic divisors of K , f̃L/K be the global

logarithmic conductor L/K and Dℓf̃L/K

K the sub-group of logarithmic divisors prime to f̃L/K .
We define the logarithmic Frobenius of a prime p logarithmically unramified, as follows:

(
L̃/K

p
) = ([π̃p], L/K)

where π̃p is the logarithmic uniformising element, defined in proposition 3.7.3 and [π̃p] the
image of π̃p in JK .
We extend this map by multiplicativity:

˜
(L/K. ) : Dℓf̃L/K

K → Gal(L/K)

p 7→ ( L̃/Kp )

Few remarks:

1) The previous application is extended by multiplicativity to Dℓf̃L/K

K as by hypothesis
L/K is a ℓ-extension.

2) This map is a surjective Zℓ-morphism, due to the surjectivity of the global symbol.

3) The motivation of this definition is the fact that in abstract class field theory [1,
Prop.3.4 ], if a ∈ AK , ( , L/K) the norm residue symbol of L/K satisfies:

(a, K̃/K) = φ
vK(a)
K

where φK is the generic Frobenius of K̃/K.

4) When p 6| ℓ, the usual valuation and the logarithmic one are proportional: conse-
quently π̃p = πp, the Zℓ-unramified extension and the Zℓ-cyclotomic one are the
same. Thus the classical Artin symbol and the logarithmic one coincide on ideals.
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Proposition 4.4.1. Properties of the logarithmic Artin map
Let L/K be a finite and abelian ℓ-extension, f̃L/K the logarithmic global conductor. Then
we have:

i) If M is between L and K, the restriction of
˜
(L/Ka ) to M is

˜
(M/K

a ), for all a ∈ Dℓf̃L/K

K

ii) Let L and L′ be abelian ℓ-extensions, let’s consider Gal(LL′/K) as a sub-group
of Gal(L/K) × Gal(L′/K), through the map σ ∈ Gal(LL′/K) → (σ|L, σ|L′) ∈
Gal(L/K)×Gal(L′/K), then

˜
(LL

′/K
a

) is ((̃L/K
a

), (̃L
′/K
a

)) for all a ∈ Dℓf̃LL′/K

LL′

iii) Let K ′ be any sub-extension of K, and let’s consider Gal(LK’/K’) as isomorphic, by

restriction to K, to a sub-group of Gal(L/K). The restriction of
˜

(LK
′/K ′

a′ ) to K is

˜( K
NK′/Ka′ ) for all a′ ∈ Dℓf̃L/K′

K ′

iv) In particular, if M is a field between L and K, we have
˜
(L/MU ) =

˜
( L/K
NMU), for all

U ∈ Dℓf̃L/K

M .

Proof. i) It sufficies to check the property on each prime p. By the fonctoriality property
of the reciprocity map, we have: resM ◦ φL/K(π̃p) = φM/K(π̃p).
ii) is a consequence of i)

iii) We have to prove the equality between
˜

(LK
′/K ′

a′ )|K = φLK ′/K ′(a′) and ˜( L
NK′a′

) =

φL/K(NK ′(a′)) for all a′ ∈ Dℓf̃L/K′

K ′ . By the fonctoriality property of the reciprocity map,
we obtain this commutative diagramm:

Gal(L′/K ′)
rL′/K′

−−−−→ JK ′/NL′/K ′(JL′)RK ′

y
yN

K′/K

Gal(L/K)
rL /K−−−−→ JK/NL/K(JL)RK

where rL/K is the reciprocity map for global ℓ-adic class field theory. Consequently we
have the following diagramm for the logarithmic global symbol:

JK ′

( · ,L′/K ′)−−−−−−→ Gal(LK ′/K ′)

N
K′/K

y
yres

JK
( · ,L /K )−−−−−−→ Gal(L /K )

and we deduce the property from res ◦ ( · , LK ′/K ′) = ( · , L/K) ◦NK ′/K .
iv) is a particular case of iii) taking K ′ = L

Definition 8. The kernel AℓL/K of the previous application ( L̃/K. ) is called the Artin
logarithmic sub-module. For every modulus m divisible by the global logarithmic conductor
of L/K, we put AℓL/K,m = AL/K ∩ DℓmK .
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Definition 9. Let L/K be an abelian ℓ-extension, m a modulus dividing the logarithmic
global conductor, we define:

