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A Stiffness Estimator for Agonistic-Antagonistic

Variable-Stiffness-Actuator Devices
Tomas Ménard, Giorgio Grioli and Antonio Bicchi

Abstract—Safe Physical Human Robot Interaction, conservation of

energy and adaptability are just the main robotic applications that

prompted the development of a number of Variable Stiffness Actuators

(VSA). Implemented in a variety of ways, they use various technologies,

and feature the most diverse mechanical solutions, all of which share

a fundamentally unavoidable nonlinear behavior. The control schemes

proposed for these actuators typically aim at independent control of

the position of the link, and its stiffness. Although effective feedback

control schemes using position and force sensors are commonplace in

robotics, control of stiffness is at present completely open–loop: the

stiffness is inferred from the mathematical model of the actuator. We

consider here the problem of estimating the nonlinear stiffness of Variable

Stiffness Actuator in Agonistic-Antagonistic configuration. We propose an

algorithm based on modulating functions which allow to avoid the need

of numerical derivative and for which the tunning is then very simple.

An analysis of the error demonstrates the convergence. Simulations are

provided and the algorithm is validated on experimental data.

I. INTRODUCTION

T
HE control of flexibility in actuators is a topic that gained in

importance during the last decades, when the possibility to take

advantage of the flexibility has become a possible option, rather than

minimizing it [24]. Among the resulting applications, one of the most

important is safety of physical Human Robot Interaction (phHRI)

[1], [2], [15]. In case of accidental collision between a human and a

robot, a compliant actuator can reduce the risk of injuries, while the

actuator can be made more rigid for precise tasks. Others applications

have been developed such as mechanism preservation [11], energy

saving [28], energy storing to release it at particular time [8], [12] or

rehabilitation [14], [32].

In order to control both position and stiffness, specialized devices

have been designed which are made up of two actuators and flexible

transmissions presenting nonlinear characteristics [29]. Most existing

devices can be classified into two categories, as shown on figure

1. The first approach is bio-inspired and consists in setting the two

motors in an Agonistic-Antagonistic configuration, connected to the

link via nonlinear spring, similarly to antagonist muscles actuating

an arm [20], [27], [22], [3]. In the second approach, called serial-

configuration, the dynamics of the two motors are almost decoupled.

A first motor is dedicated to controlling the link motion, while a

second smaller motor is dedicated to the setting of the stiffness [4],

[16], [30], [17], [13].

After the problem of finding a suitable architecture for VSA,

comes the problem of controlling both the position and the stiffness,

as illustrated in the example of figure 2. While for the serial

configuration the dynamics of the positions and the stiffness are

almost decoupled, it is not the case for the Agonistic-Antagonistic

configuration, where the dynamics are coupled and nonlinear. Several

control laws have hence been proposed in the last decade. For the
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regulation of the stiffness and the position to constant values, a

feedback control has been proposed in [5] and a port Hamiltonian

approach, which allow the regulation while keeping the stored energy

constant, in [31]. Control law for tracking smooth trajectory have also

been proposed in [6], [23], [33] using a feedback linearization strategy

for single DOF and multi DOF actuators and in [26] following a gain

scheduling method and LQR for robustness.

All the above control scheme have the same issue, a precise

knowledge of the stiffness is required, but there is no sensor for the

stiffness. Hence it has to be reconstructed either by a mathematical

model, but it is prone to error since the model is usually complex and

subject to high imprecision, or with an online estimator. The latter

method is far preferable and has been investigated in several papers. A

first method has been proposed in [9] where the error estimation was

shown to be uniformly ultimately bounded. An improved algorithm

has been proposed in [10], where the observer is derived from a

parametric approach coupled with an analytic differentiation. Both

these methods have been operating on the link side and require

several numerical differentiation. In order to alleviate this issue, other

algorithms have been developed, working on the motor side. The

problem can then be stated as follows, the equation representing the

movement of the motor angle q is given by:

τ = Jq(2) + bq(1) − f(φ) (1)

where τ is the torque of the motor, J and b are the motor inertia

and damping and φ = q − qL is the displacement angle with qL the

link angle, all these parameters and signals are known or measured.

