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Abstract

In the present article, I provide a simple urban theory where agents do not bid

for land. In absence of this baseline mechanism, I show that the spatial allocation of

agents is governed by a Nash equilibrium. I underline the role of asymmetric local

congestion effects in insuring the existence and the uniqueness of such an equilibrium.

I then use this new framework to account for spatial variation in unemployment within

big cities. Namely, applying this setting in an urban search model, I demonstrate that

the obtained framework can generate a large number of new city configurations in

which the local unemployment rate behaves differently. I also determine conditions for

which each configuration may appear. I finally prove, the existence and the uniqueness

of a labor market equilibrium for each urban pattern and I draw a link between the

latter and the allocation of workers throughout space.
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1 Introduction

The bid-rent theory, determining how land prices and housing demand vary across space,

has become the cornerstone in urban economics. In a world where distinct groups of

individuals have an intrinsic use of land, this theory states that space is allocated to the

use that bids the most for it. Accordingly, land use in a given location generally is of one

type. Land use can be of several types if, and only if, at least, two populations share the

same bid-rent function. This particular case can never occur (see, for example, Mossay and

Picard (2013)) or can prevail under a very specific parameterization (see Fujita and Ogawa

(1980, 1982) and Lucas and Rossi-Hansberg (2002)). This also involves that segregation,

a state in which agents get separated into different neighborhoods, commonly arises as

an outcome. Other configurations as, for instance, integrated situations where different

populations of individuals share the same places of residence, rarely emerge.

Though it is fair to observe that cities show spatial sorting of inhabitants, other empir-

ical facts totally debunk the existence of cities organized according to concentric rings of

land use. For instance, it has been well established that the location of employed and un-

employed workers are strongly inter-dispersed (see, amonger others, Wheeler (1998), Topa

(2001, Figures 1-3), Gobillon and Selod (2007, Carte 1), Dujardin, Selod and Thomas

(2008, Figure 2), Dujardin and Gofette-Nagot (2010, Figure 1)). Namely, spatial data dis-

play a large amount of heterogeneity in terms of unemployment dispersion and document

that segregation is the exception rather than the rule. Unfortunately, theoretical literature

has been unable to account for this spatial intra-variation in the unemployment rate (see

Zenou (2009a)). The latter mostly pays attention to segregated cities where there are only

two local unemployment rates: either 0 % or 100 % (see, within a large literature, Wasmer

and Zenou (2002), Smith and Zenou (2003), Kawata and Sato (2012), Xiao (2013)).1 This

is explained by the fact that the models of this literature suppose that land is driven by

bid-rent principle which, as previously mentioned, prevents the existence of cases where

unemployed and employed workers live together.

The present article aims at accounting for spatial dispersion in the unemployment rate

within cities by providing an alternative urban model where agents do not bid for land. My

theoretical point is to highlight that, in the absence of this standard mechanism, the spatial

distribution of workers is driven by a Nash equilibrium and to show the relative importance

of asymmetric local congestion effects in determining the existence and the uniqueness of

such an equilibrium. Moreover, my objective is also to study the new city configurations

that may emerge within this framework. Therefore, the purpose of this article is qualitative

1Only Wasmer and Zenou (2006) find a configuration where two segregated areas of the unemployed

surround a zone where the unemployed and the employed co-exist.

2



in nature and not quantitative. Thence, I operate in two steps.

First, I study the main characteristics of a standard urban model but where agents

do not bid for space. To this end, I use Cirant (2014) and I extend the framework of

Cardaliaguet (2012) to several populations of agents. More precisely, I develop a game

with infinite number of agents sharing a common set of strategies and being distributed

(for the sake of simplicity) in two different groups. Each player, whatever their group, has

to choose a unique strategy maximizing a payoff function. The key feature of this game is

that the utility functions depend on the selected strategy and on the density of other agents

playing this strategy. I then carry out the study (focusing on existence and uniqueness) of

a Nash equilibrium when the number of individuals becomes infinite.

The central result of this part is to demonstrate that a unique Nash equilibrium exists

if utility functions exhibit asymmetric congestion (or competition) effects. In other words,

existence and uniqueness hinge on two conditions. On the one hand, players’ payoff func-

tions have to decrease with the density of other players. Such preferences express local

congestion effects. On the other hand, these negative local externalities must be not the

same for both populations of players.

Second, I use this methodology to build and examine the properties of a simple urban

model with endogenous unemployment. I specifically consider a monocentric city with a

continuum of locations filled with an infinite number of firms, absent landlords and work-

ers. Search in the city is random. Firms are exogenously located in the city center, do not

consume any space and compensate workers for their spatial costs (see Zenou (2009b)). Ab-

sent landlords own houses that are exogenously supplied by a competitive market. Workers

have hyperbolic preferences as in Mossay and Picard (2011, 2013) and as in Blanchet et al.

(2012). They choose the location and size of their dwellings knowing that they would face

high relocation costs (see Zenou (2003, 2006, 2009b)). They can also remain in two different

states : either employed or unemployed. When they are employed, they commute daily to

the city center in order to work. When they are unemployed, they occasionally commute

to the center to look for a job. Another difference between workers is that employed work-

ers incur an additional cost to live with other employed workers. This asymmetric local

congestion effect can be interpreted as a congestion effect in road or a competition effect

in the consumption of neighborhood goods.

In this setup, workers face a trade-off. They have an incentive to live close to the city

center to avoid paying high transport costs, but they also anticipate that these locations

are precisely those to which a high number of other inhabitants will reside in. As a conse-

quence, they also are encouraged to live in remote places of residence to escape congestion.
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This induces that workers endogenously select a place of residence according to their spatial

preferences and the strategy of other worker who are captured by the residential density

of the unemployed and employed. Consequently, the allocation of workers in space is no

longer related to the bid-rent theory but with the Nash equilibrium described above. It

determines an endogenous spatial distribution of unemployed and employed workers and so

an endogenous unemployment dispersion. Last, equivalently to Zenou (2009a) , wages, job

creation and unemployment are determined according to the labor market. The latter is

modeled by a search and matching equilibrium (i.e. Nash bargaining, job creation equation

and Beveridge curve).

Within this environment, I show that many new urban configurations can appear. The

city can be: purely integrated if both groups of workers live together and in the same

proportions; segregated if populations of workers get separated into two different parts

of the city; integrated when employed and unemployed workers share the same places

of residence but in different proportions; incompletely and purely integrated if the city

is purely integrated into a part of space, whereas in other zones, the city is segregated;

incompletely integrated if the city is integrated into a zone of the city while in other areas, it

is segregated. Among incompletely and purely integrated cities, two sub-configurations can

be found: a central core of mixed workers surrounded by a segregated part of unemployed

or employed workers. Likewise, among incompletely integrated cities, four sub-patterns can

be pointed out: a central core of employed workers surrounded by a peripheral integrated

ring of workers, a central core of mixed-ring workers surrounded by a peripheral segregated

part of employed or unemployed workers and both a central core and a peripheral ring of

segregated areas separated by an intermediate ring of mixed workers. In each configuration

and sub-configuration, the behavior of the local unemployment rate is different. In purely

integrated cities, it is uniformly distributed. In segregated cities, it is degenerated (i.e. 0

% or 100 %). In integrated cities, it is continuously but non-uniformly distributed. In

incompletely and purely integrated cities, it is uniformly distributed in the core of the

space and then degenerated in the fringes of the city. In incompletely integrated cities, it

is continuously distributed in some areas and degenerated in other parts of the city.

I then emphasize very simple and analytical conditions for which each urban situation

can emerge as a balance between agglomeration and dispersion forces. By studying these

conditions, I demonstrate that the predominance of one of these patterns relies on the rela-

tive importance of the employment rate, the worker’s search effort, the worker’s bargaining

power, congestion between employed workers, preference for land and transport costs.

To conclude, for each urban configuration, I prove the existence and the uniqueness of

a labor market equilibrium (i.e. an equilibrium labor market tightness and an equilibrium

unemployment rate). I also characterize the link between the outcome of this labor market
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equilibrium and the spatial distributions of workers. For example, in the present model, the

intra-variation of the local unemployment rate does not impact the global unemployment

rate of the city. Only the spatial concentration of employed workers plays a significant role.

A direct consequence of this fact is that segregated cities always show lower unemployment

rates than integrated ones.

The article is organized as follows. Section 2 describes the theoretical game where the

role of local congestion effects is underlined. Section 3 presents the urban search model.

