
HAL Id: hal-00999505
https://hal.science/hal-00999505

Submitted on 3 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Generation of Models of Activities of Daily
Living

Jérémie Saives, Gregory Faraut

To cite this version:
Jérémie Saives, Gregory Faraut. Automated Generation of Models of Activities of Daily Living. 12th
International Workshop on Discrete Event Systems-WODES 2014, May 2014, Cachan, France. pp.13-
20. �hal-00999505�

https://hal.science/hal-00999505
https://hal.archives-ouvertes.fr


Automated Generation of Models of

Activities of Daily Living

Jeremie Saives ∗ Gregory Faraut ∗

∗ Automated Production Research Laboratory(LURPA), ENS Cachan,
France (e-mail: firstname.lastname@lurpa.ens-cachan.fr).

Abstract: In order to increase the safety of autonomous elderly people in their home,
Ambient Assisted Living technologies are currently emerging. Namely, the recognition of their
activities might be a way to detect eventual health problems, and can be performed in a
Smarthome equipped with binary sensors. Hence, this communication aims at providing means
to automatically generate a formal model of the Activities of Daily Living. A data mining
approach in order to discover frequent habits of the observed inhabitant from a database of
sequences of sensor events is proposed. Those frequent habits are then formally modelled using
finite automata, leading to the construction of a map of habits mirroring the behaviour of
the inhabitant. Such a model could then be used for online identification of habits, and even
predictions of the upcoming behaviour. Results obtained on a case study are also presented.

Keywords: Activities of Daily Living, Discrete Event Systems, Data Mining, Automated
Modelling

1. INTRODUCTION

The increase in life expectancy leads to an ageing pop-
ulation, whose needs in terms of health care are also
increasing. In order to help the elderly to keep their au-
tonomy at their home, emerging technologies for Ambi-
ent Assisted Living are being developed (Nehmer et al.,
2006). The services provided by those technologies can be
divided into three categories, defined in (Kleinberger et al.,
2007): Emergency Assistance, Autonomy Enhancement
and Comfort. Emergency Assistance is of crucial interest,
and sustains the task of preventing health problems, or
providing assistance should one occur. Monitoring the be-
haviour of the inhabitant allows for detection or even pre-
diction of eventual irregularities. For that purpose, some
tools are developed to identify the status of the inhabitant.
The status could be split into the current position of the
inhabitant, which can be evaluated by Location Tracking
(Danancher et al., 2013), and the ongoing activity he is
performing. A lot of works are hence dedicated to the
recognition of Activities of Daily Living (e.g. waking up,
showering, flushing the toilet, cooking . . . ).

Those works require equipping the house with different
kinds of sensors. In (Yu et al., 2009) cameras are used
to detect whether the monitored inhabitant has fallen. In
(Chernbumroong et al., 2013), wearable sensors are used to
determine the posture and movement of the equipped in-
habitant using accelerometers. In (Patterson et al., 2005),
RFID sensors are used in order to detect which objects are
being used by the inhabitant wearing the RFID reader.
However, all those approaches are either intrusive or re-
quire the inhabitant to wear a special device. Another
solution would be to use a Wireless Sensor Network, using
a collection of various sensors with binary output, such
as the universal switch sensors defined in (Intille et al.,
2003). The network provides a flow of sensor events, each

event containing very little information, but activities can
be identified from a sequence issued of the flow.

In order to recognize activities out of a sequence of
sensor events, which is assumed as a classification task
(or supervised classification), all models share the same
strategy : a learning phase on a set that has been studied
by an expert, then the recognition phase, during which
new set of data are classified, and parameters of the model
are adapted in order to improve the recognition. The most
classical classification model would be the Hidden Markov
Model (HMM) (Cheng et al., 2010). Other models can
be found in the literature. For instance, expert-designed
boolean functions on the statuses of the sensors are used
in (Botia et al., 2012), with an emphasis on the adaptation
part. Expert models of activities are also designed in
(Ros et al., 2013), each activity being described by an
ordered set of action sequences, and the adaptation being
achieved by learning automata. Data mining techniques
are exploited in (Chikhaoui et al., 2011) to find frequent
patterns in a sequence of events and compare them to
expert models. Nevertheless, all those works focus only
on classification, based on an expert knowledge.