J (m)
K =

∏

p6|m

RKp

∏

p|m

Ũvp(m)
Kp

R(m)
K = RK ∩ J (m)

K

Theorem 4.4.1. Let L/K be a finite and abelian ℓ-extension, we have :

AℓL/K = Gal(L/K) ≃ Pℓ(̃fL/K)

K ·NL/K(Dℓf̃L/K

L )

where Pℓ(̃fL/K)

K is the sub-module of logarithmic principal divisors, image of the elements

of R(̃fL/K)

K .

Proof. Let’s denote here the logarithmic global conductor of L/K by f̃. By global ℓ-adic
class field theory, we know:

Gal(L/K) ≃ JK/NL/K(JL)RK .

By the ℓ-adic approximation lemma [4, II.2], we know that the morphism of semi-
localization RK −→

∏
p∈SRKp is surjective for all finite set of primes S.

It follows:
JK = J f̃

KRK .

Thus we get:

Gal(L/K) ≃ J f̃
K/NL/K(J f̃

L)R
f̃
K .

But the elements of Ũ (̃f)
K =

∏
p6|̃f ŨKp

∏
p|̃f Ũ

vp (̃f)
Kp

are norms : if p 6| f̃, p is logarithmically

unramified and units are norms, moreover if p|̃f, the definition of the conductor implies
that those elements are norms. Due to this remark, we deduce:

Gal(L/K) ≃ J f̃
K/NL/K(J f̃

L) Ũ
(̃f)
K R

f̃
K .

But by the next lemma, we have: Ũ (̃f)
K R

f̃
K = ŨKR(̃f)

K . Finally we obtain:

Gal(L/K) ≃ Dℓf̃K/Pℓ(f̃)K ·NL/K(Dℓf̃L).

Lemma 4.4.1. With the same notations, we get:

Ũ (̃f)
K R

f̃
K = ŨKR(̃f)

K .
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Proof. Let’s take α ∈ Ũ (̃f)
K R

f̃
K and write α = ur with u ∈ Ũ (̃f)

K and r ∈ Rf̃
K . This last

condition implies that for all primes p dividing the conductor, the local component rp
is a logarithmic unit. The approximation lemma gives a principal idele β, whose local

components for the primes dividing the conductor are rp. Finally we get αβ−1 ∈ ŨKR(̃f)
K :

this is the first inclusion.
Conversely, let’s consider α ∈ ŨKR(̃f)

K and write α = ur with now u ∈ ŨK and r ∈ R(̃f)
K . As

u ∈ ŨK , the local component up is a logarithmic unit and in particular for p|̃f. Due to the
approximation lemma we get a principal idele β, whose local components for the primes

p|̃f are up. Finally αβ−1 ∈ Ũ (̃f)
K R

f̃
K . The equality follows.

Remark : Let’s notice the analogy between the expression of the classical Takagi’s group
and the logarithmic Artin sub-module.

Theorem 4.4.2. Let L/K be a finite and abelian ℓ-extension, m a modulus of K divisible

by f̃L/K , then ( L̃/K. ) restricted to DℓmK is surjective and leads to an isomorphism between
DℓmK/AℓL/K,m and Gal(L/K).

4.5 Example: the quadratic case

To better understand the differences between the classical and the logarithmic case, let’s
focus on a quadratic extension: Q(

√
d)/Q. This is a ℓ-extension for ℓ = 2, thus classical

ramification and logarithmic ramification only differ for the primes above ℓ (cf [2]).
1) Let’s consider first a prime p which is not above 2 :

• either the prime p is ramified in the classical and the logarithmic sense: the classical
Frobenius and the logarithmic one are not defined.

• or the prime p is unramified both in the classical and the logarithmic sense: we have
to consider two cases

– either p is inert and logarithmically inert: the decomposition sub-group is then
isomorphic to the Galois group of the quadratic extension. It contains the
identity and the usual Frobenius which coincides with the logarithmic one.

– or p is completely splitten in the classical and the logarithmic sense : the de-
composition sub-group is trivial, and so are the classical Frobenius and the
logarithmic one.