Section 4 concludes.

2 Population Games, Nash Equilibrium and Local Con-

gestion Effects

This article is based on one particular form of Nash equilibrium. As the latter is implicitly

presented but not studied in urban economics, I briefly highlight some useful definitions

and results using Cirant (2014). I notably describe a population game where individuals

are engaged with intra- and inter-group local interactions. I analyze the characteristics

(existence and uniqueness) of the Nash equilibrium of such a game when the number

of agents becomes very large. Technically speaking, this game consists in extending the

framework of Cardaliaguet (2012, Section 2) to several populations of players. All material

developed in this section is also related to routing games (see Haurie and Marcotte (1985)),

large crowding games (see Milchtaich (2000)) and mean field games (see Lasry and Lions

(2007)).

2.1 Setup

Let X be a compact subset of R and M (X ) be the set of absolutely continuous Borel

probability measures on X (with respect to the Lebersques measure) denoted by µ and

having density also denoted by µ in C0(X ) with C0(X ) the set of continuous functions.

This set is endowed with the Kantorowich-Rubinstein distance:

d(µ, µ̃) = sup

{
∫

X

g(x)d(µ− µ̃)(x) : g ∈ C0,1(X ), Lip(g) ≤ 1

}

(1)

where C0,1(X ) is the set of continuous and differentiable functions on X and with Lip(g)

the minimal Lipschitz constant for g. This implies that d metricizes the weak-∗ convergence

on M(X ) and M(X ) is compact for d. Subsequently, I consider a continuum of agents

distributed into two different groups index k ∈ {1, 2}.2 In a given population k, players are

2A generalization for k ∈ N
∗
+ is possible without any difficulty.
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homogenous players and have to choose a unique action from X a common set of actions.

In order to do so, they maximize a continuous payoff function Ak : X × (0,∞)2 → R that

depends on x their strategies and µk(x) the density of individuals (in each population)

playing the same strategy:

Ak

(

xi
k, µ1(x

i
k), µ2(x

i
k)
)

(2)

with xi
k the strategy of player i that belongs to group k. For example, one could consider

the following linear case:






A1 (x, µ1(x), µ2(x)) = a− tx− φ11µ1(x)− φ12µ2(x)

A2 (x, µ1(x), µ2(x)) = a− tx− φ21µ1(x)− φ22µ2(x)
(3)

with a, t, φ11, φ12, φ21, φ22 ∈ R. Finally, note that, if Ak decreases with the proportion of

other individuals, agents are encouraged to play differently. Such preferences reflect what

is commonly called local congestion effects.

2.2 Equilibrium: Definition, Existence and Uniqueness

A Nash equilibrium, in the sense that all agents whatever their groups play best response,

is given by:3

Definition 1 A vector (µ∗
1, µ

∗
2) ∈ M (X )2 is a Nash equilibrium if, and only if:

∫

X

Ak (x, µ
∗

1(x), µ
∗

2(x)) dµ
∗

k(x) = sup
µ∈M(X )

∫

X

Ak (x, µ
∗

1(x), µ
∗

2(x)) dµ(x) (4)

In line with the game theory literature, an equilibrium is a state where the payoff function

Ak is maximized if the density of players in population k is non-zero. Put differently, the

equilibrium can be re-written as:

Supp(µ∗

k) ⊆ argmax
x∈X

Ak (x, µ
∗

1(x), µ
∗

2(x)) (5)

For the sake of simplicity, I will use this standard formulation (see, among others, Sandholm

(2001)) to characterize the spatial equilibrium of the urban search model. Now, let me

tackle the question of the existence and uniqueness of this equilibrium. More precisely, I

get:

Proposition 1 There exists at least one vector (µ∗
1, µ

∗
2) ∈ M (X )2 satisfying (4).

3This Nash equilibrium can be found by taking the limit of a static game (see Cardaliaguet (2012,

Theorem 2.4 and Theorem 2.7). However, it is also possible to derive it from other frameworks. For

example, equilibrium (3) can be viewed as a stationary mean field game: see Cirant (2014) or take Theorem

2.8 and see Section 2.7 in Lasry and Lions (2007). It is also related to models of interacting agents: take

equation (16) in Lemoy, Bertin and Jensen (2011) and set T → 0.
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Additionally, uniqueness occurs under the following assumptions:

Proposition 2 Suppose that:

∫

X

2
∑

k=1

Ak (x, µ
∗

1(x), µ
∗

2(x))−Ak (x, µ̃1(x), µ̃2(x)) d (µ
∗

1 − µ̃1) (x) < 0 (6)

for all µ∗
1 = µ̃1 and µ∗

2 = µ̃2, then, there is at most a vector (µ∗
1, µ

∗
2) ∈ M (X )2 satisfying

(4).

This Proposition is in line with Lasry and Lions (2007) and identical to the one of Cirant

(2014, Theorem 5.1). Moreover, using Lagrange Theorem and assuming that A1 and A2

are differentiable, it appears that a sufficient condition for (6) is that:

A(x, µ1, µ2) + A(x, µ1, µ2)
T is negative semi-definite (7)

with:

A(x, µ1, µ2) =

(

∂A1(x,µ1(x),µ2(x))
∂µ1(x)

∂A1(x,µ1(x),µ2(x))
∂µ2(x)

∂A2(x,µ1(x),µ2(x))
∂µ1(x)

∂A2(x,µ1(x),µ2(x))
∂µ2(x)

)

(8)

and A(x, µ1, µ2)
T the transpose of the matrix A(x, µ1, µ2). For example, if I consider the

linear case (3), this sufficient condition holds if: φ11 = φ21 = φ22 = −φ and φ12 = −φ− ϕ

with φ, ϕ > 0 two constants. However, notice that the condiciont is not verified for the

symmetric case: φ11 = φ12 = φ21 = φ22 = −φ. Thus and inuitively, uniqueness emerges if

two conditions are completed:

1. The payoff functions are negatively correlated with the density of other players:
∂Ak(x,µ1(x),µ2(x))

∂µk(x)
< 0. This second condition asserts that uniqueness prevails if utility

functions exhibit local congestion effects.

2. The matrix A is not symmetric. This indicates that local interactions between indi-

viduals are asymmetric:
∂Aj(x,µ1(x),µ2(x))

∂µk(x)
6=

∂Aj(x,µ1(x),µ2(x))

∂µk(x)
. Equivalently, multiplicity

appears when players are symetric in terms of their loss from intra- and inter-groups

interactions:
∂Aj(x,µ1(x),µ2(x))

∂µk(x)
=

∂Aj(x,µ1(x),µ2(x))

∂µk(x)
.

I will use this methodology in an urban search model.4 More accurately, I will show

that the standard urban search model, but only where space is not driven by the bid-rent

theory, shares identical elements with the previously framework. Hence, the appropriate

equilibrium will be the one expressed in equation (4) and existence and uniqueness of such

equilibrium will be provided by Proposition 1 and Proposition 2.

4This setting can also be applied to many other economic fields: macroeconomics, labor economics,

Schelling models... See Boitier and Vatan (2014) for a example in international trade.
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2.3 Link with Urban Economics

In this subsection, I show that the previous game corresponds to the standard urban land

use model but where agents do not bid for land. For this purpose, let X denote a featureless

space that hosts two populations (indexed k) of workers. In a given population k, there is

a unit mass of homogenous workers associated with the following continuous function:

Zk(σk(x), ζk(x)) (9)

and the following budget constraint:

σk(x) +R(x)ζk(x) = Ik(x) = yk − t(x) (10)

with σk(x) the amount of composite consumer good and ζk(x) the size of houses, R(x) the

rent per unit of land, yk a fixed exogenous income, t(x) the transport costs and Ik(x) the

net revenue. In this mere environment, they make two decisions so that:

max
x,ζk(x)

{Zk(Ik(x)−R(x)ζk(x), ζk(x))} (11)

I solve this problem in two steps. In a first step and for x fixed, maximizing program (11)

with respect to ζk(x), I obtain the classical Marshallian demand function:

ζ∗k(x) = h∗ (Ik(x), R(x)) (12)

and the (continuous) indirect utility function:

Ak(Ik(x), R(x)) = Zk(Ik(x)−R(x)ζ∗k(x), ζ
∗

k(x)) (13)

with h∗ a continuous function that increases with Ii(x) and decreases with R(x) (i.e. land is

a normal good). In a second step, for ζ∗i (x) given and noting that the land market clears:5

ζ∗1 (x)µ1(x) + ζ∗2 (x)µ2(x) = 1 (14)

the rent per unit of land can be re-written as:

R∗(x) = g∗ (I1(x), I2(x), µ1(x), µ2(x)) (15)

where g∗ is a continuous function. In addition, combining equation (13) and equation (15),

I get:

max
x

Ak(x, µ1(x), µ2(x)) = max
x

{Zk(Ik(x)−R∗(x)ζ∗k(x), ζ
∗

k(x))} (16)

Thence, the suited equilibrium associated with problem (16) is the above Nash equilibrium

and if A1 and A2 comply with conditions in Proposition 2, this equilibrium is unique.

