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Abstract

We define a class of erased-word processes and prove that the poly-adic filtration
generated by such a process is standard. This is shown by firstly constructing a
generating process of innovations in the case of a finite alphabet equipped with
the uniform probability measure, and then by deriving the general case with the
help of the tools of Vershik’s theory of filtrations in discrete negative time.

1 The filtration of the erased-word process

An erased-word process is depicted on Figure 1. It is a stochastic process indexed by
the set of negative integers −N, and consists in picking at random a word Wn with |n|
letters at time n and then to obtain the next word Wn+1 by deleting at random one letter
of Wn (thus the final word W0 is the empty word). More precisely, given a Lebesgue
probability space (A, µ), and calling A the alphabet, the erased-word process on (A, µ)
is the Markov process (Wn, ηn)n60 whose law is defined as follows: for every n 6 −1,

• Wn is a random word on A made of |n| letters i.i.d. according to µ;

• ηn+1 is a random variable uniformly distributed on {1, 2, . . . , |n|} and independent
of the past σ-field σ(Wm, ηm; m 6 n);

• Wn+1 is obtained by deleting the ηn+1-th letter of Wn.

· · · W−3 = bac
η

−2=3−−−→ W−2 = ba
η

−1=1−−−→ W−1 = a
η0=1−−−→ W0 = ∅

Fig. 1: A trajectory of the erased-word process

The filtration F generated by the erased-word process (Wn, ηn)n60 is defined by Fn =
σ(Wm, ηm; m 6 n). We will sometimes term the ηn as the erasers. According to definition
given below, the sequence (ηn)n60 made of the erasers is a process of innovations of the
filtration F.

1



1 The filtration of the erased-word process 2

Definition 1.1. Let F be a filtration. A random variable ηn that is independent of Fn−1

and such that Fn = Fn−1 ∨ σ(ηn) is called an innovation of F (more precisely, we should
say an innovation at time n, but thanks to the subscript in ηn this is not a point worth
quibbling about). A sequence (ηn)n60 of independent random variables such that each ηn is
an innovation of F at time n, is called a process of innovations of F.

When such a process of innovations exist, it defines the local structure of the filtration:
for any other process of innovations (η′

n)n60, the two random variables ηn and η′
n possibly

generate two different σ-fields σ(ηn) and σ(η′
n), but there is a Boolean isomorphism

between the measure algebras
(
σ(ηn),P

)
and

(
σ(η′

n),P
)

for every n 6 0. Details about

this point can be found in [1] and [5]. Thus, any possible innovation η′
n of the filtration of

the erased-word process is uniformly distributed on |n| + 1 values, similarly to the eraser

ηn. For this reason, the filtration F of the erased-word process is said to be
(
|n|+1

)
-adic,

and it belongs to the class of poly-adic filtrations, according to definition below.

Definition 1.2. A filtration F is poly-adic if there exists a process of innovations (ηn)n60

of F such that each ηn is uniformly distributed on a finite set.

The poly-adicity will play an important role in the proof of theorem below, which is
the main result of this article.

Theorem 1.3. For any Lebesgue alphabet (A, µ), the filtration of the erased-word process
is of product type, that is to say, it is generated by a process of innovations.

Let us comment this theorem. Consider the filtration E generated by the process of
innovations (ηn)n60. Obviously E ⊂ F , but E 6= F because En is independent of Wn for
every n 6 0. But that does not mean that E and F are not isomorphic. Theorem 1.3
asserts that there exists another process of innovations (η̃n)n60 which generates F (then
called a generating process of innovations), and this says that E and F are isomorphic.
Thus F, which is bigger than E , is no more than E up to isomorphism.

