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This work presents Direct Numerical Simulations of capillary wave turbulence solving the full 3D
Navier Stokes equations of a two-phase flow. When the interface is locally forced at large scales, a
statistical stationary state appears after few forcing periods. Smaller wave scales are generated by
nonlinear interactions, and the wave height spectrum is found to obey a power law in both wave
number and frequency in good agreement with weak turbulence theory. By estimating the mean
energy flux from the dissipated power, the Kolmogorov-Zakharov constant is evaluated and found to
be compatible with the exact theoretical value. The time scale separation between linear, nonlinear
interaction and dissipative times is also observed. These numerical results confirm the validity of
weak turbulence approach to quantify out-of equilibrium wave statistics.

PACS numbers: 47.35.-i, 05.45.-a, 47.52.+j, 47.27.-i

Wave turbulence aims to provide a general descrip-
tion of a set of weakly nonlinear interacting waves. The
theoretical framework of weak-wave turbulence has been
widely applied to very different physical situations such
as gravity and capillary waves at the surface of a liq-
uid, internal waves in the ocean and the atmosphere,
flexural waves on a plate, optical waves and magneto-
hydrodynamical waves [1–3]. Experimental and numeri-
cal results in various systems show that the description
provided by weak turbulence has limitations. For in-
stance, the existence of dissipation at all scales has an
influence on the energy spectrum measured in capillary
wave turbulence [4] as well as in flexural wave turbulence
on plates [5, 6]. In the case of ocean gravity waves, wave
breaking is known to be the main dissipation source ap-
pearing at various scales [7–9]. The existence and influ-
ence of coherent structures among a set of random waves
is also an open question in wave turbulence [10–12]. Di-
rect Numerical Simulations (DNS) are an appealing tool
to quantify the influence of different processes on wave
turbulence and test the various theoretical hypotheses
separately.

Capillary wave is one of the simplest systems to study
wave turbulence. However, this regime often interacts
with gravity wave turbulence in experiments and these
mutual interactions remain an open question [4, 13]. The
numerical investigation of purely capillary wave turbu-
lence finds application probing the validity range of weak
turbulence theory in experiments, and to improve our
understanding of the influence of capillary waves at the
ocean surface regarding dissipation, air-water exchanges
[9, 14, 15], or microwave remote sensing techniques of the
ocean surface [15, 16].

The main result of capillary wave turbulence is the
existence of a direct energy cascade. In terms of the
spatial wave power spectrum Sη(k), where k is the wave

number, the Kolmogorov-Zakharov spectrum reads [17]

Sη(k) = CKZ
k ǫ1/2 (γ/ρ)

−3/4
k−15/4, (1)

with ǫ the mean energy flux, γ the surface tension
and ρ the liquid density. CKZ

k is the non-dimensional
Kolmogorov-Zakharov (KZ) constant that can be explic-
itly calculated [17, 18]. This direct energy cascade has
been widely explored experimentally finding good agree-
ment with theory for the frequency (or wave-number)
scaling of the wave spectrum [19–25]. Recent works ad-
dress the influence of dissipation on wave turbulence [4]
and the coexistence of anisotropic structures and wave
turbulence [25]. Numerical simulations is a powerful tool
to answer to these questions, notably it allows to access
quantities difficult to measure experimentally. In com-
parison to the wide literature available for experimental
measurements, there are only a few numerical studies on
capillary wave turbulence. These studies can be typi-
cally classified in two different groups: kinetic equation
simulations [1, 26, 27] and weakly nonlinear hamiltonian
dynamics simulations [18, 28]. Both approaches remain
limited to weakly nonlinear situations and cannot inves-
tigate the possible influence of air and water flow on the
waves. The reason why more complete models have not
been tested is that solving the full Navier-Stokes equa-
tions in multiphase flow is a numerical challenge. Only
thanks to the recent development of numerical methods
[29] it is now possible to perform long wave turbulence
simulations, in order to obtain representative statistics,
with relative high resolution in terms of wave number.
In this letter, we present the first observation of the

direct energy cascade in capillary wave turbulence from
the numerical solution of the full 3D Navier-Stokes equa-
tions. The numerical method and physical configuration
are first introduced and the stationary state is charac-
terized. We show the ability of the simulations to cap-
ture the propagation of capillary waves. The obtained
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FIG. 1. (a,b) Snapshot of the wave interface η(x, y) at time
tfp = 0.3 and tfp = 9.1. (c) Total wave energy Et as a
function time tfp. A stationary state is reached for tfp > 5
and the mean value is indicated by dashed line. (d) PDF of
the wave height η/ση . Dashed line is the normalized gaussian.

space-time wave spectrum is compared with the classi-
cal dispersion relation. The wave spectrum both in wave
number or frequency is found to obey a power law in good
agreement with the weak turbulence theory from which
the KZ constant can be estimated. The nonlinear inter-
action time scale τnl is estimated and is found to scale
as τnl ∼ k−3/4, in agreement with wave turbulence the-
ory. Finally, we show that the wave turbulence inertial
range is defined by τl ≪ τnl ≪ τd, where τl is the linear
propagation time and τd the dissipation time.