5I suppose that land intensity equals to 1. This does not determine the nature of the results.
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Last but not least, notice that the standard urban model only makes an extra hypothesis.

Namely, it is assumed that:

R∗(x) = max {Ψ(A∗

1, x),Ψ(A∗

2, x), RA} (17)

with RA the agricultural rent and so that

Ψ(A∗

k, x) = max
σk(x),ζk(x)

{

yk − t(x)− σk(x)

ζk(x)
|Zk(σk(x), ζk(x)) = A∗

k ∈ R

}

(18)

where Ψ(A∗
k, x) is the bid-rent function of workers belonging to population k and A∗

k the

equilibrium utility for population k.

3 Urban Search Model without the Bid Rent Theory

The model considered hereafter uses the methodology outlined in Section 2. Although the

latter is based on general functions, in what follows, I will pin down linear functional forms

for Ak (see equation (3)). This will help understand the complex economic interactions

at play. Thereby, the analytical model here can be seen as an illustration. However, the

nature of the results would be the same with general functions unless the model obtained

is more cumbersome and adds intractability (i.e. is only numerically solvable).

3.1 Environment

Let X = [0, 1] be a linear and closed city composed of a continuum of locations denoted by

x ∈ X . The city is monocentric: x = 0 is the Central Business District (hereafter CBD)

where all firms are exogenously located. Accordingly, x also represents distance to city

center and access to jobs.

3.1.1 Job Matching

The labor market under study gathers a continuum of (ex ante) homogenous, infinitely

lived and risk neutral unemployed with mass u ∈ [0, 1] and a continuum of (ex ante) iden-

tical, infinitely lived and risk neutral employed represented by a mass e = 1 − u ∈ [0, 1].6

As a result, u (respectively e) stands for the global unemployment (respectively employ-

ment) rate. These workers are spatially dispersed into the city following two endogenous

6Unemployed workers are job seekers (i.e. no on-the-job search).
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distributions µU , µW ∈ M(X ):


























µU : X → R+
∫

X
µU(x)dx = u

µW : X → R+
∫

X
µW (x)dx = e = 1− u

(19)

where µU(x) is the density of unemployed workers located in x and µW (x) is the density of

employees residing in x. There also exists a continuum of vacant jobs with mass v ∈ [0, 1]

where v is referred to as the vacancy rate. Job seekers find a job and vacancies are filled

according to two random processes. These processes are governed by a matching function

with constant return to scales denoted by m(su, v) with s ∈]0, 1] the exogenous average

search effort of unemployed workers. Hence, in this city, the job filling rate is q(θ) = m(su,v)
v

with θ = v
su

the labor market tightness in effort units and such that ∂q(θ)
∂θ

< 0. Likewise,

the job finding rate is f(θ) = s
s

m(su,v)
u

= sθq(θ) so that ∂f(θ)
∂θ

> 0 and where s = s is the

search effort of unemployed.7

3.1.2 Firms

Firms are placed in x = 0, consume no space and can remain in two different situations:

either productive or unproductive. If a firm is productive, it is associated with a worker

residing in location x and makes the following instantaneous profit:

J(x) = y − ω(x) (20)

with y ∈ R
∗
+ the worker’s productivity, ω(x) ∈ R

∗
+ the worker’s wage and so that, for every

x in Supp(µW ), y > ω(x). Since jobs are destroyed according to an exogenous rate δ ∈ R
∗
+

referred to as the separation rate, the expected profit of a productive firm (i.e. a filled job)

that employs a worker located in x denoted by J (x) satisfies a Bellman equation:

ρJ (x) = J(x)− δ [J (x)− V ] (21)

where ρ is a parameter that captures the preference for the present, V is the expected profit

of an unproductive firm and J (x)−V is the local firm’s surplus. If a firm is unproductive,

it is unfilled by a worker. As a consequence, it posts a unique vacancy at cost κ ∈ R
∗
+. As

the vacant job is filled at rate q(θ), the instantaneous profit for an unproductive firm (i.e.

a vacancy) is:

V = −κ (22)

and the expected profit of an unproductive firm is:

ρV = V + q(θ) [J (x)− V ] (23)

7m also complies with Inada’s conditions: lim
θ→+∞

f(θ) = lim
θ→0

q(θ) = +∞ and lim
θ→0

f(θ) = lim
θ→+∞

q(θ) = 0.
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3.1.3 Workers

Workers decide how much to consume a place of residence and can remain in two different

states: either employed or unemployed. If a worker is unemployed, it is endowed with

hyperbolic preferences à la Mossay and Picard (2011, 2013):

Z(σU(x), ζU(x)) = σU(x)−
φ

2ζU(x)
(24)

with σU(x) ∈ R
∗
+ (respectively ζU(x) ∈ R

∗
+) the amount of composite good (respectively

land) consumed by an unemployed person placed in x and φ ∈ R
∗
+ the preference for land.8

It also earns a level of benefits z ∈ R
∗
+ such that y > z, goes to the CBD to look for a

job incurring linear transport costs st ∈ R
∗
+, faces a rate f(θ) to have a job, pays R(x) per

unit of land to absent landlords and bears high relocation costs.9 In this case, its budget

constraint is:

σU(x) + ζU(x)R(x) + stx = z (25)

and the expected utility of an unemployed worker in x denoted by U(x) is determined by

the following Bellman equation:

ρU(x) = Z(σU(x), ζU(x)) + f(θ) [W(x)− U(x)] (26)

with W(x) the expected utility of an unemployed worker located in x and W(x) − U(x)

the local worker’s surplus. If workers are employed, they share the same utility function

than the unemployed one:

Z(σW (x), ζW (x)) = σW (x)−
φ

2ζW (x)
(27)

with σW (x) ∈ R
∗
+ (respectively ζW (x) ∈ R

∗
+) the amount of composite good (respectively

land) consumed by an employed person residing in x. They are also endowed with one unit

of labor, a level of productivity y, earns a wage ω(x), faces high relocation costs, a rate

δ of losing his job, commutes to the CBD to work incurring linear transport costs t per

8Hyperbolic preferences are a special case of quasi-linear preferences and so the income effect in the land

consumption is eliminated (see Zenou (2009a) for other models that tackle the question of city configuration

and where the income effect is ruled out in the consumption of land). I use these particular preferences for

the sake of simplicity. They have the convenient property that the instantaneous indirect utility linearly

depends on residential density of workers. This simplification helps derive the important analytical results

in this article. In the case of other quasi-linear utilities and non quasi-linear utilities, the model remains

true but is bulky so that it is only numerically solvable.
9Unemployment benefits is assumed to be exogenously financed by landlords. This assumption could

be relaxed without any difficulty.

Following Zenou (2003, 2006, 2009b) and Kawata and Sato (2012), high relocation costs imply that

once the agent is located, it sticks on this place forever. However, note that results are unchanged if this

assumption is ruled out.
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unit of distance and pays R(x) per unit of land to absent landlords. Thence, their budget

constraint is:

σW (x) +R(x)ζW (x) + tx+ ϕµW (x) = ω(x) (28)

and the expected utility of an employed worker in x denoted by W(x) satisfies the following

Bellman equation:

ρW(x) = Z(σW (x), ζW (x))− δ [W(x)− U(x)] (29)

Another difference between the employed and the unemployed workers is that the employed

ones bear ϕµW (x) (with ϕ > 0) an additional cost emphasizing a local negative effect. Even

if I do not micro-found this neighborhood externality, the latter is quite intuitive. It can be

viewed as competition effect in the consumption of congestible city goods or local ameni-

ties (see Fujita (1989, Chap 6.5) and the notion of neighborhood goods). It can also be

interpreted as a congestion in road (see Chu (1995) and Grauwin and al. (2011) for an

example of congestion in road modeled by local densities of agents). Unemployed workers

are free of congestion and employed ones do not value unemployed workers as competitors

because unemployed workers can use transports or amenities during outside rush hours.