This theorem together with Kolmogorov’s zero-one law imply that the tail σ-field
F−∞ := ∩Fn is degenerate. But it is not difficult to directly prove the degeneracy of
F−∞ with the help of the reverse martingale convergence theorem (this proof would be
similar to the one given in [2] for the dyadic split-word process), whereas the proof of
Theorem 1.3, even in the simpler case when A is finite and µ is uniform (see below our
three demonstration steps), is not easy. The motivation of Theorem 1.3 is precisely the
surprising fact that it is not a trivial result once we know that F−∞ is degenerate: it

is known that for any type of poly-adicity (such as the
(
|n| + 1

)
-adicity), there exist

some filtrations whose tail σ-fields are degenerate but for which there does not exist any
generating process of innovations. Thus, such a filtration is locally isomorphic to F and,
similarly to F, has a degenerate σ-field, but is not isomorphic to F. This surprising fact
has been discovered by Vershik ([8, 9, 10, 11]), who developed a theory to characterize
the existence of a generating process of innovations for poly-adic filtrations.

To give a better idea of the subtlety of Theorem 1.3, we mention that the opposite
conclusion holds for a process seemingly close to the erased-word process. Namely, this
process is similar to the erased-words process except that at each time, the letter deleted
at random is either the first one or the last one with equal probabilities of 1/2. It
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generates a dyadic (2-adic) filtration which is not of product type although its tail σ-
field is degenerate. This result is not explicitely written in the literature but Heicklen
and Hoffman’s proof of their main result in [3] implicitly relies on it.

We will use the tools of the theory of filtrations developed by Vershik to derive the
general case in Theorem 1.3 from the particular case when µ is uniform on a finite
alphabet A. More precisely, our theorem will be proved in three steps:

1. we will prove Theorem 1.3 in the case when µ is the uniform probability measure
on a finite alphabet A using a ‘bare-hands’ approach, that is, we will construct a
generating process of innovations in this case;

2. using some tools of Vershik’s theory, we will prove Theorem 1.3 in the case when
µ is the Lebesgue measure on A = [0, 1];

3. again using some tools of Vershik’s theory, we will derive the general case of The-
orem 1.3 from the case when µ is the Lebesgue measure on A = [0, 1].

The main theorem of Vershik’s theory that will be used is the equivalence between the
existence of a generating process of innovations and standardness in the case of poly-adic
filtrations:

Theorem 1.4. A poly-adic filtration is of product type if and only if it is standard.

Different definitions of standardness are used in the literature. Probabilists usually
consider that a standard filtration is by definition a filtration which can be immersed in
a filtration of product type ([2], [5]), and this definition directly yields that filtrations
of product type are standard. The deep assertion of Theorem 1.4 is the reciprocal fact.
Under the usual assumption that the final σ-field F0 of the filtration F is essentially
separable, standardness is known to be characterized by a criterion discovered by Vershik,
called Vershik’s standardness criterion or the Vershik property ([2], [7], [6]). A filtration
satisfying the Vershik property is also said to be Vershikian. We will write an easy
proposition (Proposition 3.1) about the Vershik property to derive step 2 from step 1
in the proof of Theorem 1.3. Then step 3 will be derived from step 2 and from the
heritability property of standardness under immersion, with the help of Theorem 1.4.

The standardness property will be more precisely explained in Section 3, at time we
will resort to it.

In Section 4 we derive standardness of the multidimensional Pascal filtration from
standardness of the erased-word filtration. This filtration arises when one observes the
evolution of the numbers of occurences of each letter in the erased-word process.

It is worth mentioning that the filtration of the erased-word process can be viewed
as the filtration induced by an ergodic central measure on a Bratteli graph, because
there is a recent interest in the study of standardness of such filtrations ([12, 13, 4]).
This Bratelli graph arises by taking as probability space of the erased-word process a
so-called canonical space in the theory of stochastic process, that is, a space representing
the trajectories of the erased-word process, equipped with a probability measure ν such
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Fig. 2: The Bratteli graph of the erased-word filtration

that picking a trajectory according to ν defines the law of the erased-word process. The
Bratteli graph is shown on Figure 2 for a two-letters alphabet A = {a, b}.