We solve the 3D two-phase Navier Stokes equations
accounting for surface tension and viscous effects using
the open source solver Gerris [29, 30]. This solver
has been successfully used in multiphase problems like
atomization, the growth of instabilities at the interface
[31], wave breaking [32] or splashing [33]. The physical
properties of the two phases are those of air and water.
Gravity is not present. The simulation domain is a cube
of length L = 1 m with periodic boundary conditions
in the x and y horizontal directions. In the vertical
direction z slipped wall (symmetry) conditions are
imposed. The interface between the liquid and gas phase
is initially placed at the half plane z = 0 (the water
depth is h = 0.5L). It is perturbed locally introducing
a source in the momentum equation. This source is ob-
tained from the linear wave solution [34] corresponding
to a forcing on the interface elevation η: η(x, y, t) =

α(x, y)
∑4

i=0 η0 cos (
~ki · ~x− ωit); and on the liquid veloc-

ity ~v (~v = ~∇φ, φ the velocity potential): φ(x, y, z, t) =

α(x, y)
∑4

i=0

(

−η0
ωi

ki

cosh ki(z+h)
cosh(kih)

)

cos (~ki · ~x− ωit),

where η0 is the wave amplitude. The forcing modes are

k0 = kp, k1 = 1.4kp, k2 = 1.2kp, k3 = 0.8kp, k4 = 0.6kp,
with kp = 2π/(0.4L) the central forcing wave number and

ωi =
√

(γ/ρ)k3i tanh(kh) the corresponding frequency
given by the linear dispersion relation of capillary waves.
The forcing is located in space through the gaussian
function α(x, y) = exp (−(x− xc)

2 − (y − yc)
2)/2r2,

with r = 0.15L, xc = yc = 0.25L. Note that the forcing
area size has no influence on the generated wavelength.
We expect capillary waves to propagate according to
the linear dispersion relation ω2 = (γ/ρ)k3 [34]. The
maximal resolution in the simulations presented here
corresponds to 256×256 grid on the interface. Adap-
tive mesh refinement is used in order to decrease the
resolution in the bulk and to reduce the computational
time. However, despite the use of adaptive mesh
refinement techniques, the high computational cost of
the method has impeded to refine the grid to a level
where the numerical viscosity naturally introduced by
the numerical schemes becomes negligible compared
to the physical viscosity [35]. Note that the effect of
artificial numerical dissipation is also present in previous
numerical computations presented in the literature with
pseudo-spectral methods [18, 28].
Figure 1 (a,b) shows two snapshots of the interface

η(x, y) during the first period of forcing (Fig. 1a) and
after few forcing periods (Fig. 1b). The forcing area
is clearly visible on Fig. 1a (top left corner), where we
see waves propagate from the circular region where the
source is applied and from others corners due to the pe-
riodic boundary conditions. After a few forcing wave
periods, (Fig. 1b) the wave field displays random fea-
tures with a wide range of spatial scales. The wave
field nonlinearity is estimated by the typical steepness
r = σηkp ≈ 0.3, with ση the rms value of the wave ampli-
tude. Figure 1c shows the total wave energyEt = Es+Ec

as a function of dimensionless time tfp. The kinetic and
potential energy on the domain volume Ω are computed
from the liquid velocity v, and the surface area, A(x, y),
asEc =

∫

1
2ρv

2dΩ and Es = γA(x, y). After a short tran-
sient state, the wave energy reaches a stationary state
(tfp > 5) where the wave energy fluctuates around a
constant mean value (displayed by a dashed line in Fig.
1b). Wave statistics are obtained in the time interval
t = [10 : 20]fp, with fp = ωp/(2π). We now focus on the
statistical and dynamical properties of the waves during
this stationary regime. Figure 1d shows the probability
density function (PDF) of the wave height η/ση during
this stationary stage. Gaussian statistics are observed,
meaning that the nonlinear effects are weak enough to not
induce a significant asymmetry on the capillary waves.
The space-time wave height spectrum Sη(ω/ωp, k/kp)

is shown in Fig. 2 (a). Energy is found to be localized
in the Fourier space around the linear dispersion rela-
tion of capillary waves. The local maxima of the spec-
trum for each frequency (crosses) fall relatively well on
the theoretical dispersion relation curve. A slight mis-
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FIG. 2. (a): Sη(ω/ωp, k/kp). (−−): Linear dispersion re-
lation ω2 = γ