These relations are also empirically observed. For example, it is fair to note that the drop in

traffic congestion since the 2007 crisis has been due to the large increase in unemployment.

Other alternatives could be considered. Among others, I could introduce more complex in-

teractions between workers in the utility function (see Zhang (2004)): ϕWµW (x)−ϕUµU(x)

reflecting the tendency of employed workers to live with other employed and far from un-

employed workers in order to benefit from high-quality neighborhood amenities, low crime

areas...

3.1.4 Wage Determination

Once the match is made, the firm observes the workers’ location, reasonably does not

compensate employed workers for intrinsic congestions (i.e. ϕ = 0) and the total local

surplus S(x) = W(x) − U(x) + J (x) − V is negotiated according to a generalized Nash

bargaining game:

ω(x) = argmax [W(x)− U(x)]γ [J (x)− V ]1−γ (30)

with 0 < γ < 1 the worker’s bargaining power. The equilibrium wage stemming from

problem (30) is: ∀x ∈ Supp(µW ),

ω(x) = (1− γ) [z + (1− s)tx] + γ(y + κ) (31)

where z + (1− s)tx is the reservation wage and y + κ is the outside option. Equation (31)

coincides with the one found by Zenou (2009, equation (13)).10 Therefore, wages decrease

10See Boitier and Lepetit (2014) for another micro-foundation of this result.
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with the worker’s search effort s but increase with unemployment benefits z, the worker’s

productivity y, the cost of posting a vacant job κ, transports costs t, distance x and the

worker’s bargaining power γ.11 The fact that wages increase with distance establishes that

firms compensate workers for their spatial costs, which is a well-established empirical fact.12

3.1.5 Market Equilibrium (ζ∗W , ζ∗U , µ
∗
W , µ∗

U , θ
∗, u∗): An Informal Definition

A market equilibrium is composed of three partial equilibria: a land market equilibrium,

a spatial equilibrium and a labor market equilibrium. On land market is obtained an

equilibrium housing demand for employed and unemployed workers denoted by ζ∗W and

ζ∗U . A spatial equilibrium pins down an allocation of employed and unemployed workers

in space denoted by µ∗
W and µ∗

U . On labor market is determined a labor market tightness

index denoted by θ∗ and an unemployment rate denoted by u∗.

3.2 Land Market Equilibrium (ζ∗W , ζ∗U): Definition, Existence and

Uniqueness

Using equations (24)-(29) yields:

ρW(x) = ω(x)− tx− ϕµW (x)−R(x)ζW (x)−
φ

2ζW (x)
− δ [W(x)− U(x)] (32)

and

ρU(x) = z − stx−R(x)ζU(x)−
φ

2ζU(x)
+ f(θ) [W(x)− U(x)] (33)

Given this setup, a land market equilibrium is written as:

Definition 2 A land market equilibrium consists in finding an equilibrium housing demand

for the employed ζ∗W and for the unemployed ζ∗U that maximizes equation (32) and equation

(33).

Assuming that, demand equals supply on the land market:13

ζU(x)µU(x) + ζW (x)µW (x) = 1 (34)

I obtain that:

11I reasonably assume that: y + κ > z + (1− s)tx, ∀x ∈ Supp(µ∗
W ).

12See Madden (1985), Zax (1991) and Barber (1998).
13I suppose that land intensity equals to 1 and the agricultural rent equals to 0. These assumptions are

standard in urban labor economics. This does not determine the nature of the results.
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Proposition 3 For a given spatial equilibrium (µ∗
W , µ∗

U) and for a given labor market equi-

librium (θ∗, u∗), the equilibrium housing demand is:

ζ∗W (x) = ζ∗U(x) =

√

φ

2R(x)
(35)

with

R(x) =
φ

2
[µ∗

W (x) + µ∗

U(x)]
2 (36)

The employment status does not affect the equilibrium land consumption. This is why

workers are endowed with the same preferences. Furthermore, since preferences are hy-

perbolic, note that the equilibrium housing demand is independent of the net income of

workers and only relies positively on the preference for land φ and negatively on the rent

per unit of land R(x). This implies that the equilibrium rent per unit of land is only based

on the preference for land φ and the residential density µ∗
U(x) + µ∗

W (x).

3.3 Spatial Equilibium (µ∗
W , µ∗

U)

3.3.1 Definition, Existence and Uniqueness

Plugging solutions of the land market equilibrium (35)-(36) and wage equation (31) in

Bellman equations (32) and (33), it gives:

ρW(x) = (1−γ)z+γ(y+κ)−[1− (1− γ)(1− s)] tx−(φ+ϕ)µW (x)−φµU(x)−δE(x) (37)

and

ρU(x) = z − stx− φµW (x)− φµU(x) + f(θ)E(x) (38)

with E(x) = W(x)−U(x). This stresses the presence of a trade-off from the point of view

of workers. The latter is synthesized by the decreasing relationships between utilities W

and U and both x, the distance, and µW (x), µU(x) the residential densities of employed

and unemployed workers. This respectively expresses the will to reside close to the CBD

and the will to escape congestion. In fact, workers want to live in the most attractive

locations in order to avoid paying high transport costs, but at the same time, because they

share the same incentive, they anticipate that these places of residence will be coveted

by their competitors. To escape competition, workers are encouraged to play differently

by residing to more remote locations. Put differently, one agglomeration force, related

with transport costs, and two dispersion forces, from congestion in the neighborhood, are

at play. Nonetheless, these forces variously impact the employed and the unemployed

workers. Indeed, workers do not have the same incentives to cluster around the city center.

Unemployed workers minimize their transport costs stx whereas employed workers minimize

them [1− (1− γ)(1− s)] tx. Analogously, workers do not have the same motives to disperse
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throughout space. Employed workers disperse because of rent prices φµW (x)+φµU(x) and

of asymmetric congestion ϕµW (x) while unemployed workers disperse only because of rents

φµW (x) + φµU(x). Thus, the location of workers is driven by their distance from the city

center and their neighborhood composition. In other words, workers are strategic since

they select a residential location in accordance with their preferences and the strategies

of others captured by the endogenous densities µU(x) and µW (x). Therefore, the suited

spatial equilibrium is a Nash equilibrium. With infinite number of agents and interactions

through densities, it has been shown that the Nash equilibrium takes the following form:

Definition 3 A spatial equilibrium is a vector (µ∗
W , µ∗

U) ∈ M(X )2 if, and only if:






Supp(µ∗
W ) ⊂ argmax

x∈X
W(x)

Supp(µ∗
U) ⊂ argmax

x∈X
U(x)

(39)

Comparably to Definition 1, an equilibrium is summarized by a non-arbitrage condition

stating that, in each group, all agents reach the same utility level because the benefit

from living near the city center balances neighborhood composition costs. Such a state

accommodates individuals because they are indifferent and therefore unilateral deviations

of players are impossible.

Proposition 4 For a given land market equilibrium (ζ∗W , ζ∗U) and for a given labor market

equilibrium (θ∗, u∗), a unique spatial equilibrium (µ∗
W , µ∗

U) exists.

This finding owes its properties to Propositions 1 and 2. More specifically, existence and

uniqueness are due to the fact that the continuous payoff functions W and U expose asym-

metric congestion interactions: players’ utilities are negatively correlated to how tough the

competition is. This involves that multiplicity is an outcome of this model if, and only if,

ϕ = 0. Also note that it is sufficient to assume that agents bid for land to end up with the

classical urban model, that is:

R∗(x) = max {Ψ(W∗, x),Ψ(U∗, x), 0} (40)

where Ψ(W∗, x) (respectively Ψ(U∗, x)) is the bid-rent function of employed (respectively

unemployed) workers. Such equilibrium will spawn few city configurations. Namely, a

segregated city will occur in equilibrium where the employed workers reside close to their

job locations whereas the unemployed ones live on the outskirts of the city.