The graph is graded: the vertices at each level n 6 0 correspond to the possible
states of the random word Wn, in particular it has a unique vertex ∅ at level 0. The
edges connecting a vertex at level n − 1 to a vertex at level n correspond to the possible
values of the eraser ηn. In this way, a trajectory of the erased-word process corresponds
to an infinite path in the graph, starting from the root vertex ∅, and the law of the
erased-word process defines a probability measure ν on the set Γ of such paths. This
graph is termed as Bratelli because in addition to be graded, each vertex at level n 6 0
is connected to at least one vertex at level n − 1, and each vertex at level n 6 −1 is
connected to at least one vertex at level n. Thus, a trajectory of the erased-words process
can be viewed as an infinite path in Γ taken at random according to ν, and the σ-field
Fn is the one generated by the path observed up to level n. We can similarly define the
filtration F for any Bratteli graph and a given probability measure ν on the space Γ of its
infinite paths. In our case where ν is the law of the erased-word process, it is an ergodic
central measure with the terminology of Vershik ([12, 13]). The measure ν is said to be
central when for every given path observed up to level n, the remaining finite piece of the
path from the vertex picked at level n to the root vertex ∅ at level 0 is taken uniformly
on the set of all such finite pieces of path (see [4] for more details). This obviously holds
in our case because of the poly-adicity of F. The measure ν is said to be ergodic when
the tail σ-field F−∞ is degenerate, and as already said before, this property holds in our
case as a consequence of standardness but it is not difficult to prove it directly.

2 Discrete uniform case

Throughout this section, we assume that A is finite and µ is the uniform probability
measure on A. We will prove Theorem 1.3 in this case by a more or less explicit con-
struction of a generating process of innovations (η̃n)n60. We also set κ = #A and we fix
a total order on A. Then we denote A = {a1, . . . , aκ} where ai is the i-th letter of A.
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2.1 Ingredients of the construction

a3 •

a2 •

a3 •

a1 •

a2 •

a2 •

a2 •

a3 •

a1•

a2•

a3•

a1•

a2•

a3•

a1•

a2•

Fig. 3: A canonical
coupling

The main ingredient of the construction is the canonical cou-
pling. It is very easy to roughly explain what is the canonical
coupling with the help of the picture shown on Figure 3, but it is
a bit tedious to write its rigorous definition. Below, we split the
description of the canonical coupling into three paragraphs: we
firstly define the canonical word (the periodic word at right on
Figure 3), then we introduce the notation N−

i (w) for the num-
ber of occurrences of the i-th letter of w to the left of position
i, and finally we define the canonical coupling of a word (the
permutation shown on Figure 3, induced by the word at left).

The canonical word of length ℓ on A is the word w̃ ∈ Aℓ in which the letters of A
appear in the order and repeat periodically: the i-th letter w̃(i) of the canonical word w̃
is the r-th letter ar of A if i ≡ r (mod κ). For example, the canonical word of length 8
on A = {a1, a2, a3}, shown at right on Figure 3, is the word a1a2a3a1a2a3a1a2.

Given a word w and a position in w, that is to say an index i of one letter of w, we
denote by N−

i (w) =
∑i−1

k=1 1{w(k)=w(i)} the number of occurrences of the i-th letter of w
to the left of position i. If w̃ is the canonical word, then N−

i (w̃) is the quotient in the
Euclidean division of i − 1 by κ = #A.

The canonical coupling φw of a word w on the finite ordered alphabet A = {a1, . . . , aκ}
is the permutation illustrated on Figure 3 and rigorously defined as follows. Let w̃ be
the canonical word on A having the same length ℓ as w. The canonical coupling φw is
a permutation of the set {1, . . . , ℓ} of positions in w. Its construction is made in two
steps:

• First step. Take a position i ∈ {1, . . . , ℓ} in w. If w(i) = ar then we set
φw(i) = r+κN−

i (w) provided r+κN−
i (w) 6 ℓ, i.e. when N−

i (w) is strictly less than

the number of occurrences of ar in the canonical word w̃. Then w(i) = w̃
(
φw(i)

)

for all such i. This step is illustrated on Figure 3 by the solid lines.

• Second step. After performing the first step for every possible i, we assign the
remaining positions in w to the remaining positions in w̃ in the increasing way.
This step is illustrated on Figure 3 by the dashed lines.