ρ
k3. (white +): spectrum maxima. (b,c):

Sη(kx/kp, ky/kp) at a fixed ω∗ = ω/ωp = 6 (b) and ω∗ =
ω/ωp = 18 (c). Circles in solid line indicate k∗(ω∗) given
by the dispersion relation. The wave field is found isotropic.
Colors are Sη log-scaled.

match between theoretical and numerical values occurs
at high frequencies which is attributed to the numerical
dispersion (see the supplementary materials [35] for de-
tails) that is linked to the lack of resolution for the highest
frequencies. While forcing is only applied at low k, the
energy spectrum spreads over a large range of wave num-
bers showing that nonlinear transfers among the different
scales have taken place. Moreover, the dispersion relation
broadens in frequency as the wave number increases, first
due to non-linear interaction between the waves and then
at high frequencies (ω/ωp > 20) due to dissipative effects,
as discussed later on. Note also that for simulations with
lower values of ση the space-time spectrum non-linear
broadening is reduced (not shown). Figures 2 (b) and (c)
depict the spatial spectrum Sη(kx/kp, ky/kp) at two dif-
ferent frequencies ω∗. An isotropic wave field is observed
where the energy is localized around a circle of radius

k∗ =
√

k∗2x + k∗2y well predicted by the linear dispersion

relation ω∗(k∗). Again a significant broadening on the
spectrum is observed for high wave numbers. These ob-
servations still holds regardless of the frequency and the
forcing amplitude. Thus, numerical computations cap-
ture well capillary waves that propagate at various scales
in an isotropic wave field.

Figure 3a depicts the spatial spectrum Sη(k/kp), ob-
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FIG. 3. (a): Sη(k/kp). (b): Sη(ω/ωp). Theoreti-

cal KZ spectrum (−−) is respectively Sη ∼ k−15/4

and Sη ∼ ω−17/6. Inset: compensated spec-

trum, respectively Sη(k)(k)
15/4/(ǫ1/2 (γ/ρ)−3/4) and

Sη(ω)ω
17/6/(ǫ1/2 (γ/ρ)1/6). Vertical dot-dashed line in-

dicates the forcing scale range.

tained by integrating over all frequencies the space-time
spectrum depicted in Fig. 2. It exhibits a power-law
regime within an inertial range 1 . k/kp . 6 from the
forcing scale to a dissipative cut-off length, beyond which
the spectrum departs from the power law. The frequency
spectrum (obtained by integrating over k) also exhibits
a power-law in the range 1 . ω/ωp . 8 (see Fig. 3b).
The inertial range spreads over roughly one decade in
frequency (the range is smaller in terms of wave num-
bers). The observed power laws within the inertial range
are found to be in good agreement with wave turbulence
theory scalings: Sη(k) ∼ k−15/4, Sη(ω) ∼ ω−17/6 [17].
The compensated spectrum is shown in the inset in both
cases (Fig. 3a and b). The flat spectrum observed within
the inertial range confirms the good agreement between
DNS and wave turbulence theory. This limited inertial
range is a consequence of the finite resolution of the in-
terface, therefore it may be enlarged at expenses of larger
computational resources (see [35] for details).
It is now possible to estimate numerically the KZ con-

stant from Eq. (1) and the compensated spectrum:

CKZ
k = Sη(k)k

15/4/[ǫ1/2 (γ/ρ)
−3/4

] (inset Fig. 3a), or
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CKZ
ω = Sη(ω)ω

17/6/[ǫ1/2 (γ/ρ)1/6] (inset Fig. 3b). To
this end, we evaluate the mean energy flux ǫ using the
measure of the dissipated power D = 2ρν

∫

Ω SijSijdΩ,

with Sij the deformation tensor Sij =
1
2

∑

ij(∂vi)/(∂xj),
i = {x, y, z} [36]. The mean energy flux is then defined
by ǫ ≡ 〈D〉/(Aρ), where A is the surface area and 〈.〉
designed an average over time. A comparable value of
the flux is obtained using the dissipation spectrum as
in [4], ǫd =