3.3.2 Closed Form Solution for the Spatial Distribution of Employed Workers

µ∗
W

Solving system (39) for µW gives:

µ∗

W (x) =







√

2(1−s)γte∗

ϕ
− (1−s)γt

ϕ
x if

(1−s)γt
2ϕ > e∗

e∗ + (1−s)γt
2ϕ

− (1−s)γt
ϕ

x if e∗ ≥ (1−s)γt
2ϕ

(41)
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∀x ∈ Supp(µ∗
W ) = [0, x̌∗

W ] with

x̌∗

W =







√

2ϕe∗

(1−s)γt
if (1−s)γt

2ϕ
> e∗

1 if e∗ ≥ (1−s)γt
2ϕ

(42)

Two comments are in order. First, unemployment benefits z, the worker’s productivity y,

the separation rate δ and the cost of posting a job κ indirectly influence the spatial equilib-

rium (sketched in Figure 1) via the equilibrium employment rate e∗.14 This is explained by

the fact that, under hyperbolic preferences, the net income effect is cancelled out. Second,

(a) If (1−s)γt
2ϕ > e∗

(b) If e∗ ≥ (1−s)γt
2ϕ

Figure 1: Spatial Distribution of Employed Workers µ∗
W

for e∗ fixed, the impact of each parameter on the spatial concentration of employed workers

is well-established (see Figure 2). An increase in transport costs t incite workers to live

14In Figures 1-9, red lines, blue lines and green lines represent respectively employed, unemployed workers

and the local unemployment rate.
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closer to the city center. Consequently, the CBD is more inhabited and the density gradient

is steeper. In addition, a higher ϕ makes competition tougher between employed workers.

This encourages employed workers to escape congestion by living (in proportion) farer to

their job locations. The presence of the worker’s bargaining power γ and the worker’s

search effort s are also intuitive. If the worker’s bargaining power is improved, employed

workers are less compensated by firms for their transport costs (see equation (31)). This

reinforces the negative effect in transport costs and leads to a higher urban density of em-

ployed workers. If s is larger, unemployed workers go more frequently to the city center

and therefore bear more commuting costs. In consequence, they agglomerate near the city

center.

Figure 2: Effects of the Parameters on the Spatial Distribution of Employed Workers

3.3.3 Closed Form Solution for the Spatial Distribution of Unemployed Work-

ers µ∗
U

By the same token, solving system (39) for µU , I find that, if:

s

φ
−

(1− s)γ

ϕ
> 0 (43)

then

µ∗

U(x) =











√

2
[

s
φ
− (1−s)γ

ϕ

]

t(1− e∗)−
[

s
φ
− (1−s)γ

ϕ

]

tx if e∗ > 1−
[

s
φ
− (1−s)γ

ϕ

]

t
2

1− e∗ +
[

s
φ
− (1−s)γ

ϕ

]

t
2
−
[

s
φ
− (1−s)γ

ϕ

]

tx if 1−
[

s
φ
− (1−s)γ

ϕ

]

t
2
≥ e∗

(44)

∀x ∈ [0, x̌∗
U ] with

x̌∗

U =







√

2φϕ(1−e∗)
[ϕs−(1−s)γφ]t

if e∗ > 1−
[

s
φ
− (1−s)γ

ϕ

]

t
2

1 if 1−
[

s
φ
− (1−s)γ

ϕ

]

t
2
≥ e∗

(45)
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In contrast, if:
(1− s)γ

ϕ
−

s

φ
> 0 (46)

then

µ∗

U(x) =











1−

√

2
[

(1−s)γ
ϕ

− s
φ

]

t(1− e∗) +
[

(1−s)γ
ϕ

− s
φ

]

tx if e∗ > 1−
[

(1−s)γ
ϕ

− s
φ

]

t
2

1− e∗ +
[

(1−s)γ
ϕ

− s
φ

]

t
2
+
[

(1−s)γ
ϕ

− s
φ

]

x if 1−
[

(1−s)γ
ϕ

− s
φ

]

t
2
≥ e∗

(47)

∀x ∈ [x̌∗
U , 1] with

x̌∗

U =







√

2φϕ(1−e∗)
[(1−s)γφ−ϕs]t

if e∗ > 1−
[

(1−s)γ
ϕ

− s
φ

]

t
2

0 if 1−
[

(1−s)γ
ϕ

− s
φ

]

t
2
≥ e∗

(48)

Figure 3 and Figure 4 descibe the behavior of equations (43)-(48). The first comment

(a) If
s
φ
−

(1−s)γ
ϕ

> 0 and e∗ > 1−
[

s
φ

−
(1−s)γ

ϕ

]

t
2

(b) If
(1−s)γ

ϕ
− s

φ
> 0 and e∗ > 1−

[

(1−s)γ
ϕ

− s
φ

]

t
2

(c) If
s
φ
−

(1−s)γ
ϕ

> 0 and 1−
[

s
φ

−
(1−s)γ

ϕ

]

t
2

≥ e∗ (d) If
(1−s)γ

ϕ
− s

φ
> 0 and 1−

[

(1−s)γ
ϕ

− s
φ

]

t
2

≥ e∗

Figure 3: Spatial Distribution of Unemployed Workers µ∗
U

made in the previous section also applies here. Another interesting result lies in the con-

nection of µ∗
U and distance to jobs x: the unemployed workers’ distribution can decrease
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or counter-intuitively increase with respect to distance. The predominance of one of these

two situations is determined by condition (43) that captures the relative agglomeration and

dispersion forces of workers. It particularly states the interdependence between the location

of employed workers and the location of unemployed ones: s
φ

can be viewed as the relative

incentive of unemployed workers, while (1−s)γ
ϕ

can be interpreted as the relative motive of

employed ones. In fact, the worker’s bargaining power γ, the worker’s search effort s and

the specific congestion effect ϕ play similar roles found in Section 3.3.2. If γ is high, s and

ϕ are low enough, the employed concentrate near the CBD and the unemployed flee the

center to live on the outskirts. Furthermore, when the preference for land φ is high, workers

want to increase their housing consumptions. Because the land supply is fixed, they know

that if they reside in dense areas, the land prices will be high and they will not be able to

achieve their willingness to live in large dwellings. This phenomenon exhorts workers to

disperse: the unemployed desert areas where employed workers stay. Last, transport costs

t only magnify the previously mentioned forces.

Figure 4: Effects of the Parameters on the Spatial Distribution of Unemployed Workers

19



3.4 Unemployment Dispersion and City Configurations

Let u(x) be the local unemployment rate defined as:

u(x) =
µ∗
U(x)

µ∗
U(x) + µ∗

W (x)
(49)

Combining results outlined in Section 3.3 and definition (49), it turns out that the model

generates many different levels of unemployment dispersion. For clarity of exposition, I

rank this large heterogeneity into 5 patterns and 6 sub-patterns:

(i)- a city is said to be purely integrated if both groups of workers live together and

in the same proportions. Thereby, the local unemployment rate is uniformly distributed

throughout space (see Figure 5).

(a) If C1a holds (b) If C1b holds

Figure 5: Examples of Purely Integrated Cities

(ii)- a city is segregated if populations of workers get separated into two different parts

of the city, that is, if the distribution of the local unemployment rate is degenerated. Thus,

there are only two local unemployment rates in the economy: either 0% or 100%. Because

of the fact that spatial distribution of employed workers always decreases with respect to

jobs, the developed framework only supports a situation where the employed live close to

jobs and the unemployed reside at the fringes of the city (see Figure 6).

(iii)- a city is said to be integrated when employed and unemployed workers share

the same place of residence but in different proportions. Based on this feature, the local

unemployment rate is continuously (but non-uniformly) dispersed over space (see Figure 7).
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Figure 6: Example of Segregated Cities

(a) If C3a holds (b) If C3b holds

Figure 7: Examples of Integrated Cities

(iv)- a city is incompletely and purely integrated if the local unemployment rate is uni-

formly diffused into a part of the space, whereas in other zones of the city, it is degenerated

(see Figure 8). Two sub-patterns can be pointed out: a situation where the city exposes a

segregated are of unemployed (see Figure 8a) or of employed workers (See Figure 8b).

(v)- a city is said to be incompletely integrated (or incompletely segregated) if the local

unemployment rate is continuously diffused into a zone of the city while in other areas,

it is degenerated. Four sub-patterns can be underlined: a central core of employed work-

ers surrounded by a peripheral integrated ring of workers (see Figure 9a), a central core

of mixed workers surrounded by a peripheral segregated part of the employed (see Fig-

ures 9b-9c) or the unemployed (see Figure 9d-9f) and both a central core and a peripheral

ring of segregated areas separated by an intermediate ring of mixed workers (see Figure 9g).