The approach proposed in this paper is oriented towards
providing a formal model of habits and activities discov-
ered in a dataset of sequences, without a priori knowledge,
hence in an unsupervised way (Dimitrov et al., 2010), and
provides an automated method of building a map of the
habits and activities of a monitored inhabitant. Such a
model could be devoted to online real-time recognition of
activities, and prediction when possible. Section II summa-
rizes the approach. Section III deals with the data mining
phase that discovers patterns in the dataset. Section IV
presents the method and the formalism used to build the
model of the patterns discovered. Section V provides an
example of application to a case study.



2. OVERVIEW OF THE PROPOSED METHOD

The following method provides a way to get a formal
model (a map) of all the habits of a monitored inhabitant,
with possible applications such as real-time recognition of
whether an activity is being executed or not, and predic-
tion of what might be the next activity pursued. Such a
model could therefore be used for the application of formal
techniques such as diagnosis (in order to detect a faulty
behaviour), and could detect either small incidents (such
as an uncompleted activity) or slow behaviour alterations
(such as an habit that disappears).

A smart home equipped with a binary sensor network will
generate events, that correspond to a change of state of
the sensors (which are assumed to be fault-free). Events
are assumed to be not simultaneous, and an activity can
thus be associated to a sequence of events. The behaviour
of a human being is however arbitrary, hence multiple
sequences of events can be images of the same activity,
hardening the difficulty of building an expert model. A
possibility is to use a training set (a few sequences that
have already been observed), within which the sequences
are still very different. Numerous observations would be
required to depict all the possible sequences that depict the
activity. Nevertheless, the sequences share sub-sequences,
which are the fundamental basis of the activities, because
they are very often played. Those frequent sequences would
thus represent fundamental habits of the inhabitant.

The first contribution revolves around the discovery of
these habits, which can be achieved by data mining meth-
ods (Mining Step of Figure 1). The dataset can stand in
two forms. On one hand, it might be a unique sequence of
events, within which frequent episodes can be found (Man-
nila et al., 1995),(Magnusson, 2000). A few days worth of
observation could lead to a single sequence of events. On
the other hand, one could use distinct sequences of events,
as long as they represent the same temporal window, and
compare each other in order to extract the habits. This
last solution has been chosen. For the remainder of this
work, it is also supposed that a single inhabitant is being
monitored. Once the patterns have been found, habits can
be identified within the set of patterns (Identification
Step of Figure 1).

Then, the second contribution consists in the automated
modelling of the discovered habits, which will lead to
the building of a map of the habits of the inhabitant
(Automated Building Step of Figure 1). This map
allows for online recognition : when an event e occurs,
the active states of the map change, leading to a set of
habits that might be currently ongoing. The accuracy of
the recognition remains out of the scope of this work.

It is worth noting that until the map is built, no expert
knowledge has been injected in the model. The goal is to
recognize frequent habits (that have already been observed
and not expertly designed), instead of trying to split and
classify every sequence observed into activities. Neverthe-
less, once the map is obtained, an expert can study it
and determine which parts and which habits correspond
to which activities. That part could also be helped by
coupling the habit model with a location tracking model,
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Fig. 1. Building a model from sequences of events issued
of a Smart-Home

thus getting information on both the location and the
activity of the monitored inhabitant.

3. DISCOVERING PATTERNS

Sequence mining is a specific field of data mining that
deals with the search for relevant patterns in sequences
and strings. Most of the methods used in sequence mining
look for frequent itemsets in databases, in order to discover
association rules between items frequently found together.
Such techniques would be the Apriori algorithm found
in (Agrawal and Srikant, 1994), or the use of FPTrees
found in (Han et al., 2000). Since the ordering of the items
is irrelevant, those methods consider only databases that
have been previously lexicographically ordered. However,
in the case of a sequence of events, since we want to
discover succession of events which would be images of
habits, the order is of great importance and an adaptation
is required. Based on the Apriori algorithm, the proposed
algorithm is thus designed to find continuous ordered
patterns.