The last ingredient of the construction are the cascaded permutations. Consider the
canonical coupling φWn0

of Wn0
for an arbitrary small n0, providing a correspondence

between Wn0
and the canonical word of length |n0| denoted by w̃n0

. Figure 3 is helpful
to keep in mind that φWn0

represents one-to-one connections between the letters of Wn0

and the letters of w̃n0
. In parallel to (Wn0

, Wn0+1, . . . , W0), we construct a sequence
of erased words (W ′

n0
, W ′

n0+1, . . . , W ′
0), starting from W ′

n0
= w̃n0

and erasing one letter
at each step as follows. At time n = n0 + 1, the word Wn0+1 is obtained by deleting
the ηn0+1-th letter of Wn0

, and we delete the corresponding φWn0
(ηn0+1)-th letter of the

canonical word w̃n0
= W ′

n0
, thereby obtaining a subword W ′

n0+1 of W ′
n0

having the same
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length as Wn0+1. Thus η′
n0+1 := φWn0

(ηn0+1) is the first eraser in the parallel erased-word
sequence (w̃n0

, W ′
n0+1, . . . , W ′

0), and its realization fully determines the realization of the
random word W ′

n0+1. Moreover, by deleting the connection between ηn0+1 and η′
n0+1

in the canonical coupling φWn0
, we obtain a new permutation φWn0

,ηn0+1
representing

one-to-one connections between the letters of Wn0+1 and the letters of W ′
n0+1. Then we

continue so on (this is illustrated on Figure 4):

• At each time n ∈ {n0 + 1, . . . , −1} we have a word W ′
n of length |n| and a per-

mutation φWn0
,ηn0+1,...,ηn

representing one-to-one connections between the letters of
W ′

n and the letters of Wn.

• At time n + 1 we have a word W ′
n+1 obtained by deleting the η′

n+1-th letter of
W ′

n, where η′
n+1 = φWn0

,ηn0+1,...,ηn
(ηn+1), and this provides a new permutation

φWn0
,ηn0+1,...,ηn+1

connecting the letters of W ′
n+1 to the letters of Wn+1.

φWn0
φWn0

,ηn0+1
φWn0

,ηn0+1,ηn0+2

1 •

2 •

3 •

4 •

5 •

1•

2•

3•

4•

5•

ηn0+1 = 2

1 •

2 •

3 •

4 •

1•

2•

3•

4•

ηn0+2 = 3

1 •

2 •

3 •

1•

2•

3•

Fig. 4: A cascaded permutation

Figure 4 illustrates the “cascaded” permutations φWn0
,ηn0+1,...,ηn

initiated at time n0 =
−5 by the canonical coupling φWn0

and sequentially obtained from the erasers ηn0+1 and
ηn0+2. By this way the random word W ′

n is measurable with respect to σ(η′
n0

+1, . . . , η′
n).

Lemma 2.1 in the next section shows that the η′
n are innovations of F and Wn = W ′

n

with probability as high as desired when the construction starts from an arbitrary small
n0, and this will allow us to construct a generating process of innovations.

2.2 Key lemma

A generating process of innovations of F will be derived from Lemma 2.1 below. The
following construction, already sketched in the previous section, is used in the statement
of this lemma. Let fn be the function from A|n|+1 × {1, . . . , |n| + 1} to A|n| defined by
setting fn(w, e) to the word obtained by deleting the e-th letter of w. This function
represents the update from Wn−1 to Wn because of the equality Wn = fn(Wn−1, ηn).
Now, consider a random vector (η′

n0+1, . . . , η′
0) having the same law as (ηn0+1, . . . , η0).

Then define a Markov process
(
Yn(n0)

)

n06n60
by the initial condition Yn0

(n0) = w̃n0
(the

canonical word of length |n0|), and by the inductive relation

Yn+1(n0) := fn+1

(
Yn(n0), η′

n+1

)
.
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Setting W ′
n = Yn(n0), the process

(
(W ′

n0+1, η′
n0+1), . . . , (W ′

0, η′
0)
)

has the same distribu-

tion as the process
(
(Wn0+1, ηn0+1), . . . , (W0, η0)

)
conditionally to Wn0

= w̃n0
. Lemma 2.1

below shows that Wn = W ′
n with probability as high as desired when the construction

starts from an arbitrary small n0 and when we use the innovations η′
n encountered in the

previous section when we defined the cascaded permutations.