The problem is to estimate σ(φ) = ∂f

∂φ
, the stiffness. The main issue

is that we need the derivatives of the measured signals which is a

difficult problem for noisy signals. To the best of our knowledge, two

algorithms have been proposed for the estimation of σ, following this

way.

Firstly, in [7], where the idea is to obtain first an estimation

of f(φ) by combining a modified kinematic Kalman filter for the

estimation of the first derivative of q and a first order filter. Then

f is approximated by a Taylor expansion and its parameters are

estimated by a least square algorithm. Finally, σ is obtained by

analytically differentiating the Taylor expansion. The main drawback

of this method is that the convergence required for this type of

algorithm cannot be ensured. These restrictions have been partially

alleviated in [21] where an algorithm has been proposed based on

operational calculus and differential algebra. The idea is to first obtain

a relation involving σ by differentiating equation (1), then, by doing

some calculus in the Laplace domain, a relation between filtered

versions of the measured signals and σ is obtained. Replacing σ
by a Taylor expansion approximation, a Least Square Algorithm can

be used, involving filtered versions of the different measured signals

in order to estimate the parameters of the Taylor expansion. The fact

that no numerical derivative is needed, makes this algorithm very

easy to tune, and hence practically interesting, indeed, there are only

three parameters to set: the length of the integration window, the

initial value of the covariance matrix for the recursive least square

algorithm and the order of the Taylor expansion.

We propose here an improved version of [21]. First, the algorithm
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(a) Agonist-Antagonistic VSA (b) Explicit Stiffness Variator

Fig. 1. Two common categories of Variable Stiffness Actuators.

Fig. 2. A possible control system for a Variable Stiffness Actuator, organized
in two layers: On the lowest layer a position and stiffness controller tracks
the references generated by the higher level trajectory planner. Both control
loops rely on knowledge on the stiffness of the actuator: the instantaneous
value of the stiffness is used to close the inner loop, while the shape of the
stiffness function is used by the trajectory planning algorithm.

is simplified, while in [21] it has been derived using operational cal-

culus and differential algebra, we utilize here modulating functions,

which allow to obtain the filters, needed for the algorithm, clearly

and easily. In addition, we analyze the effect of the measurement

noise and the truncation error on the estimation of the stiffness, and

provide a guideline for the tunning of the different parameters and

ensure the convergence of the algorithm when there is noise on the

torques measurements.

The paper is organized as follow. In section II, we present the class

of systems considered in this paper and the definition of stiffness.

The main development is done in section III, where the methodology

is presented for a VSA in Agonistic-Antagonistic configuration.

An analysis of the error on the measured data is given next. The

performance of the observer is illustrated on simulations in section

IV. The observer is then used on real experimental data, for an AA-

VSA in section V. Finally, section VI presents our conclusions.

II. PROBLEM STATEMENT

We focus our analysis on the Agonistic-Antagonistic VSA devices,

which scheme is that of figure 1(a). We recall here the model

presented in [27]. We denote τ1 and τ2 the torques of the motors, f1
and f2 the elastic torques of the variable stiffness, q1, q2 and qL the

positions of the two motors and the link, respectively. The gravity

term is given by g. The parameters of the two motors and the link

are J1, J2, JL the inertias and b1, b2, bL the dampings, respectively.

The dynamical model is given by:

τ1 = J1 q
(2)
1 + b1 q

(1)
1 − f1(qL − q1), (2)

τ2 = J2 q
(2)
2 + b2 q

(1)
2 − f2(qL − q2), (3)

τL = JL q
(2)
L + bL q

(1)
L + g(qL)

+f1(qL − q1) + f2(qL − q2), (4)

and the total flexibility torque is

f(φ) = f1(φ1) + f2(φ2). (5)

where φ = (φ1, φ2) with φi = qL − qi, i = 1, 2, correspond to the

deformation of each motor-transmission.

The total device stiffness is derived from the total flexibility torque

and is equal to

σ(φ) = σ1(φ1) + σ2(φ2), (6)

where

σi(φi) =
∂fi
∂φi

(φi), i = 1, 2. (7)

III. OBSERVER DESIGN FOR STIFFNESS ESTIMATION

In this section, we first present the modulating functions and give

some useful properties. These properties are further used to define the

stiffness estimator. Afterward, the effects of the measurement noise

and the truncation error are analyzed.