3.1 Definitions

Definition 1. Sequence and events

Let D = {Si}i=1..n be a database containing n se-
quences. A sequence Si is an ordered list of events such
as Si=[ei1, e

i
2, e

i
3 . . . , e

i
l(Si)

], where l(Si) ≥ 2 is the length of

the sequence, and eik is the k-th event of the sequence.

If Σ is the set of all the events that can be generated by the
sensor network, then ∀i ∈ J1, nK, ∀k ∈ J1, l(Si)K, e

i
k ∈ Σ.

Definition 2. Pattern

A pattern P is a sequence of events P = [eP1 , e
P
2 , . . . , e

P
l(P )],

where l(P ) ≥ 2 is the length of the pattern. An event is
not enough to define a pattern. Hence, a pattern is said of
elementary length when l(P ) = 2, which is the minimum
length.

A pattern P is contained in a sequence Si if, and only if
∃s ∈ J1, l(Si)− l(P ) + 1K,
[eis, e

i
s+1, . . . , e

i
s+l(P )−1] = [eP1 , e

P
2 , . . . , e

P
l(P )], i.e. P is a



continuous subsequence of Si . It will be written P ⊂ Si.
A pattern can also be contained in another one.

Definition 3. Support

The support Supp(P ) of a pattern P is the number
of sequences Si ∈ D in which P is contained, i.e. it
mirrors the frequency of the pattern in the database. Thus,
∀P, Supp(P ) ∈ J0, |D|K, with Supp(P ) = 0 meaning that
the pattern is not present in the database, and Supp(P ) =
|D| that the pattern is present in each sequence.

Let Suppmin ∈ J0, |D|K be a minimum support. Then,
a pattern P is said to satisfy the minimum support iff
Supp(P ) ≥ Suppmin. The minimum support defines the
minimum presence for a pattern to be considered relevant.

3.2 Algorithm of sequence mining

The global goal of the algorithm of sequence mining is
to discover every pattern contained in the database, and
evaluate their support. Given a minimum support, it will
return every pattern whose support is equal or higher.
Running it multiple times for various values of minimum
support is required in order to obtain a complete overview
of the dataset.

Algorithm 1 consists of three steps, the last two being
repeated until no new pattern is discovered :

Init An initialization step, to discover the patterns of
elementary length, described in algorithm 2
• All patterns of elementary length that satisfy the
minimum support are stocked in a list of elementary
patterns

CandGen A candidate generation step, described in al-
gorithm 3. The objective of this step is to make the
patterns grow in length, in order to find the patterns of
maximum length.
• If two already discovered patterns partially recover
themselves, then a bigger pattern including both
patterns is a potential candidate for being a pattern
satisfying the minimum support itself.

Count A counting step, to evaluate the support of the
candidates (function EvalSupp in the algorithms).
• Only the patterns satisfying the minimum support
are kept and added to the list of discovered patterns.

• The shorter patterns that helped generate the newly
discovered pattern are deleted, because no longer
relevant.

Let |Σ| be the size of the set of events, |D| the size of the
database, and |S|max the length of the longest sequence
in the database. Evalsupp handles the problem of finding
subsequences in the whole database, thus is of complexity
O(|D||S|2max).
There are at most |Listdisc| = |Σ|(|Σ| − 1)/2 pat-
terns of length 2, so Algorithm 2 is of complexity
O(|Σ|2|D||S|2max). Then, Algorithm 3 being of complexity
O(|Listdisc|

2|S|max), and Listcand being necessary empty
after |S|max candidate generations, Algorithm 1 is of
complexity O(|Σ|4|D||S|3max). Since it is of polynomial
complexity, it can be used to handle large databases, the
main limiting parameter being the maximum length of the
sequences |S|max.