Lemma 2.1. Let n0 < 0 be an integer and φWn0
be the canonical coupling of Wn0

. For
every integer m ∈ [n0 + 1, −1] let φWn0

,ηn0+1,...,ηm
be, as explained in Section 2.1, the

cascaded permutation initiated by φWn0
and sequentially obtained from ηn0

, . . . , ηm, and
define η′

m+1 = φWn0
,ηn0+1,...,ηm

(ηm+1) for every m ∈ [n0, −1]. Then (η′
n)n0+16n60 has the

same law as (ηn)n0+16n60 and each η′
n is, just as ηn, an innovation of F, that is, η′

n is
independent of Fn−1 and Fn = Fn−1 ∨ σ(η′

n). Moreover, with the notations above,

P

(
Wn 6= Yn(n0)

)
→ 0 as n0 → −∞

for every n 6 0, where w̃n0
is the canonical word of length |n0|.

Proof. It is easy to check that η′
n is an innovation as any other Fn−1-measurable random

permutation of ηn. The word Wn is a subword of Wn0
, and we denote by Qn0,n ⊂

{1, . . . , |n0|} the set of positions in the word Wn0
forming its subword Wn. Moreover, by

construction of the cascaded permutations, W ′
n = Yn(n0) is a subword of w̃n0

and the set
of positions in w̃n0

forming W ′
n is the image of Qn0,n by the canonical coupling φWn0

. We
can check the intuitively clear fact that Qn0,n is independent of Wn0

and is uniform on
the subsets of {1, . . . , |n0|} having size |n|. Indeed, there is a bijective correspondence
between the erasers (ηn0+1, . . . , ηn) and the (n − n0)-uple listing the successive positions
in the word Wn0

of the letters deleted at times n0+1, . . . , n. The set of all theses positions
is exactly the complement of Qn0,n in {1, . . . , |n0|}. Therefore there is a correspondance
between (ηn0+1, . . . , ηn) and Qn0,n, and consequently there is independence between Qn0,n

and Wn0
. Moreover, this correspondance between (ηn0+1, . . . , ηn) and Qn0,n is surjective

and (n − n0)! to one, wherefrom follows the uniformity of the law of Qn0,n.
Now, to abbreviate notations, set p = |n0|, q = |n|, Q = Qn0,n and W = Wn0

. Thus
we have seen that Q is a random variable independent of W and uniformly distributed
on the subsets of {1, . . . , p} having size q. With these abbreviated notations, the main
statement of the lemma is rephrased by

π(p, q) := P

(
W|Q = w̃|φW (Q)

)
−→ 1 as p → +∞,

where φw is the canonical coupling of a word w and w̃ is the canonical word of length
p, and we use the notation w|J to denote the subword of a word w obtained by keeping
only those of its letters whose indices belong to the subset J .

Recall the notation κ = #A. To show that π(p, q) → 1 when p → ∞, we introduce
the three events

E1 =
{
max(Q) 6 p − p3/4 − κ

}
,

E2 =
{
∀(i, j) ∈ Q2, i = j or |i − j| > 3p3/4

}
,

E3 =
{
∀i ∈ Q, i − 1 − p3/4

6 κN−
i (W ) 6 i − 1 + p3/4

}
,
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and we are going to show that

E1 ∩ E2 ∩ E3 ⊂
{
W|Q = w̃|φW (Q)}

if p is sufficiently large, and

P(Ec
1 ∪ Ec

2 ∪ Ec
3) −−−→

p→∞
0.

We firstly show the inclusion. As a first step, we show that W (i) = w̃
(
φW (i)

)
for

every i ∈ Q on the event E1 ∩ E3. Consider i ∈ Q and assume that W (i) = ar. On the
event E3,

r + κN−
i (W ) 6 κ + i − 1 + p3/4,

and κ + i − 1 + p3/4 6 p on the event E1. Thus, by definition of the canonical coupling,
φW (i) = r + κN−

i (W ) on the event E1 ∩ E3 and W (i) = w̃
(
φW (i)

)
for every i ∈ Q.