A. Modulating functions

The following definitions and proposition come from [25], and

have been slightly modified for our need.

Definition 1. A modulating function of order k on [a, b] (a, b ∈ R)

is a function ψ : [a, b] → R, k-times differentiable such that:

ψ(i)(a) = 0 = ψ(i)(b), i = 0, . . . , k − 1, (8)

where ψ(i) represents the i-th order derivative of ψ.

Definition 2. A function f : [a, b] → R integrable on [a, b] is

modulated by taking the inner product with a modulating function

ψ:

〈f, ψ〉 =
∫ b

a

f(u)ψ(u)du. (9)

Proposition 1. Let f1, f2 be integrable real valued functions on

[a, b], ψ an order k modulating function on [a, b] and C ∈ R a

constant, then we have the following properties:

(i) 〈f (i)
1 , ψ〉 = (−1)i〈f1, ψ(i)〉, i = 0, . . . , k − 1,
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(ii) 〈Cf1 + f2, ψ〉 = C〈f1, ψ〉+ 〈f2, ψ〉.
Property 1 is very important, because it allows to replace the

derivative on a function f , which is usually unknown (for example,

we only have access to a measured signal), by the derivative on the

modulating function for which the derivative is known and can be

computed analytically.

Example 1. Let us define the following function:

wi,j(u) = (1− u)iuj , u ∈ R, i, j ∈ N. (10)

Then, wk,k, for k ∈ N, is a modulating function of order k + 1 on

[0, 1].

B. Algorithm

The estimation of the stiffness is derived from equations (2)-(3),

that is, we look at the system on the motor side. The algorithm is

split into two parts. Firstly, the equations are differentiated to make

the stiffness appear explicitly, the stiffness is then approximated by a

Taylor expansion and the resulting equations are transformed, using

modulating functions, so that only filtered versions of the measured

signals are needed. Secondly, a least square algorithm is used to

estimate the parameters of the Taylor expansion and thus the stiffness

itself.

Computation of the filters: We start from equations (2)-(3), that

is:

τi = Jiq
(2)
i + biq

(1)
i − fi(φi), i = 1, 2. (11)

Differentiating with respect to time yields:

τ
(1)
i = Jiq

(3)
i + biq

(2)
i − φ

(1)
i σi(φi), (12)

we take the following Taylor expansion approximation:

σi(φi) ≈
N
∑

j=0

αi
j

(φi)
j

j!
, (13)

which gives the relation:

N
∑

j=0

αi
j

φ
(1)
i (φi)

j

j!
= Jiq

(3)
i + biq

(2)
i − τ

(1)
i . (14)

The maximum derivative order is 3, then we need to take an order

4 modulating function ψ, which will be defined later. Modulating

equation (14) with ψ, one obtain:
〈

N
∑

j=0

α
i
j

φ
(1)
i

(φi)
j

j!
, ψ

〉

=
〈

Jiq
(3)
i

+ biq
(2)
i

− τ
(1)
i
, ψ
〉

,(15)

N
∑

j=0

α
i
j

〈(

(φi)
j+1

(j + 1)!

)(1)

, ψ

〉

= Ji
〈

q
(3)
i
, ψ
〉

+ bi
〈

q
(2)
i
, ψ
〉

(16)

−

〈

τ
(1)
i
, ψ
〉

,

N
∑

j=0

α
i
j

〈

(φi)
j+1

(j + 1)!
, ψ

(1)

〉

= Ji
〈

qi, ψ
(3)
〉

− bi
〈

qi, ψ
(2)
〉

(17)

−

〈

τi, ψ
(1)
〉

.

We get a relation between the stiffness and the measured signals,

where the only source of error is the Taylor approximation. We want

to estimate the parameters αi with a least square algorithm, then we

need a relation changing with time t. For this purpose, we take a =
t−T and b = t, where T > 0 is the length of the integration window

and the modulating function is taken as ψ(u) = (u−t+T )3(t−u)3.

We have the following relation:

N
∑

j=0

α
i
j

∫

t

t−T

(φi)
j+1

(j + 1)!
(u)ψ

(1)
(u)du = Ji

∫

t

t−T

qi(u)ψ
(3)

(u)du (18)

−bi
∫

t

t−T
qi(u)ψ

(2)(u)du

−

∫

t

t−T
τi(u)ψ

(1)(u)du.