The prevalence of one these city configurations hinges on the relative size of agglomera-

tion and dispersion forces (i.e. comparing the slopes of the spatial distributions of workers).
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(a) If C4a holds (b) If C4b holds

Figure 8: Examples of Incompletely and Purely Integrated Cities

(a) If C5a holds (b) If C5b holds (c) If C5c holds

(d) If C5d holds (e) If C5e holds (f) If C5f holds (g) If C5g holds

Figure 9: Examples of Incompletely Integrated Cities

Indeed, a deeper analysis of equations (42)-(49) yields:

Proposition 5 For a given market equilibrium (ζ∗W , ζ∗U , µ
∗
W , µ∗

U , θ
∗, u∗), if:

C1a: e∗ = 1
2
, (1−s)γt

2ϕ
> 1

2
> 1− (1−s)γt

2ϕ
and s

φ
= 2(1−s)γ

ϕ
then the city is purely integrated

(see Figure 5a).

C1b: e∗ = 1
2
, 1

2
≥ (1−s)γt

2ϕ
, 1 − (1−s)γt

2ϕ
≥ 1

2
and s

φ
= 2(1−s)γ

ϕ
then the city is purely

integrated (see Figure 5b).

C2: (1−s)γt
2ϕ

> e∗ > 1 −
[

(1−s)γ
ϕ

− s
φ

]

t
2

and (1−s)γφ
2(1−s)φ−ϕs

≥ e∗ then the city is segregated

(see Figure 6).
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C3a: e∗ ≥ (1−s)γt
2ϕ

, s
φ
− (1−s)γ

ϕ
> 0 and 1−

[

s
φ
− (1−s)γ

ϕ

]

t
2
≥ e∗ then the city is integrated

(see Figure 7.a).

C3b: e∗ ≥ (1−s)γt
2ϕ

, (1−s)γ
ϕ

− s
φ
> 0 and 1−

[

(1−s)γ
ϕ

− s
φ

]

t
2
≥ e∗ then the city is integrated

(see Figure 7.b).

C4a: e∗ < 1
2

and s
φ
= 2(1−s)t

ϕ
then the city is incompletely and purely integrated (see

Figure 8a).

C4b: e∗ > 1
2

and s
φ
= 2(1−s)t

ϕ
then the city is incompletely and purely integrated (see

Figure 8b).

C5a: e∗ ≥ (1−s)γt
2ϕ

and e∗ > 1 −
[

(1−s)γ
ϕ

− s
φ

]

t
2

then the city is incompletely integrated

(see Figure 9a).

C5b: (1−s)γt
2ϕ

> e∗ > 1 −
[

s
φ
− (1−s)γ

ϕ

]

t
2

and e∗ >
(1−s)γφ

ϕs
then the city is incompletely

integrated (see Figure 9b).

C5c: e∗ ≥ (1−s)γt
2ϕ

and e∗ > 1 −
[

s
φ
− (1−s)γ

ϕ

]

t
2

then the city is incompletely integrated

(see Figure 9c).

C5d: (1−s)γt
2ϕ

> e∗ > 1 −
[

s
φ
− (1−s)γ

ϕ

]

t
2

and e∗ <
(1−s)γφ

ϕs
then the city is incompletely

integrated (see Figure 9d).

C5e: (1−s)γt
2ϕ

> e∗, (1−s)γ
ϕ

− s
φ
> 0 and 1 −

[

(1−s)γ
ϕ

− s
φ

]

t
2
≥ e∗ then the city is incom-

pletely integrated (see Figure 9e).

C5f: (1−s)γt
2ϕ

> e∗, s
φ
− (1−s)γ

ϕ
> 0 and e∗ > 1 −

[

s
φ
− (1−s)γ

ϕ

]

t
2

then the city is incom-

pletely integrated (see Figure 9f).

C5g: (1−s)γt
2ϕ

> e∗ > 1−
[

(1−s)γ
ϕ

− s
φ

]

t
2

and e∗ >
(1−s)γφ

2(1−s)γφ−sϕ
then the city is incompletely

integrated (See Figure 9g).

What is appealing is that very simple analytical conditions for the 11 different urban

situations are obtained. This shows that the present model is able to explain why cities

are different in terms of unemployment disparities with parsimonious parameters. Namely,

purely integrated and incompletely integrated cities emerge when the relative incentive

of employed workers (1−s)γ
ϕ

is two times higher than the one of unemployed workers s
φ
.
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Segregated cities or incompletely integrated cities that converge towards segregated cities

(i.e. Figure 9d) exist if the bargaining power γ, transport costs t and preferences for land

φ and if search effort s and competition between employed workers ϕ are low. On the

contrary, integrated cities prevail if agglomeration forces are weak (i.e. γ, t low and s

large) and dispersion forces are strong (φ and ϕ large). Incompletely integrated cities are

a go between segregated and integrated cities.

3.5 Labor Market Equilibrium (θ∗, u∗)

Let me close now the model by computing e∗ the equilibrium employment rate of the city.

3.5.1 Modified Beveridge Curve

The dynamics of the global unemployment rate u is:

u̇ =

∫

Supp(µ∗
W )

δµ∗

W (x)dx−

∫

Supp(µ∗
U )

f(θ)µ∗

U(x)dx = δ(1− u)− f(θ)u (50)

with u̇ the variation of unemployment with respect to time, δ(1 − u) is the number of

employed workers entering unemployment and f(θ)u is the number of unemployed workers

finding a job. In steady state, the flows are equal so that:

u =
δ

δ + f(θ)
=

δ

δ + sθq(θ)
(51)

Equation (51) is referred as the modified Beveridge curve. As in Pissarides (2000), this

curve shows an inverse relationship between the unemployment rate u and the vacancy rate

u and the unemployment rate u increases with the separation rate δ. Similarly to Zenou

(2009b), an increase in search efforts s lowers unemployment.

3.5.2 Average Wage Equation

Unproductive firms do not know the location of their future workers when they post their

vacancies but make their decisions by expecting the average wage denoted by ω and defined

as:

ω =
1

e∗

∫

Supp(µ∗
W )

ω∗(x)µ∗

W (x)dx (52)

or, using equilibrium wage equation (31) and equilibrium spatial distribution (41):

ω =







(1− γ)
[

z + 1
3

√

2(1−s)ϕte∗

γ

]

+ γ(y + κ) if
(1−s)t
2ϕ > e∗

(1− γ)
[

z + (1− s)t
(

1
2
− (1−s)γt

12φe∗

)]

+ γ(y + κ) if e∗ ≥ (1−s)t
2ϕ

(53)

Unemployed benefits z, the worker’s productivity y and the cost of a vacancy κ share the

same role on the average wage ω than on the wage equation ω(x). The worker’s bargaining
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γ has a positive impact on the average wage if, and only if, y + κ > z + (1 − s)t∂x
∂γ

. The

average wage is improved by transport costs t, the congestion effect ϕ and the worker’s

search effort s since the latter increases average distance between jobs and workers and

lowers the compensation mechanism previously described.

3.5.3 Modified Job Creation Equation

Let J be the expected asset value of a filled job. This asset value follows a Bellman

equation:

ρJ = y − ω − δ
(

J − V
)

(54)

Using equation (53), equation (54) and the free entry condition (i.e. V = 0)), the modified

job creation equation is:
y − ω

ρ+ δ
=

κ

q(θ)
(55)

This standard equation, stating an inverse relation between the labor market tightness

and the average wage, has the straightforward following explanation. In equilibrium, the

average benefit of a filled job (i.e. the benefit of a filled job multiplied by the expected

average duration of a filled job) is equal to the average search cost of a vacancy (i.e. the

cost of a vacancy multiplied by the average duration of a job vacant). Also observe that the

local unemployment rate u∗(x) and preferences for land φ do not influence the level of labor

market tightness and so the unemployment rate u. This means that the intra-variation of

the local unemployment rate does not impact the global unemployment rate of the city.

Only the spatial concentration of employed workers µ∗
W (x) matters with the average wage.

More precisely, urban density of the employed negatively affects the unemployment rate.

Lower density increases the average reservation wage since workers live further away from

jobs. For that reason, the average wage set by firms is improved and the expected gain

of hiring a new worker decreases. To restore the equilibrium, the expected cost of looking

for a job has to decrease too. This leads to a fall in labor market tightness and so to an

increase in the unemployment rate.15 A direct corollary of this finding is that segregated

cities always show lower unemployment rates than integrated ones.

3.5.4 Definition, Existence and Uniqueness

Definition 4 A labor market equilibrium (θ∗, u∗) consists in finding a labor market tight-

ness index θ∗ solving the modified job creation equation (55) and an unemployment rate u∗

solving the modified Beveridge curve (51).