Moreover,
1 + (i − 1 − p3/4) 6 r + κN−

i (W ) 6 κ + (i − 1 + p3/4),

on the event E3, therefore φW satisfies the following property on E1 ∩ E3:

∀i ∈ Q,
∣∣∣i − φW (i)

∣∣∣ 6 κ − 1 + p3/4.

Consequently, if we are on E1 ∩ E2 ∩ E3 and if p is sufficiently large so that 3p3/4 >

2
(
κ + p3/4

)
, then the restriction of φW to Q is increasing, and finally W|Q = w̃|φW (Q), as

desired.
It remains to show that P(Ec

1 ∪Ec
2 ∪Ec

3) −−−→
p→∞

0. The following upper bound of P(Ec
1)

is easily obtained:

P(Ec
1) 6 q

p3/4 + κ + 1

p
−−−→
p→∞

0.

The following upper bound of P(Ec
2) is obtained by sampling the elements of Q

without replacement:

P(Ec
2) 6

6p3/4 + 2

p − 1
+

2(6p3/4 + 2)

p − 2
+ · · · +

(q − 1)(6p3/4 + 2)

p − q + 1

6
(q − 1)2(6p3/4 + 2)

p − q + 1
−−−→
p→∞

0.

To find an upper bound of P(Ec
3), we call Ik the k-th element of Q for every k ∈ {1, . . . , q}.

Conditionally to Ik = i, the number of occurences N−
Ik

(W ) has the binomial distribution
with size i − 1 and probability of success 1/κ, because of the independence between W
and Q. Therefore, using Bienaymé-Chebyshev’s inequality,

P

(∣∣∣∣N
−
Ik

(W ) − Ik − 1

κ

∣∣∣∣ >
p3/4

κ

∣∣∣∣ Ik = i

)
6

(
κ

p3/4

)2

(i − 1)
1

κ

(
1 − 1

κ

)

<
pκ

p3/2
=

κ√
p

,
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and this being true for every i ∈ {1, . . . , p}, one also has

P

(∣∣∣∣N
−
Ik

(W ) − Ik − 1

κ

∣∣∣∣ >
p3/4

κ

)
<

κ√
p

.

By summing this equality over all k ∈ {1, . . . , q},

P(Ec
3) <

qκ√
p

−−−→
p→∞

0,

and the proof is over.

2.3 Proof of standardness

We finish to prove that the erased-word process (Wn, ηn)n60 generates a filtration of
product type in the discrete uniform case. This can be quickly proved from Lemma 2.1
with the help of Vershik’s first level criterion and proposition 2.22 in [5]. Lemma 2.1
says that each random variable Wn satisfies Vershik’s first level criterion. Since (ηn)n60

is a process of innovations of F, and since the σ-fields σ(Wn, ηn+1, . . . , η0) increase to F0

as n → −∞, proposition 2.22 in [5] ensures that F satisfies Vershik’s first level criterion,
and then F is of product type by Vershik’s theorem (theorem 2.25 in [5])

But we have not stated Vershik’s first level criterion in the present paper, and we can
give a self-contained proof that F is of product type by constructing a generating process
of innovations. First recall that W ′

n = Yn(n0) in Lemma 2.1 is measurable with respect
to σ(η′

n0+1, . . . , η′
n). Then, given a sequence (δk)k60 of real numbers δk > 0 satisfying

δk → 0 as k → −∞, recursively applying Lemma 2.1 provides a strictly increasing
sequence (nk)k60 of integers with n0 = −1 and an innovation process (η̃n)n60 such that:

(i) (η̃nk+1, . . . , η̃n) = τWn
k

,n(ηnk+1, . . . , ηn) for every k < 0 and every integer n ∈ [nk +
1, 0], where each τw,n is a permutation of {1, . . . , |nk|} × · · · × {1, . . . , |n| + 1};

(ii) for every k 6 0 there is a random word W̃nk
measurable with respect to σ(η̃nk−1+1, . . . , η̃nk

)

and satisfying P(Wnk
6= W̃nk

) < δk.