Doing the change of variables u = Tν + t− T and dividing by T 3

yields

∑N
j=0 α

i
j

(

T 2
∫ 1
0

(φi)
j+1

(j+1)!
(t+ T (ν − 1))w

(1)
3,3(ν)dν

)

=

+Ji
∫ 1
0
qi(t+ T (ν − 1))w

(3)
3,3(ν)dν

−biT
∫ 1
0
qi(t+ T (ν − 1))w

(2)
3,3(ν)dν

−T 2
∫ 1
0
τi(t+ T (ν − 1))w

(1)
3,3(ν)dν,

the function w3,3 is defined by equation (10). The last thing to do

is to obtain a discrete version of this relation. We assume that the

sampling period is Ts and that T = MTs, where M ∈ N. We take

an approximation of the integral with the trapezoidal method, that is:

∫ 1

0

f(u)du ≈
M
∑

m=0

Wmf(tm), (19)

with tm = mTs, W0 = WM = Ts/2 and Wm = Ts, m =
1, . . . ,M − 1.

We finally obtain the following relation, at discrete-time k (corre-

sponding to the continuous time t = kTs):

Ci(k) =
N
∑

j=0

αi
jb

i
j(k), (20)

△
= AT

i Bi(k), (21)

with Ai = [αi
0, . . . , α

i
N ]T , Bi(k) = [bi0, . . . , b

i
N ]T ,

Ci(k) =
∑M

m=0 qi ((k −m)Ts)× (22)

(

JiWmw
(3)
3,3)(m/M) − biWmTw

(2)
3,3(m/M)

)

+
∑M

m=0 τi ((k −m)Ts)
(

−T 2Wmw
(1)
3,3(m/M)

)

,

and

bij(k) =
M
∑

m=0

(

φj+1
i

(j + 1)!

)

((k −m)Ts)
(

T 2Wmw
(1)
3,3(m/M)

)

.

(23)

For k ≤M , measured values at negative time (k −m)Ts, i.e. (k −
m) < 0, are set to zero. The derivatives of w3,3 are given by:

w
(1)
3,3(u) = −3w2,3 + 3w3,2, (24)

w
(2)
3,3(u) = 6w1,3(u)− 18w2,2(u) + 6w3,1(u), (25)

w
(3)
3,3(u) = −6w0,3(u) + 54w1,2(u)− 54w2,1(u) + 6w3,0(u).

(26)

Note that the definition of Bi and Ci can be seen as filtering by a

Finite Impulse Response Digital Filter.

Recursive least square algorithm: Now that a relation has been

obtained between the stiffness parameters in the Taylor expansion and

the measured signals, we further use it into a discrete least square

algorithm in order to obtain an approximation Âi of Ai.























Âi(k) = Âi(k − 1) + Γ(k)C̃i(k/k − 1),

C̃i(k/k − 1) = Ci(k)−Bi(k)Âi(k − 1),

Γ(k) = F (k−1)Bi(k)

1+BT
i
(k)F (k−1)Bi(k)

,

F (k) = (IN+1 − Γ(k)Bi(k)
T )F (k − 1).

(27)

The notation IN+1 stands for the identity matrix of dimension N+1.
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N = 2 N = 2 N = 2 N = 4 N = 4

no noise noise on torques noise on torques noise on torques noise on torques
and positions and positions

MSE 3.4 10
−2

19.3 38.4 39.9 56.7

MSREP 5 10
−5

4.8 10
−2

1 10
−1

8.7 10
−2

1.2 10
−1

TABLE I
EVALUATION OF SIMULATION RESULTS.

C. Error analysis

The algorithm presented here is made up of two parts, first, a

relation between filtered versions of the measured data and the

coefficients of the Taylor expansion of the stiffness is derived. It is

then used in a least square algorithm. In this scheme, there are three

sources of errors: a noise on the measurements, an error due to the

truncation of the Taylor expansion and an error due to the numerical

integration. The noise on the measured data is assumed to be an

additional stochastic white noise with zero mean and finite variance

and the numerical integration error is assumed to be negligible. The

attenuation of the error is only done by the first step, that is we will

see how to set the parameters to reduce sufficiently the noise so that

it does not affect the second step.