15The reader should keep this intuitive mechanism in mind to understand the relationships in Section

3.5.5.
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Proposition 6 For a given land market equilibrium (ζ∗W , ζ∗U) and a given spatial equilib-

rium (µ∗
W , µ∗

U), a unique labor market equilibrium (θ∗, u∗) exists.

3.5.5 Comparive Statics Analysis

In order to get a better rationale of the model, let me perform a comparative statics

analysis. Results of this mere exercise are displayed in Figures 10-13. Since unemployment

benefits, specific congestion effect and transport costs improve the average reservation wage

of workers, this implies a decline in labor market tightness and a higher unemployment rate.

Equivalently, an increase in the costs of posting a vacancy leads to greater expected average

costs. By definition, this reduces job creation and increases the unemployment rate.

Figure 10: Effects of unemployment benefits, specific congestion effect, transport costs

and the cost of posting a vacancy on equilibrium labor market tightness and equilibrium

unemployment

The worker’s productivity seems to play an ambiguous role: it raises wage pressure, but

it also improves production. Nonetheless, the net effect on the expected average profit is

positive since γ < 1 and an increase in the productivity lowers the unemployment rate.

On the one hand, worker’s search effort improves the finding rate suggesting that workers

will experience a shorter unemployment spell . On the other hand, this parameter lowers

the average wage as stated earlier. Thus, the worker’s search effort has a positive effect on

the labor market tightness, as well as on the unemployment rate.

The effects of an increase in the separation rate and the preference for the present are

the same. This diminishes the expected gain of hiring a worker, the labor tightness index

is lower and the equilibrium unemployment is higher. To loop the loop, the impact of the

bargaining power of workers is uncertain, which is a fairly robust result in urban labor

economics (see Zenou (2009b)).
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Figure 11: Effects of worker’s productivity on equilibrium labor market tightness and

equilibrium unemployment

Figure 12: Effects of the worker’s search effort on equilibrium labor market tightness and

equilibrium unemployment

3.6 Market Equilibrium: (ζ∗W , ζ∗U , µ
∗
W , µ∗

U , θ
∗, u∗): Definition, Exis-

tence and Uniqueness

Definition 5 A market equilibrium (ζ∗W , ζ∗U , µ
∗
W , µ∗

U , θ
∗, u∗) is such that a land market equi-

librium ζ∗, a spatial equilibrium µ∗ and a labor market equilibrium (θ∗, u∗) are solved for

simultaneously.

Proposition 7 A unique market equilibrium (ζ∗W , ζ∗U , µ
∗
W , µ∗

U , θ
∗, u∗) exists if, and only if:

(1− γ)(y − z) + γκ >
(1− s)

3

√

2(1− s)ϕte∗

γ
> (1− γ)(1− s)t

(

1

2
−

(1− s)γt

12ϕe∗

)

(56)
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Figure 13: Effects of the separation rate on equilibrium labor market tightness and equi-

librium unemployment

4 Conclusion

Although cities show large heterogeneity in terms of spatial variation in the unemployment

rate, the theoretical literature focuses on the analysis of segregated cities where two un-

employment rates exist: either 0 % or 100 %. This is because land is determined by the

bid-rent theory that precludes cases where unemployed and employed workers live together.

The purpose of this paper is twofold. First, I highlight the main theoretical features of a

general urban model where agents do not bid for land. In this simple model, the allocation

of workers throughout space is driven by a Nash equilibrium. I prove that such equilib-

rium exists and is unique if, and only if, workers’ utility functions display asymmetric local

congestion interactions. Second, I use the previous setting to account for unemployment

dispersion heterogeneity within cities. In equilibrium, many new city configurations can

emerge where the local unemployment rate exhibits different movements. Therefore, the

obtained model easily matches many city patterns observed in the data. I then determine

the conditions under which each configuration can prevail. I also prove the existence and

the uniqueness of a labor market equilibrium and make the connection of the latter with

the spatial distributions of workers.
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5 Proof

Proofs 1-2 are inspired from Cardaliaguet (2012) and Cirant (2014).

Proof 1 Assume that Y = M(X ) and let Γ : Y × Y → 2Y × 2Y be defined by:

Γ1(µ1, µ2) = argmax
µ∗
1∈Y

∫

X

A1(x, µ1(x), µ2(x))dµ
∗

1(x),

Γ2(µ1, µ2) = argmax
µ∗
2∈Y

∫

X

A2(x, µ1(x), µ2(x))dµ
∗

2(x),

Γ is upper-semicontinuous multi-application with convex compact values. Furthermore,

Y ×Y is a convex compact set of a locally convex Hausdroff space. This implies that, by Ky

Fan fixed point theorem, Γ admits a fixed point: ∃(µ∗
1, µ

∗
2) ∈ Y × Y such that: for k = 1, 2,

∫

X

Ak (x, µ
∗

1(x), µ
∗

2(x)) dµ
∗

k(x) = sup
µ∈Y

∫

X

Ak (x, µ
∗

1(x), µ
∗

2(x)) dµ(x)

Proof 2 Assume that A1 and A2 satisfy the following condition:

∫

X

A1 (x, µ
∗

1(x), µ
∗

2(x))−A1 (x, µ̃1(x), µ̃2(x)) d (µ
∗

1 − µ̃1) (x)+
∫

X

A2 (x, µ
∗

1(x), µ
∗

2(x))−A2 (x, µ̃1(x), µ̃2(x)) d (µ
∗

2 − µ̃2) (x) < 0

for all µ∗
1 6= µ̃1 or µ∗

2 6= µ̃2. Using Definition 1, it comes that:

∫

X

A1 (x, µ
∗

1(x), µ
∗

2(x)) dµ
∗

1(x) ≥

∫

X

A1 (x, µ
∗

1(x), µ
∗

2(x)) dµ̃1(x)

and
∫

X

A1 (x, µ̃1(x), µ̃2(x)) dµ̃1(x) ≥

∫

X

A1 (x, µ̃1(x), µ̃2(x)) dµ
∗

1(x)

By subtracting both equations above, I obtain:
∫

X

A1 (x, µ
∗

1(x), µ
∗

2(x))−A1 (x, µ̃1(x), µ̃2(x)) d (µ
∗

1 − µ̃1) (x) ≥ 0

By the same token, I get:
∫

X

A2 (x, µ
∗

1(x), µ
∗

2(x))−A2 (x, µ̃1(x), µ̃2(x)) d (µ
∗

2 − µ̃2) (x) ≥ 0

Using the first assumption, this implies that µ∗
1 = µ̃1 and µ∗

2 = µ̃2.

Proof 3 From equations (24)-(33), I have:

W(x) =
[r + f(θ)] [ω(x)− tx− ϕµW (x)] + δ(z − stx)

r + δ + f(θ)
−R(x)ζ(x)−

φ

2ζ(x)
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and

U(x) =
(r + δ)(z − stx) + f(θ) [ω(x)− tx− ϕµW (x)]

r + δ + f(θ)
−R(x)ζ(x)−

φ

2ζ(x)

The solution of Definition 2 is:

ζ∗W (x) = ζ∗U(x) =

√

φ

2R(x)

that is

ζ∗U(x)µ
∗

U(x) + ζ∗W (x)µ∗

W (x) = [µ∗

W (x) + µ∗

U(x)]

√

φ

2R(x)
= 1

and so

R(x) =
φ

2
[µ∗

W (x) + µ∗

U(x)]
2 ≥ 0

Proof 4 Trivial using Section 2.

Proof 5 By definition:

• a purely integrated city exists if:

- (1−s)γt
2ϕ

> e∗, s
φ
− (1−s)γ

ϕ
> 0, e∗ > 1 −

[

s
φ
− (1−s)γ

ϕ

]

t
2

and
√

2(1−s)γte∗

ϕ
− (1−s)γt

ϕ
=

√

2
[

s
φ
− (1−s)γ

ϕ

]

t(1− e∗) −
[

s
φ
− (1−s)γ

ϕ

]

tx that is if e∗ = 1
2
, s

φ
= 2(1−s)t

ϕ
and (1−s)γt

2ϕ
> 1

2
>

1− (1−s)γt
2ϕ

(see C1a).