Now we check that (η̃n)n60 generates F. It suffices to construct, for each n 6 0

and every δ > 0, a pair of random variables (Ŵn, η̂n) that is measurable with respect

to σ(. . . , η̃n−1, η̃n) and that satisfies P

(
(Wn, ηn) 6= (Ŵn, η̂n)

)
< δ. To do so, let k be

sufficiently small in order that δk < δ and nk < n. Then define

(η̂nk+1, . . . , η̂n) = τ−1
W̃n

k
,n

(η̃nk+1, . . . , η̃n)

and define Ŵm for m ∈ [nk, n] by initially setting Ŵnk
= W̃nk

and recursively setting

Ŵm+1 = fm+1(Ŵm, η̂m+1) (the functions fm were introduced before Lemma 2.1). Now,
(η̂nk+1, . . . , η̂n) = (ηnk+1, . . . , ηn) on the event {Wnk

= W̃nk
}, hence Ŵn = Wn on this

event too.
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3 Vershikian tools and the general case

Here we finish the proof of Theorem 1.3 by following step 2 and step 3 announced in the
introduction.

Consider the erased-word process (Wn, ηn)n60 in the case when A = [0, 1] and µ is the
Lebesgue measure on A, and denote by G the filtration it generates. In order to prove
that G is of product type (step 2), the idea consists in approximating this process by an
erased-word process on a finite alphabet with equiprobable letters, known to generate a
filtration of product type by the previous section (step 1). Then the tools of Vershik’s
theory of filtrations will allow to conclude.

For every integer k > 1, let fk : A → A be the function defined by fk(x) = 2−k⌊2kx⌋.
Then fk sends the Lebesgue measure µ to the uniform probability measure on the finite
alphabet Ak :=

{
0, 1

2k , . . . , 2k−1
2k

}
. Applying fk to each letter of a word w on A gives

a word on Ak denoted by fk(w). Then the process
(
fk(Wn), ηn

)

n60
is an erased-word

process generating a filtration of product type by Section 2. Moreover, denoting by Gk

this filtration, the sequence of σ-fields (Gk
0)k>1 is increasing and ∨+∞

k=1G
k
0 = G0

We give two ways to prove that G is of product type from the fact that each Gk is
of product type. The first one uses Vershik’s first level criterion, as the proof of the
similar result 2.45 in [5] about the split-word processes. Vershik’s first level criterion is
known to be equivalent to productness (see [5]), hence we know it is satisfied by each
filtration Gk. Moreover, every innovation η′

n of Gk at time n is also an innovation of G,
because by lemma 2.4 in [5] it can be written η′

n = Φ(ηn) where Φ is a Gk
n−1-measurable

random bijection from {1, . . . , |n| + 1} to some finite set of size |n| + 1. Thus, every
random variable in ∪kL1(Gk

0) belongs to the set of random variables in L1(G0) satisfying
Vershik’s first level criterion with respect to G. But this set is closed in L1(G0) by
proposition 2.7 in [5], consequently G satisfies Vershik’s first level criterion.

The second proof we give relies on a more general result stated in our original Propo-
sition 3.1 below. As we have seen, the key point in the previous proof is the fact that
every innovation of Gk is also an innovation of G and it is very specific to our situation.
This fact implies that each Gk is immersed in G (see lemma 1.6 in [5]; that means here

that the process
(
fk(Wn), ηn

)

n60
is Markovian with respect to G), and this is the key

point of the second proof.

Proposition 3.1. Let F be a filtration. If there exists a sequence of Vershikian filtrations
(Fk)k>1 such that the sequence of σ-fields (Fk

0)k>1 is increasing and satisfies ∨+∞
k=1F

k
0 = F0,

and if each Fk is immersed in F, then F is Vershikian.