Algorithm 1 Continuous Pattern Discovery

Require: Database D of n sequences, minimum support
Suppmin, set of events Σ
Listdisc=Init(D, Suppmin, Σ)
Listcand=CandGen(Listdisc)
while Listcand 6= ∅ do
for patterncand in Listcand do
EvalSupp(patterncand)
if Supp(patterncand)≥ Suppmin then
Add patterncand to Listdisc
for patterndisc in Listdisc do

if patterndisc ⊂ patterncand then
Delete patterndisc

end if
end for

end if
end for
Listcand=CandGen(Listdisc)

end while
return Listdisc, List of discovered patterns satisfying
minimum support

Algorithm 2 Init-Initialization function

Require: Database D of n sequences, minimum support
Suppmin, set of events Σ
Listelem=[]
for Event1 in Σ do

for Event2 in Σ do
patterntest = [Event1,Event2]
EvalSupp(patterntest)
if Supp(patterntest)≥ Suppmin then
Add patterntest to Listelem

end if
end for

end for
return Listelem, List of patterns of elementary length

Algorithm 3 CandGen-Candidate Generation Function

Require: List of previously discovered patterns Listdisc
Listcand=[]
for Pattern1=[e11, e

1
2, . . . , e

1
n] in Listdisc do

for Pattern2=[e21, e
2
2 . . . , e

2
m] in Listdisc do

if [e12, . . . , e
1
n]=[e21, . . . , e

2
m−1] then

Add [e11, e
1
2=e21, . . . , e

1
n=e2m−1, e

2
m] to Listcand

end if
end for

end for
return Listcand, list of possible patterns

Example 1 Let D be the following dataset, over the set
of events Σ ={1,2,3,4,5,6,7,8} :

• S1=[1,2,3,4,5,6]
• S2=[1,2,3,4,7,8]
• S3=[1,2,4,7,8,5]
• S4=[1,2,3,7,8,4]

Let the minimum support be 2. Then :

Init Listelem=[1,2 ; 2,3 ; 3,4 ; 4,7 ; 7,8]



CandGen [1,2] and [2,3] overlaps, thus leading to [1,2,3]
being a potential candidate, and so on.
Listcand=[1,2,3 ; 2,3,4 ; 3,4,7 ; 4,7,8]

Count Supp([3,4,7])=1, hence pattern [3,4,7] does not
satisfy the minimum support, and so on.
Listdisc=[1,2 ; 2,3 ; 3,4 ; 4,7 ; 7,8 ; 1,2,3 ; 2,3,4 ; 4,7,8].
[1,2] is contained in [1,2,3], can thus be cleaned out, and
so on. Hence : Listdisc=[1,2,3 ; 2,3,4 ; 4,7,8]

CandGen Listcand=[1,2,3,4]
Count Listdisc=[1,2,3,4 ; 4,7,8]
CandGen Listcand=∅

Finally, Listdisc=[1,2,3,4 ; 4,7,8] contains the largest pat-
terns whose minimum support is 2.

By repeating for supports 3 and 4 :

• ListSupport4 = [1,2]
• ListSupport3 = [1,2,3 ; 7,8]
• ListSupport2 = [1,2,3,4 ; 4,7,8]

Now that all patterns and their supports have been found,
each pattern could be treated individually, and indepen-
dent models for recognition could be built. However, they
are strongly dependent, since the shortest patterns are
often included in longer pattern of lowest support. In order
to build model of activities, or study the links between the
habits, those inclusions have to be considered.

3.3 Structuring discovered patterns and building habits

Generally speaking, the discovered patterns follow a ten-
dency : the longer the pattern, the lower the support.
Hence, short patterns with high support depict a funda-
mental habit of the observed inhabitant. Those habits are
often contained in longer patterns of lower support. Hence,
these latter patterns are an image of activities, built out
of habits. Multiple fundamental habits form an activity,
and there are multiple long patterns that can represent
the same activity.

As a pattern can be contained in a sequence, it can also be
contained in another discovered pattern. Should a pattern
not contain any other discovered pattern, it will be called
elementary. Patterns of elementary length can not contain
another one, and are thus natively elementary. A pattern
can only be contained in a pattern of lower support. A
pattern containing at least an other one will be called
complex. A complex pattern might contain more than one
other pattern, and thus the decomposition into smaller
patterns is not unique. Nevertheless, Algorithm 4 can be
used in order to find one of those possible decompositions
for each complex pattern.