We shall treat here measurements noise only for the torque. High

noise on the positions measurements would be a critical issue for

the algorithm presented here, but, since sensors for positions are

far more accurate than for torque measurement, assuming small

noise on the positions measurements is a realistic assumption.

Furthermore, the effect of a small noise on the positions will be

studied on simulations only.

Note that the input of the RLS at time t is a filtered version of the

measured signals and then depend on the evolution of the measured

signals between t−T and t, but since the parameters to be estimated

are assumed to be constant, it does not induce further problems.

This could, however, be the case for non constant parameters.

Taking errors into account, equation (21), can be rewritten as

follows:

AT
i Bi(k) = Ci(k) + eiRN

(k) + eiω(k), (28)

where eRn(k) is the error due to the truncation and eω(k) is the

error due to the measurement noise. Three different parameters can

be used to reduce the error: the length of the integration window T ,

the order of the Taylor expansion N and the sampling period Ts.

Analysis of eRN

We start from equation (14), replacing the approximation of the

stiffness by its true expression and following the same computations

as for the algorithm, we obtain:

e
i
RN

(k) =
M
∑

m=0

(σi − σ
N
i ) ◦ (φi)((k −m)Ts)T

2
Wmw

(1)
3,3(m/M), (29)

where σN
i is the Taylor expansion of σi up to order N . We see,

from the expression of the truncation error, that in order to get a

bound, the transmission deformation φi has to be bounded. Hence,

we assume that there exist εi1, ε
i
2 such that φi(k) ∈ [εi1, ε

i
2] for all

k ≥ 0, then, overvaluating (σi−σN
i )◦(φi) and applying Proposition

2, one obtains

|eiRN
(k)| ≤ T 3 3

√
5

125
sup

φi∈[εi1,ε
i
2]

|σi(φi)− σN
i (φi)|. (30)

Analysis of eω
We assume here that ω is a white noise with zero mean and finite

variance. Similarly to the truncation error, we obtain that the noise

error contribution is equal to

eω(k) =

M
∑

m=0

ω((k −m)Ts)T
2Wmw

(1)
3,3(m/M). (31)

Note that the error due to the noise on the torques does not depend

on the subscript i (the error is the same for both torques).

Applying proposition 3, we obtain that for each k ∈ N, eω(k)
converges to zero in mean square as M goes to infinity.

Parameters settings

The effect of the parameters on the different errors is summarized

in the table II. From the previous analysis, we can derive some

indications for the tuning of the parameters. First, the sampling period

Ts should be taken, as small as possible in order to reduce the effect

of the noise. The length of the integration window should be taken

large enough to filter the noise, depending on the expected Signal to

Noise Ratio which itself depends on the sensors. Even if increasing

T will increase the truncation error, we can see from equation (30),

that this relation is cubic, and since, typically, values of T belong to

[0.1, 2], the setting of T and N can be done independently. Finally,

the value of N will highly depend on the range of the motor/link

deformations φi and the spring.

Convergence of the RLS

We have shown until now that the error contribution can be made

arbitrarily small, uniformly with respect to time, by tuning the

parameters. According to lemma 1, if the input of the RLS is

persistently exciting, then a small error due to the truncation of the

Taylor expansion leads to a small error on the estimated coefficients.

Similarly, if the error due to the noise converges to zero in mean

square, then the estimated parameters will converge in mean square

toward the real one.

We thus have to be sure that the persistent excitation condition is

fulfilled. The inputs of the RLS are filtered versions of the measured

signals. Basically, this filter corresponds to integrating the measured

signal over a finite horizon window, and then acts as a low pass

filter whose cut-of frequency is proportional to 1/T [25]. We can

see from this analysis that if the movements of the link were too

fast compared to the cut-of frequency, then, the persistent excitation

could be compromised. In this case, it would be necessary to reduce

the length T of the integration window. If we want to continue

filtering the error due to the noise we need to take a Ts smaller

(which is natural if the movements become faster).

Finally, we conclude that we can ensure arbitrary small error on the

stiffness by tunning the algorithms parameters.