Proof. Saying that Fk is Vershikian means by definition that the final σ-field Fk
0 is Ver-

shikian with respect to the filtration Fk, but thanks to lemma 4.1 in [7], this tantamounts
to say that Fk

0 is Vershikian with respect to the filtration F because of the immersion
of Fk in F. Now, because of ∨+∞

k=1F
k
0 = F0, lemma 4.2 in [7] (closedness of the set of

Vershikian random variables) shows that F0 is Vershikian with respect to F, that is to
say F is Vershikian.
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Thus, we know that G is standard by Proposition 3.1 and by the equivalence between
standardness and the Vershik property. By Theorem 1.4, we conclude that G is of product
type.

Step 2 of the proof of Theorem 1.3 is achieved. Step 3 (the general case) is easily
achieved with the help of Theorem 1.4. Consider an arbitrary Lebesgue alphabet (A, µ)
and take a measurable function f : [0, 1] → A sending the Lebesgue measure to µ. Then

the process
(
f(Wn), ηn

)

n60
is the erased-word process on (A, µ), and the filtration it

generates is immersed in G. We conclude that this filtration is of product type by
using Theorem 1.4 and the heritability of standardness under immersion, an immediate
consequence of the definition of standardness (see [2] or [5]). Now step 3 is achieved and
the proof of Theorem 1.3 is over.

4 Standardness of the multidimensional Pascal filtration

The d-dimensional Pascal filtration is introduced in [4]. It is the filtration generated
by the Markov chain (Vn)n60 whose distribution depends on a given probability vector
(θ1, . . . , θd), where d > 2 is a finite integer or d = ∞, and is defined as follows:

• (instantaneous distributions) the random variable Vn has the multinomial distri-
bution on

V
d
n =

{
v ∈ N

d | v(1) + · · · + v(d) = |n|
}

with success probability vector (θ1, . . . , θd);

• (Markov transitions) the transition laws from n to n + 1 are

L(Vn+1 | Vn = v) =
d∑

i=1

v(i)

|n| δv−ei
, (4.1)

where ei is the vector in R
d whose i-th term is 1 and all the other ones are 0. In

other words, given Vn =
(
v(1), . . . , v(d)

)
, coordinate i is picked at random with

probability v(i)
|n|

and Vn+1 is obtained by subtracting 1 to this coordinate.

The case when d = 2 is illustrated on Figure 5 and Figure 6 (with p playing the
role of θ1), and the case when d = 3 is illustrated on Figure 7. We refer to [4] for more
detailed explanations.

It has been shown in [4] that the filtration generated by the d-dimensional Pascal
random walk is standard for any d and any (θ1, . . . , θd). This result is straightforwardly
derived from our Theorem 1.3 and from the heritability property of standardness under
immersion, already mentioned in the introduction and in Section 3. Indeed, taking the
erased-word process (Wn, ηn)n60 on an alphabet A with d letters and equipped with the
probability µ whose masses are given by the probability vector (θ1, . . . , θd), and defining
the function fn : A|n| → Vn as the one returning the list of the numbers of occurences
of each letter of A in a given word of length |n|, then the process

(
fn(Wn), ηn

)

n60
is the



4 Standardness of the multidimensional Pascal filtration 12

0

−1

−2

−3

−4

−5

n p 1 p

p 1 p p 1 p

p 1 p p 1 p p 1 p

p 1 p p 1 p p 1 p p 1 p

p 1 p p 1 p p 1 p p 1 p p 1 p

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Fig. 5: 2-dimensional Pascal random walk, directed from n = 0 to n = −∞
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Fig. 6: 2-dimensional Pascal random walk, directed from n = −∞ to n = 0
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Fig. 7: Step in the 3-dimensional Pascal random walk: from n = −2 to n = −3 (left),
and from n = −3 to n = −2 (right)

d-dimensional Pascal random walk defined by the probability vector (θ1, . . . , θd), and
the filtration F it generates is immersed in the filtration G generated by the erased-word
process (Wn, ηn)n60 because

(
fn(Wn), ηn

)

n60
is Markovian with respect to G. Then

standardness of the d-dimensional Pascal filtration F results from Theorem 1.3, from
the obvious fact that standardness holds for filtrations of product type, and from the
heritability property of standardness under immersion.
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