Algorithm 4 handles every pattern one after another,
following a decreasing order of support. The first patterns
handled are those of highest support. For the following
patterns, the algorithm checks whether one of the already
structured patterns, hence of a higher support, is contained
within. When no more already structured patterns can be
found in the handled pattern, it is added in its structured
form to the list of structured patterns.

Let n be the number of discovered patterns, and L the
length of the longest discovered pattern. Algorithm 4

Algorithm 4 Building the hierarchy of patterns

Require: List of patterns and their supports Listpatterns
Liststr=[ ]
for support=Supportmax to 2 (decreasing) do
for pattern ∈ {Listpatterns } such that
Supp(pattern)=support do
while ∃ patternstr ∈ Liststr such that
patternstr ⊂ pattern do
Substitute patternstr in pattern

end while
Add pattern to Liststr

end for
end for
return Liststr, List of structured patterns

is of complexity O(n2L2), hence polynomial as well as
Algorithm 1.

Example 2 Let Listpatterns be the following :

• P1=[1,2], Support : 10
• P2=[4,5], Support : 10
• P3=[1,2,3], Support : 8
• P4=[6,7,8], Support : 5
• P5=[1,2,3,4,5], Support : 4

Then, using algorithm 4 :

P1 (natively) Elementary pattern.
P2 (natively) Elementary pattern.
P3 P1 is included in P3 → P3=[P1,3]
P3 No more pattern is included in P3

P4 Elementary pattern.
P5 P1 is included in P5 → P5=[P1,3,4,5]
P5 P2 is included in P5 → P5=[P1,3,P2]
P5 P3 is included in P5 → P5=[P3,P2]
P5 No more pattern are included in P5

Finally, and after the conversion of patterns into habits,
Liststr is :

• H1=[1,2], Support : 10
• H2=[4,5], Support : 10
• H3=[H1,3], Support : 8
• H4=[6,7,8], Support : 5
• H5=[H3,H2], Support : 4

On one hand, habits H1 and H2 can be considered as
fundamental, with high support. On the other hand, H5,
which consists of the succession of two habits, can be
considered as a way to perform an activity. H5 also
provides information on the observed behaviour : it states
that sometimes, H3 is followed by H2. Hence, should
H3 be observed, there is a chance for H2 to start next.
The structure underlying the complex patterns can thus
efficiently be exploited for a predictive purpose.

3.4 Predicting the next habit

Suppose that, during an on-line recognition phase, the
generation of an event has led to a habit being recognized.
That habit might be included in another one of lower
support. Using this available knowledge of the hierarchy
of the habits of the inhabitant, an operator to estimate
what event and/or habit comes up next is defined.



Definition 4. Let {Hi,Hj} be two habits and e an event
such that [Hi, e] ⊂ Hj . Let Di be the restriction of the
database to the sequences that contain the habit Hi, and
Occ(Hi ∈ Sk) be the number of occurences of the habit
Hi in any sequence Sk. The operator pred is defined as
following :

pred(Hi → e) =
1

|Di|

∑

Sk∈Di

Occ(Hj ∈ Sk)

Occ(Hi ∈ Sk)

Notice that |Di|=Support(Hi). Hence, if every habit
has been observed only once in every sequence, then

pred(Hi → e) =
Support(Hj)
Support(Hi)

. The definition can be ex-

tended to the succession of two habits, if e is the first
event of a second habit also contained in Hj .

Example 3 Looking at Example 2, habits H3 and H5 are
complex and thus give possibility for a prediction value. It
is assumed that these habits have been observed at most
once in every sequence. Hence :

• pred(H1 → 3)= 8/10 = 80%
• pred(H3 → H2 (4) )= 4/8 = 50%

At the end of this section, the raw data has been explored,
patterns have been extracted and structured, and the
structure provides prediction information.