TABLE II
EFFECT OF PARAMETERS ON THE DIFFERENT TYPES OF ERROR..

Truncated term error Noise error contribution

N ↑ ց −→
Ts ↑ −→ ց
T ↑ ր ց
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Fig. 3. Data used for the simulations Agonistic-Antagonistic VSA.

IV. SIMULATIONS

We consider an Agonistic-Antagonistic VSA mechanism realized

with two identical cubic springs whose force displacement character-

istic are described by:

fi = 10(qL − qi)
3, i = 1, 2. (32)

The parameters of the motors in the equations (2)-(3)-(4) are given

by, J1 = J2 = 10−4 kg/m2, JL = 0.0179 kg/m2, b1 = b2 =
1.27Nms/rad and bL = 0.0127Nms/rad. We consider the case

without gravity, that is g = 0.

We provide in this section the result of several simulations with the

algorithm proposed here, all the simulations are done for the same

set of data, which are reported on figure 3.

In order to precisely evaluate the effects of noise on the re-

construction of the stiffness, three different cases are compared in

simulation: without noise, with a white noise affecting the torques

and finally with a white noise affecting both the torques and the

positions. The importance of the noise is quantified by the Signal

to Noise Ratio (SNR) which is given by the formula SNR =
20 log10(V ar(Signal without noise)/V ar(Noise)), the lower it
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Fig. 4. Noisy signals used for the simulations.

is, the more significant the noise is. The noise on the torques is taken

large, corresponding to a SNR of 9, while the noise on the positions

is low corresponding to a SNR of 140, noisy signals are depicted

on figure 4. In addition, we compare the effect of N in equation

(13), for the estimation. The best value for N is 2 for our algorithm,

because the springs are cubics. But, since the springs might be not

polynomials (we can consider exponential springs for example), we

then test our algorithm for non exact values of N , that is, with N = 2
and N = 4.

set-up for the algorithm

The parameters of the observer are set as follow, the length of the

time window for the integral is T = 0.5 s and the covariance matrix

for the RLS is initialized at F (0) = 108IN+1. The sampling time is

taken as Ts = 1/1000 s.

results of simulations

The results of the reconstruction of the stiffness are given on figure

5. In addition, an average of the Mean Square Error (MSE) and

the Mean Square Relative Error Percentage (MSREP) have been

computed, over 100 simulations, after the algorithm has converged,

that is between t = 2s and t = 10s and are given in table I. The

formula for MSE and MSREP between sample k1 and k2 (k2 > k1),
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Fig. 5. Reconstruction of the stiffness in simulation.

are given by:

MSE =
1

k2 − k1 + 1

k2
∑

k=k1

(

σ(k)− ˆσ(k)
)2

,

MSREP =
1

k2 − k1 + 1

k2
∑

k=k1

(

σ(k)− ˆσ(k)

σ(k)

)2

.

We can see, that in every cases and with the same settings, the

algorithm performs satisfactorily.

V. EXPERIMENTAL RESULTS

In this section, we test the algorithm presented here on the

Agonistic-Antagonistic VSA experimental device with exponential

springs shown in figure 6, which is fully described in [10] (some

details are also reported in appendix for convenience). The system

measures are, by nature, translational (see appendix for detail) and

the model can be described with the model in figure 7. Please note

that this choice of translational Lagrangian coordinates, yields that

displacements are measured in mm, generalized torques in N and

stiffness in N/mm.

The results of the estimations are depicted on figure 9. The

comparison model is not exact due to uncertainties in the model

Fig. 6. The experimental setup consists of an Agonistic-Antagonistic VSA
system with exponential springs, realized using a linear spring forced to move
on a suitable cam profile. Force sensors (strain gauges) are mounted on the
tendons connecting the springs to the link. Position sensors (encoders) are
mounted on the link and on two tendon pulleys coupled with the input levers.

Fig. 7. Translational model of a VSA, as the one used in the experimental
setup.

of the actuator and especially in the model parameters. Then, we

consider that the knowledge of the true stiffness is reliable up to an

error about 25 % (see appendix, in particular figure 10 for details),

represented by an horizontal line on figure 9.b).