∫

dωdk γ
ρk

2Sη(k, ω)/τ
emp where τemp = τd

for k/kp < 6 and τemp = τnumd for k/kp > 6, so that
τemp includes τd = 1/(2νk2) [34] the viscous linear dis-
sipation, and τnumd the total (numerical and physical)
dissipation time valid only at small scales (k/kp > 6)
[35]. We obtain from the DNS the following estimation
of the KZ constant, CKZ

ω = 16 and CKZ
k = 34. Thus

CKZ
k /CKZ

ω ≈ 2, while the theoretical ratio given by the
relation Sη(k)dk = Sη(ω)dω is 3/2. The KZ constant
Cnk can be also defined from the wave action spectrum
equation, and CKZ

k = 2πCnk [18]. Using the CKZ
k value

from our simulations and the latter equation leads to
Cnk = 5 ± 1, the uncertainty coming from using either
the value of CKZ

k or CKZ
ω . Our estimation of Cnk is

of the same order of magnitude as 9.85 the theoretical
value found in [18]. The difference between these two
values can be due to the short inertial range induced
by the numerical dissipation. Note that in the previous
Hamiltonian simulations, the KZ constant was found two
times smaller than ours [18]. This difference is probably
related to the limited length of the inertial range and
the numerical dissipation at small scales, our numerical
methods allowing for a better resolution of these scales.

One of weak turbulence key hypothesis regards the
time scale separation. The linear wave propagation time
is indeed supposed to be much smaller than the time scale
of the nonlinear energy exchanges. This latter must also
be small compared to the dissipative time. We will now
evaluate the various time scales involved in the problem.
As already discussed, Sη(k, ω) broadens around the linear
dispersion relation curve. The interaction nonlinear time
scale τnl(k) is linked to this broadening [2, 37, 38]. This
time is defined by τnl(k) = 1/∆ω(k), where ∆ω(k) is the
inverse of the spectrum width at a given wave number
k. As shown in the inset of Fig. 4, ∆ω(k) is extracted
from Sη(k, ω) using the rms value of a Gaussian fit with
respect to ω at a given k∗. Then, iterating this protocol
to all k∗ allow us to determine τnl(k). Figure 4 shows
that τnl(k) is found to be close to the theoretical scaling
of capillary wave turbulence τnl ∼ k−3/4 [17] within the
inertial range 1 < k/kp < 6, and then strongly decreases
for larger k. The linear propagation time τl = 1/ω is also
shown on Fig. 4 where we see a clear time scale sepa-
ration τl ≪ τnl within the inertial range. Close to the
forcing scales, both times are of the same order of mag-
nitude. The dissipative time scales are also shown, the
solid line indicates the classic viscous linear dissipation
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as a function of ω/ωp, for k∗/kp = 7.6. (−−): gaussian fit,
exp [−(ω − ωc)

2/∆ω2] with ∆ω = 2π 0.15 and ωc = 2π 0.66
rad−1.

τd = 1/(2νk2) [34], while the dot-dashed line displays the
extrapolated empirical (physical and numerical) dissipa-
tion τnumd , determined by measuring the decay rate of a
2D freely decaying capillary wave for various spatial reso-
lution [35]. Thus when the nonlinear time scale becomes
of the same order as the total dissipation time, the cas-
cade progressively ends and dissipation is responsible for
the broadening of the spectrum, as already observed in
Fig. 2. We note that the numerical dissipation does not
affect the capillary wave turbulence cascade within the
inertial range, while the physical dissipation would be-
come dominant for very high resolution far beyond cur-
rent computational resources. As expected by the weak
turbulence theory, the power law spectrum observed is
shown to fall within the range defined by the double in-
equality τl ≪ τnl ≪ τnumd .

In conclusion, this work presents DNS of capillary wave
turbulence where the two-phase 3D Navier Stokes equa-
tions have been solved. The wave height spectrum is
found to exhibit frequency and wave number power-laws
in good agreement with weak turbulence theory. We also
observe a clear time scale separation between linear and
nonlinear times. These numerical results confirm the va-
lidity of weak turbulence approach to quantify out-of-
equilibrium wave statistics. It also opens new perspec-
tives in order to better understand wave turbulence sys-
tems and the influence of the air and water flows. For in-
stance, further numerical results should shed new insight
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on the importance of dissipation at all scales as recently
reported experimentally in capillary [4] and flexural [5, 6]
wave turbulence. Moreover the inclusion of gravity in the
present simulations would allow to investigate the role of
the gravity-capillary transition, strongly nonlinear struc-
tures (wave breaking, soliton, ...), as well as gravity wave
turbulence.
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