4. AUTOMATED BUILDING OF A MODEL

The objective of this section is to propose a model that will
be able to identify when a pattern has been reproduced in
an online real-time flow of sensors events. Hence, when a
new event is generated, the model must react accordingly,
by identifying which patterns could currently be at stake,
which ones might have just begun, and which ones have
just ended. For that purpose, each pattern could, in its el-
ementary form, be modelled by a Finite-State Automaton.

For further applications, the model should also provide
a prediction of the upcoming events it expects, when
possible. The structure discovered between the patterns
needs therefore to be exploited, leading to the choice of an
extended class of automata in order to keep that structure,
which is presented in the following.

4.1 Extended Finite Automata

The formalism of the Extended Finite-state Automata
(EFA), as defined in (Sköldstam et al., 2007) is recalled
here :

Definition 5. A (Deterministic) Extended Finite-state Au-
tomaton is a 7-tuple : (Q × V,Σ, G,A, δ, (q0 × v0), (Qm ×
Vm)), with :

• Q x V is an extended set of states, where Q is a finite
set of locations and V the finite domain of definition
of the variables

• Σ an alphabet (non empty set of events)
• G a set of guard predicates over 2V

• A a set of actions over V
• δ : Q× Σ×G×A → Q a transition function
• (q0, v0) the initial state
• (Qm, Vm) ⊂ (Q× V ) a set of marked states

Σ is the alphabet that contains every event that can be
generated by the binary sensor network. Let q ∈ Q be
the current state, q′ ∈ Q be another state such that
∃(e, g, a) ∈ Σ × G × A, δ(q, e, g, a) = q′. Then, if event e
occurs, the transition will be fired if and only if the guard g
is satisfied. The current state of the automaton will then be
q′, and the action a will be executed, changing the values
of the variables.

4.2 Modelling elementary patterns

Let P=[e1, e2, , . . . , en] be an elementary pattern of length
n. In order for the automaton to identify in real-time if that
pattern has been played, it should satisfy a few properties:

• As long as the pattern has not started (e1 has not
occurred yet), the automaton should stay in its initial
state

• If the pattern has been completed, the current state
of the automaton should be marked

• If the pattern is interrupted by an unexpected event,
the automaton should react accordingly : if e1 occurs,
the pattern might have started again before having
been completed ; if another unexpected event oc-
curred, the pattern has stopped, and the automaton
should be in its initial state again.

Figure 2 proposes such an automaton for n = 4. Let us
say that the current state is P1.2, i.e. the last events that
occurred have been [1,2]. The transition function states :
δ(P1.2, 3, ., .) = P1.3, δ(P1.2, 1, ., .) = P1.1 and, ∀e ∈ Σ −
{1, 3}, δ(P1.2, e, ., .) = P1.0. If 3 occurs, the current state of
the automaton becomes P1.3 and the pattern keeps being
identified. If 1 occurs, the pattern starts again, and if any
other event happens, the pattern halts, and the automaton
reaches its initial state.

1 2 3 4

1

1

1

Σ\{ , }

Σ\{ , } Σ\{ ,4} Σ\{ }

P1.0 P1.1 P1.2 P1.3 P1.4

1

Σ\{ }

Fig. 2. EFA modelling the elementary pattern [1,2,3,4]

Elementary patterns can be modelled by simple Finite-
State Automata, for no variables are required. However,
when complex patterns are concerned, the need for vari-
ables will arise, as will be shown in the next subsection.

4.3 Modelling complex patterns

The construction process of an automaton in order to
model a complex pattern is also more complex. The
patterns must be distinguishable, and there must be no
false detection. Three cases have to be considered :



Case 1 The contained pattern shares the first event
with the complex pattern. It is impossible to distinguish
the two patterns at the beginning, hence they share the
first states and transitions. The complex pattern becomes
a prolongation of the contained one. No variables are
required in this specific case. See Figure 3 for an example
with P1=[1,2] being an elementary pattern contained in
P2=[P1,3,4].

This complex model is no longer deterministic, because
more than one transition can be activated on the occur-
rence of one single event. It is however easily transformable
to a deterministic automaton by classical methods. For the
sake of visibility, the automata will nevertheless be shown
in their non-deterministic form. One must consider that
a set of states are current at any time instead of a single
one.