The order of the Taylor expansion has been set to N = 9. The

covariance matrix for the RLS has been set to F (0) = 105I10 and

the length of the time window for the integral is T = 0.5s. The MSE

and MSREP, after the convergence (that is after t = 2s) are equal to

21.43 and 2.07 respectively.

VI. CONCLUSION

In this paper, we have presented a new algorithm for estimating

the nonlinear stiffness of Agonistic-Antagonistic Variable Stiffness

Actuator. The advantages of the proposed method are twofold,

firstly, the tuning is simple, secondly, the algorithm is proven to
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Fig. 8. Experimental data: position, displacement and torque data.
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Fig. 9. Results of experiment: performance of the observer tracking the
stiffness of an Agonist-Antagonist VSA.

converge. The effect of the noise on the resulting estimation has been

studied and a methodology to tune the parameters has been provided.

Furthermore, the algorithm has been validated on experimental data

which prove its practical efficiency. The proposed algorithm assumes

a good knowledge of the damping and inertia on the link side for

proper functioning: while a good knowledge of the inertial details of

a robot is something that can be easily extracted from the combined

information of components datasheets, CAD files and kinematics of

the robot, a good knowledge of the damping coefficient is not always

easily available. Moreover, damping is often a time-varying quantity,

dependent on the age of the system, the temperature and other issues.

This aspect opens a really interesting research direction, that is the

combined estimation of stiffness and damping, which is demanded

to future work.

APPENDIX

A. Technical results

The two propositions given here can be seen as specific cases (but

slightly different) of Proposition 2 and corollary 2 in [18]. The lemma

presents a classical result for RLS and is presented with more details

in [19].

Proposition 2. Let M ∈ N, and T > 0 then the following inequality

holds true
M
∑

m=0

Wm w
(1)
3,3

(m

M

)

≤ T
3
√
5

125
,

where W0 = WM = T/(2M), Wm = T/M , m = 1, . . . ,M − 1

and w
(1)
3,3 is given by (24).

Proof of proposition 2. One has:

M
∑

m=0

Wm w
(1)
3,3

(m

M

)

≤ max
u∈[0,1]

∣

∣

∣
w

(1)
3,3(u)

∣

∣

∣

M
∑

m=0

Wm,

≤ max
u∈[0,1]

∣

∣

∣
w

(1)
3,3(u)

∣

∣

∣
T,

≤ T
3
√
5

125
.

The third inequality is obtained by noticing that the function w
(1)
3,3(u)

is a polynomial function and vanish at u = 0 and u = 1. Then the

maximum of |w(1)
3,3(u)| is attained at a point, belonging to [0, 1],

where the derivative of w
(1)
3,3(u) vanish. Direct computations gives

that w
(2)
3,3(u) vanish at 0, 1

2
+

√
5

10
, 1

2
−

√
5

10
, 1. Hence one can directly

conclude that the maximum is equal to 3
√
5

125
.

Proposition 3. Consider {ω(t), t > 0}, a continuous parameter

stochastic process, such that for every t > 0:

E[ω(t)] = 0, (33)

Cov[ω(t)ω(s)] = 0, t 6= s, (34)

V ar[ω(t)] = µ2. (35)

Let M ∈ N, and T > 0, then, for every k ∈ N, k ≥M :

lim
M→+∞

eω(k)
m.s.
= 0, (36)

where m.s. stands for mean square convergence, and

eω(k) =

M
∑

m=0

Wmω

(

(k −m)
T

M

)

w3,3

(m

M

)

,

where W0 = WM = T/(2M), Wm = T/M , m = 1, . . . ,M − 1

and w
(1)
3,3 is given by (24).
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Proof of proposition 3. Mean square convergence to zero for a

stochastic process means that its second-order moment con-

verges towards zero. That is, we have to prove here that

limM→+∞ E[(eiω(k))
2] = 0. For this purpose, we will use the well-

known formula:

E[(eω(k))
2] = V ar[eω(k)] + (E[eω(k)])

2. (37)

One has:

E[eω(k)] = T 2
M
∑

m=0

Wmw
(1)
3,3

(m

M

)

E[ω((k −m)Ts)],

and:

V ar[eω(k)] = T 4∑M
m=0W

2
m(w3,3

(

m
M

)

)2V ar[ω((k −m)Ts)]

+2
∑M

m1=0

∑M
m2=m1+1Wm1

Wm2
w

(1)
3,3

(m1
M

)

w
(1)
3,3

(m2
M

)

Cov[ω((k −m1)Ts)ω((k −m2)Ts)].