2) Let’s study the case of 2.
2 is logarithmically unramified, means by definition:

[Q2(
√
d) ∩ Q̂c

2 : Q2(
√
d)] = 1⇔ Q2(

√
d) ⊆ Qc

2

with Q̂c
2 the Ẑ-cyclotomic extension of Q2 and Qc

2 the Z2-cyclotomic extension of Q . Q̂c
2 is

just the compositum of all Zq-cyclotomic extensions for all primes q, those extensions are
linearly separated and their Galois group is isomorphic to Zp. The previous equivalence is
due to the fact that Z2 is the only one which has a quotient isomorphic to Z/2.Z.
The Z2-cyclotomic extension of Q is cyclic, thus we may focus on the first step of the tower:
Q2(
√
d) ⊆ Q2(

√
2). So we have two cases:
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Q2(
√
d) = Q2 or Q2(

√
d) = Q2(

√
2)

thus

d ∈ Q×
2
2

i.e. d ≡ 1 mod 8 or d/2 ∈ Q×
2
2

i.e. d/2 ≡ 1 mod 8

as the squares of Q2 are of the shape 2n.u where u is a 2-adic unit congruent to 1 mod 8
and n is a rational even number .

• If d ≡ 1 mod 8, Q2(
√
d) = Q2, the local extension is trivial, the same is true for the

decomposition subgroup. In this case, 2 is completely splitten in the classical and in
the logarithmic sense.

• If d ≡ 2 mod 16, 2 is ramified in the classical sense but logarithmically inert. Its
decomposition sub-group contains two elements : the trivial one and the other one
which is the logaritmic Frobenius. Q2(

√
d)/Q2 is the maximal real sub-extension of

Q2(ζ8)/Q2, which is fixed by <−1>. Moreover Gal(Q2(ζ8)/Q2) ≃ (Z/8.Z)×, thus

we may explicit the action of the logarithmic Frobenius of 2 :
˜
(K/Q

2 )(ζ8) = ζ38 .

4.6 Generalization: from quadratic to ℓ-extensions

Proposition 4.6.1. Let K/Q be an abelian ℓ-extension with ℓ 6= 2 and p a prime of Q.

• For p 6= ℓ, classical and logarithmic ramification coincide. If p is unramified, the
classical Frobenius and the logarithmic one are the same.

• For p = ℓ we have several cases : ( let p be a prime of K above ℓ)

– either Kp = Qℓ : ℓ is then completely splitten in the classical and the loga-
rithmic sense. The decomposition sub-group is trivial, classical and logarithmic
Frobenius are equal and both trivial.

– and Qℓ 6= Kp ⊂ Qnr
ℓ : ℓ is classically unramified and logarithmically ramified,

only the classical Frobenius exists

– or Qℓ 6= Kp ⊂ Qc
ℓ : ℓ is logarithmically unramified but classically ramified, only

the logarithmic Frobenius exists

– in any other case, ℓ is both classically and logarithmically ramified.

Proof. If ℓ 6= 2, the maximal abelian pro-ℓ-extension Qab
ℓ of Qℓ is the compositum of

Zℓ-unramified extension Qnr
ℓ and the cyclotomic one Qc

ℓ.
Let’s assume p 6= ℓ, then the classical and the logarithmic uniformizing elements are

equal, the local symbol coincide : thus the classical and the logarithmic Frobenius are the
same.

Let’s assume p = ℓ and that ℓ is logarithmically unramified in K. As we work with
ℓ-extensions, we obtain:

Kp ⊆ Qc
ℓ,

where p is a prime of K above ℓ. As K/Q is a finite extension, we may concentrate on the
first steps of the Zℓ-cyclotomic extension : there exists an integer n such that

Kp ⊆ Bn+1,
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where Bn+1 is the maximal real subextension of Qℓ(ζℓn+1) with ζℓn+1 a ℓn+1-root of unity
and [Bn+1 : Qℓ] = ℓn. This yields to:

Kp = Qℓ or Kp = Bn+1.

In the first case, the local extension is trivial: p is completely splitten in the classical
and in the logarithmic sense. In the second case, ℓ is ramified in the classical sense but
logarithmically unramified.
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