1 2 3 4

P1.0 P1.1 P1.2 P2.3 P2.4

Σ\{ }

Σ\{ , }
Σ\{ ,4}
Σ\{ }

Σ\{ }

Fig. 3. EFA modelling the complex pattern P2=[P1,3,4]

Case 2 The contained pattern shares the last event with
the complex pattern. In order to distinguish the patterns,
the last state, which is a marked state, is duplicated.
However, should only the contained pattern be played, the
containing pattern must not be recognized, thus requiring
the creation of a variable and a guard on this specific
transition. The variable should be proper to the complex
pattern, and indicate whether it has actually started and is
currently being recognized. It is set to 1 when the patterns
starts, and reset to 0 when the pattern is interrupted or
ended.

See Figure 4 for an example with P1=[3,4] being an
elementary pattern contained in P2=[1,2,P1].

(1) Suppose that the sequence [1,2,3] has already been
played. The set of current states of the automaton
is {P1.1}, and H2=1. Since δ(P1.1, 4, ., .) = P1.2 and
δ(P1.1, 4, H2 == 1, .) = P2.4, if 4 occurs, the set of
current states becomes {P2.4,P1.2} and both patterns
are recognized, which is the expected outcome.

(2) Suppose now that the sequence [2,3] has been played.
The set of current states of the automaton is {P1.1,
P2.0}, and H2=0. If 4 occurs, the new set of current
states becomes {P2.0,P1.2}, and only P1 is recog-
nized, which is the expected outcome.

Case 3 The complex pattern contains two patterns. The
previous cases apply their rules if the first and/or the
last event is shared. Supplementary transitions have to
be created between the two patterns. If exactly one event
is expected between these patterns, a transition labelled

4
H2 :=1

4

P1.0 P1.1 P1.2P2.0 P2.1

P2.4

Σ\{ ,4} 3

Σ\{ }

Σ\{ , }

Σ\{ , } Σ\{ ,4} Σ\{ }
H2 ==1

H2 :=0

H2 :=0

H2 :=0

Σ\{ } 3Σ\{ }

Fig. 4. EFA modelling the complex pattern P2=[1,2,P1]

with this event should be created from the last state of
the automaton modelling the first pattern to the first state
of the automaton modelling the second pattern. If more
than one events are expected, additional states have to be
added. If no events are expected, a transition labelled with
the first event of the second pattern should be created from
the last state of the first automaton to the second state of
the second automaton.

See Figure 5 for an example of that latter case, with
P1=[1,2], P2=[3,4] and P3=[P1,P2]. A transition is created
such that δ(P1.2, 3, ., .) = P2.1.
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Fig. 5. EFA modelling the complex pattern P3=[P1,P2]

4.4 Adding prediction knowledge to the complex models

Subsection 3.4 defined the pred operator. Let us say that
pred(Hi → e) has been calculated. If Hi has been played,
the automaton modeling Hi should be in its marked state,
and a transition labelled with event e should leave this
state in the model of the longer patternHj . This transition
can be associated with the value of the prediction.

Case 1 See Figure 3. The transition δ(P1.2, 3, ., .) = P2.3
can be associated with pred(H1 → 3)

Case 2 See Figure 4. No transition can be associated
with a prediction value, because both habits end with the
same event

Case 3 See Figure 5. The transition δ(P1.2, 3, ., .) = P2.3
can be associated with pred(H1 → H2 (3) )

4.5 Building a map of the habits

A complex pattern, whatever its form, contains shorter
patterns, and can be modelled by a complex EFA contain-
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Fig. 6. Map of the habits of User 1 of the Domus Database

ing the EFAs of the shorter patterns. Since the operations
presented in this section can be repeated, it is possible
to build one single automaton representing all the links
between the patterns discovered by the data mining step.
Such a map can be used for some practical applications,
that will be illustrated in the following section.