The hypothesis give:

E[ω((k −m)Ts)] = 0,

Cov[ω((k −m1)Ts)ω((k −m2)Ts)] = 0, if m1 6= m2.

It follows that:

E[eω(k)] = 0

V ar[eω(k)] = T 4
M
∑

m=0

W 2
m

(

w
(1)
3,3

(m

M

))2

V ar[ω((k −m)Ts)]

=
T 4

M2

M
∑

m=0

(MWm)2
(

w
(1)
3,3

(m

M

))2

×

V ar[ω((k −m)Ts)]

≤ T 4

M2
max

u∈[0,1]

∣

∣

∣
w

(1)
3,3

∣

∣

∣

2

T 2µ2M

≤
T 6 maxu∈[0,1]

∣

∣

∣
w

(1)
3,3

∣

∣

∣

2

µ2

M

The last term goes to zero when M goes to infinity since T is fixed

and w
(1)
3,3 is a continuous function on [0, 1]. This ends the proof.

Lemma 1 ([19] p.177). If the vector Bi is persistently excited, then

the solution of the RLS algorithm (27) is given by:

Âi(k) = Ai + [Ri(k)]
−1 1

k

k
∑

j=1

Bi(j)(e
i
RN

(j) + eiω(j)),

with

Ri(k) =
1

k

k
∑

j=1

Bi(j)Bi(j)
T .

B. Details on the Experimental Setup

This appendix briefly recalls some details of the experimental setup

shown in figure 6, and thoroughly described in [9].

The experimental device implements the antagonistic VSA con-

cept, 1(a). The springs used in the device are designed (using a cam

mechanism) to have an exponential characteristic, such that, given the

spring deformation δ and the spring force f , the relationship between

the two can be summarised as

f = aie
biδ , (38)

where the subscript i can be 1 or 2, for the two springs.

A pair of strain-gauge load cells measures the tendon tensions.

The three position corresponding to the link position and to the two

movement sources were measured using three HEDS-5540 encoders

with a resolution of 2000 CPRs. A National Instruments PCI6251

ADC board acuired the strain gauges data, and an USB-PCI4e

acquired the encoders data, both with a sampling rate Ts = 0.015s.
A second–order filter with time constant of 0.02s was used to clear

the signal from the (rather small) noise. Sources of noise were

quantization for the encoders and electro-magnetic noise interferences

in the strain gauges.

It is important to notice that, although the device is designed as

the actuator of a rotary link, part of the measurements acquired are

in the rotary domain (the link and prime movers position), while

the other part is in the translational domain (the spring forces). To

apply the proposed estimation algorithm, all measurements need to

be reported in the same domain. The authors of [9] chose to adopt the

translational domain, and we kept the same decision to allow easier

comparison between the results. This leads to all results presented in

figures 8, 9, and 10, that expressed in terms of displacements (mm)

and forces (N ), rather than angles (rad) and torques (Nm). This

does not hinder the validity of reported results in any way, given the

substantial equivalence of the rotational and translational domains

when limited a system as simple as that used.

To keep the system simple, the motion of the two prime movers

was input directly by hand, with the aid of two handles (not shown

in figure 6).

To compare the estimation of the stiffness derived from the

proposed method with the ground-truth data, the force functions of

the two springs need to be experimentally evaluated through careful

preliminary calibration experiments. The calibration procedure con-

sists in the collection of a large number of force-displacement pairs

(x, f) and then in a subsequent fitting of the pairs with the model

38.

Figure 10, resumes the results of such calibration procedure. It

is possible to notice how, notwithstanding the fact that the springs

were explicitly designed to show an exponential characteristic, the

ground-truth data shows some deviation with respect to the intended

model, yielding a relative error (during the regression) of roughly

25% (precisely a relative error of 22% and 29% for the left and right

spring, respectively). This relative error sets the reliability of our

model, thus yielding the threshold of error within which an estimate

can be considered good.
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