- e∗ ≥ (1−s)γt
2ϕ

, s
φ
− (1−s)γ

ϕ
> 0, 1 −

[

s
φ
− (1−s)γ

ϕ

]

t
2
≥ e∗ and

√

2(1−s)γte∗

ϕ
− (1−s)γt

ϕ
=

√

2
[

s
φ
− (1−s)γ

ϕ

]

t(1− e∗) −
[

s
φ
− (1−s)γ

ϕ

]

tx that is if e∗ = 1
2
, s

φ
= 2(1−s)t

ϕ
, 1

2
≥ (1−s)γt

2ϕ
and

1− (1−s)γt
2ϕ

≥ 1
2

(see C1b).

• a segregated cities emerges (see C2) if: (1−s)γt
2ϕ

> e∗, (1−s)γ
ϕ

− s
φ

> 0, e∗ > 1 −
[

(1−s)γ
ϕ

− s
φ

]

t
2

and
√

2ϕe∗

(1−s)γt
≤
√

2ϕφ(1−e∗)
[(1−s)γφ−ϕs]t

, or equivalently, (1−s)γt
2ϕ

> e∗ > 1−
[

(1−s)γ
ϕ

− s
φ

]

t
2

and (1−s)γφ
2(1−s)γφ−sϕ

≥ e∗.

• an integrated city emerges if:

- e∗ ≥ (1−s)γt
2ϕ

, s
φ
− (1−s)γ

ϕ
> 0 and 1−

[

s
φ
− (1−s)γ

ϕ

]

t
2
≥ e∗ (see C3a).

or
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- e∗ ≥ (1−s)γt
2ϕ

, (1−s)γ
ϕ

− s
φ
> 0 and 1−

[

(1−s)γ
ϕ

− s
φ

]

t
2
≥ e∗ (see C3b).

• an incompletely purely integrated city exists if:

- e∗ > 1
2

and s
φ
= 2(1−s)t

ϕ
(see C4a).

or

- e∗ < 1
2

and s
φ
= 2(1−s)t

ϕ
(see C4b).

• an incompletely integrated city where there is a central core of employed surrounded

by a peripheral integrated ring of workers prevails (see C5a) if: e∗ ≥ (1−s)γt
2ϕ

, (1−s)γ
ϕ

− s
φ
> 0

and e∗ > 1−
[

(1−s)γ
ϕ

− s
φ

]

t
2
, that is, if e∗ ≥ (1−s)γt

2ϕ
and e∗ > 1−

[

(1−s)γ
ϕ

− s
φ

]

t
2
.

• an incompletely integrated city where there is a central core of mixed ring workers

surrounded by a peripheral segregated part of the employed occurs if:

- (1−s)γt
2ϕ

> e∗, s
φ
− (1−s)γ

ϕ
> 0, e∗ > 1 −

[

s
φ
− (1−s)γ

ϕ

]

t
2

and
√

2ϕe∗

(1−s)γt
>
√

2ϕφ(1−e∗)
[ϕs−(1−s)γφ]t

,

that is, if (1−s)γt
2ϕ

> e∗ > 1−
[

s
φ
− (1−s)γ

ϕ

]

t
2

and e∗ >
(1−s)γφ

ϕs
(see C5b).

or

- e∗ ≥ (1−s)γt
2ϕ

, s
φ
− (1−s)γ

ϕ
> 0 and e∗ > 1−

[

s
φ
− (1−s)γ

ϕ

]

t
2
, this to say, if e∗ ≥ (1−s)γt

2ϕ
and

e∗ > 1−
[

(1−s)γ
ϕ

− s
φ

]

t
2

(see C5c).

• an incompletely integrated city where there is a central core of mixed ring workers

surroundeed by a peripheral segregated part of the unemployed appears if:

- if (1−s)γt
2ϕ

> e∗, s
φ
− (1−s)γ

ϕ
> 0, e∗ > 1−

[

s
φ
− (1−s)γ

ϕ

]

t
2

and
√

2ϕe∗

(1−s)γt
<
√

2ϕφ(1−e∗)
[ϕs−(1−s)γφ]t

,

that is, if (1−s)γt
2ϕ

> e∗ > 1−
[

s
φ
− (1−s)γ

ϕ

]

t
2

and e∗ <
(1−s)γφ

ϕs
(see C5d).

or

- if (1−s)γt
2ϕ

> e∗, (1−s)γ
ϕ

− s
φ
> 0 and 1−

[

(1−s)γ
ϕ

− s
φ

]

t
2
≥ e∗ (see C5e).

or

- if (1−s)γt
2ϕ

> e∗, s
φ
− (1−s)γ

ϕ
> 0 and e∗ > 1−

[

s
φ
− (1−s)γ

ϕ

]

t
2

(see C5f).
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• an incompletely integrated city where there are both a central core and a peripheral

ring of segregated areas separated by an intermediate ring of mixed workers emerges (see

C5g) if: (1−s)γt
2ϕ

> e∗, (1−s)γ
ϕ

− s
φ
> 0, e∗ > 1−

[

(1−s)γ
ϕ

− s
φ

]

t
2

and
√

2ϕe∗

(1−s)γt
>
√

2ϕφ(1−e∗)
[(1−s)γφ−ϕs]t

,

or equivalently, (1−s)γt
2ϕ

> e∗ > 1−
[

(1−s)γ
ϕ

− s
φ

]

t
2

and e∗ >
(1−s)γφ

2(1−s)γφ−sϕ
. ⋄

Proof 6 I find:

• If (1−s)γt
2ϕ

> e∗ then:

(1− γ)(y − z)− γκ− (1−γ)
3

√

2(1−s)ϕt
γ

f(θ)
δ+f(θ)

ρ+ δ
=

κ

q(θ)

Let g1 be a continuous function on R+ defined as:

g1(θ) =
κ

q(θ)

Notice that


















g1(0) = 0 because lim
θ→0

q(θ) = +∞

lim
θ→+∞

g1(θ) = +∞ because lim
θ→+∞

q(θ) = 0

∂g1(θ)
∂θ

> 0 because ∂q(θ)
∂θ

< 0

Let g2 be a continuous function on R+ so that:

g2(θ) =
(1− γ)(y − z)− γκ− (1−γ)

3

√

2(1−s)ϕt
γ

f(θ)
δ+f(θ)

ρ+ δ

Observe that






















g2(0) =
(1−γ)(y−z)−γκ

ρ+δ
> 0 because lim

θ→0
f(θ) = 0

lim
θ→+∞

g2(θ) =
(1−γ)(y−z)−γκ−

(1−γ)
3

√

2(1−s)ϕt

γ

ρ+δ
> g2(0) because lim

θ→+∞
f(θ) = +∞

∂g2(θ)
∂θ

< 0 because ∂f(θ)
∂θ

> 0

The characteristics of functions g1 and g2 ensure that a unique and stable labor market

tightness index θ∗ exists. Moreover, if a unique labor market tightness index exists, this

implies the existence of a unique unemployment rate denoted by u∗.

• If e∗ ≥ (1−s)γt
2ϕ

then:

(1− γ)(y − z)− γκ− (1− γ)(1− s)t

{

1
2
− (1−s)γt

12φ
f(θ)

[δ+f(θ)]

}

ρ+ δ
=

κ

q(θ)
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Let g3 be a continuous function on R+ defined as

g3(θ) =

(1− γ)(y − z)− γκ− (1− γ)(1− s)t

{

1
2
− (1−s)γt

12φ
f(θ)

[δ+f(θ)]

}

ρ+ δ

Notice that






















lim
θ→0

g3(θ) = +∞ because lim
θ→0

f(θ) = 0

lim
θ→+∞

g3(θ) =
(1−γ)(y−z)−γκ−(1−γ)(1−s)t[ 12−

(1−s)γt
12φ ]

ρ+δ
because lim

θ→+∞
f(θ) = +∞

∂g3(θ)
∂θ

< 0 because ∂f(θ)
∂θ

> 0

The characteristics of functions g1 and g3 ensure that a unique labor market tightness

index θ∗ exists. Furthermore, if a unique labor market tightness index exists, this implies

the existence of a unique unemployment rate denoted by u∗. ⋄

Proof 7 As y > ω(x), ∀x ∈ Supp(µ∗
W ), a unique general equilibrium (ζ∗W , ζ∗U , µ

∗
W , µ∗

U , θ
∗, u∗)

exists if, and only if, y − ω(x̌∗) > 0 or y − ω(1) > 0 that is:

(1− γ)(y − z) + γκ >
(1− s)

3

√

2(1− s)ϕte∗

γ
> (1− γ)(1− s)t

(

1

2
−

(1− s)γt

12ϕe∗

)

⋄
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