5. EXAMPLE OF APPLICATION

5.1 Domus database

The Domus Smarthome (Kadouche et al., 2010)(Chikhaoui
et al., 2010) is an apartment of the University of Sher-
brooke (domus.usherbrooke.ca) equipped with various sen-
sors. Different users have been asked to perform the morn-
ing routine in the apartment (ie from waking up to leaving
the apartment), while registering the evolution of the sen-
sors values.

One user (the first one) has be chosen for the rest of
the study. He performed the routine ten times, thus ten
sequences of events can be compared in order to find
frequent patterns. The events generated by the infra-red
sensors have not been taken into account, because of
their intrusiveness (a lot of irrelevant events generated),
and they are mainly concerned by the localisation of the
inhabitant.

5.2 Data mining results

The application of the method of section 3 led to the
discovery of 36 patterns, summarized in Table 1

It can be noted that more and more complex patterns are
discovered when the support gets lower. A few elementary
patterns can still be found, but might be of little relevance
in the behaviour of the inhabitant (for instance, an elemen-
tary pattern of length 2 and support 2 depicts a succession
of two events that happened only twice, and can merely
be considered an habit).

5.3 Mapping the habits of a person

The application of the method presented in section 4 led
to the construction of the automaton presented in Figure

Table 1. Patterns discovered for User 1

Support Elementary Complex Min Length Max Length

10 5 - 2 2

9 1 3 2 6

8 1 1 3 11

7 - 2 3 6

6 - 1 7 7

5 1 3 2 12

4 1 2 2 4

3 2 2 2 9

2 3 8 2 15

6. For a visibility purpose, only the main transitions,
i.e. not the interruptions, have been represented. The
automata representing low support elementary patterns
not contained in complex patterns have as well not been
represented.

Real-time identification When the real-time observation
of the inhabitant begins, the set of active states will be the
set containing all the initial states. When an event occurs,
the set of active sets is updated according to the transition
function. When one or more marked states become active,
one or more habits have been recognized.

Prediction When a marked state becomes active, a
prediction might be available for each main transition
issuing of this state. Some transitions leaving the same
marked state can be labelled with the same event, and
be assigned with a prediction value. For instance, when
in the marked state of H11, the transition leading to the
marked state of H18 and the transition leading to H6 are
labelled by the same event ’5102’. Thus, only the highest
probability is relevant (here 62,5%). This issue is due to
the non-uniqueness of the decomposition of the complex
patterns. The decomposition of H36 did not take H18 into
account, although it contains it.

Identifying activities In order to identify activities, it is
possible to expertly analyse the map, and delimit areas.
If there are active states that are not initial in such a
delimited area (i.e. patterns being currently played), then
the inhabitant is probably currently performing such an
activity. Five activities are expected in the Domus dataset:



Waking up, Use toilet, Preparing Breakfast, Having Break-
fast, Washing Dishes. The first two can be associated to
areas of the map. The third and the fifth are associated
to the kitchen activities area. The fourth would need
the information on the location to be distinguished, thus
requiring a location tracking model to be coupled.

Adaptation of the map After the observation is over,
the observed sequence of events can be used to recompute
the map. The patterns that have been recognized will
see their support strengthened, confirming which are the
fundamental habits of the inhabitant.

6. CONCLUSION

Using low-level knowledge issued out of a sensor network,
this work proposed a method to build an automaton
that models the behaviour of the monitored inhabitant,
namely by representing his frequent habits that have been
extracted by data mining. Such a model could be used for
on-line recognition of the habits and activities; it might be
of huge help in order to detect interruption of activities
symptomatic of health problems. It could even further
predict the expected behaviour of the inhabitant, leading
to proactive actions in a smart-home and an improvement
of the comfort.

The current perspectives of this promising work are
twofold. On one hand, the accuracy of the estimation of
the current activity should be evaluated, according to per-
formance criteria, to validate the proposed model. On the
other hand, some diseases could lead to a slow deviation of
the behaviour of the inhabitant. Two separate maps built
a few weeks apart could be different, and thus, a method to
automatically detect major and light changes between the
maps, mirroring behavioural variations, should be built.
Such a method could also be used to distinguish multiple
inhabitants.
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