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Chapter 1

Other uncertainty theories based

on capacities

by Sébastien Destercke, Didier Dubois

Some of the simple mathematical models reviewed in Chapter ?? first emerged as basic
building blocks of other uncertainty theories, and not as special instances of coherent lower
previsions. In the following, the term uncertainty theories refers to several mathematical
models and approaches devoted to the numerical or ordinal representation of beliefs
induced by uncertainty due to the variability of phenomena, or the presence of incomplete
information, or both. As these theories emerged from different areas and motivations,
they led to different requirements, settings or axioms and to different tools for information
processing. More precisely, we can enumerate several lines of thought motivating the
development of uncertainty theories:

• The idea that in Bayesian approaches to statistics, prior probabilities on model
parameters are hard to precisely specify, partly because there is no truly satisfying
“non-informative” prior, and partly because probabilities elicited from experts are
most of the time imprecise. This is the robust Bayesian approach [7].

• A questioning of the classical fair betting behavior framework of subjective proba-
bility [25] leading to upper and lower previsions for gambles (See Chapter ??).

• Systematic deviations of human behavior from Savage’s [71] axioms for rational
decision-making (especially the sure-thing principle) in the presence of ambiguity
about probabilities (like in Ellsberg urn experiment [44]). This is the non-additive
expected utility trend, where subjective probability is replaced by more general set
functions [11] (see Chapter ??).

• The claim that incomplete information is better captured by sets of more or less
plausible states of nature. It is a subjective, often ordinal, view of plausibility
advocated by Shackle [73], where impossibility is equated to the absence of surprise.
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6 CHAPTER 1. OTHER UNCERTAINTY THEORIES BASED ON CAPACITIES

This is also the starting point of the modal view of uncertainty first put forward by
Hamblin [51] and Lewis [59], that is closely related to possibility theory [37].

• The handling of linguistic information understood as defining flexible constraints
on values of parameters of interest (this is Zadeh’s view of possibility theory [87]).

• The representation and fusion of uncertain evidence such as unreliable testimonies,
a problem that goes back to the origins of probability theory. This is a topic of
renewed interest in Artificial Intelligence and Robotics. This is the theory of belief
functions by Shafer [74].

• The issue of plausible reasoning in inference tasks under incomplete statistical or
commonsense information, where the choice of the proper reference class is the key
problem. This concern goes from Kyburg’s evidential probabilities to non-monotonic
reasoning in Artificial Intelligence [58].

Apart from the approaches relying on convex sets of probability measures and lower
expectations, presented in Chapters ?? and ??, the two main uncertainty representations
in the literature that tolerate imprecision are possibility distributions and random
disjunctive sets. This chapter will devote special attention to the theories that have
emerged from them. These formalisms follow different calculi and use different basic
building blocks, hence different languages. Even if these building blocks can be ordered
in terms of generality and mathematically unified under the umbrella of lower previsions,
this difference in language create discrepancies when processing information that are as
many impediments preventing a complete unification. Some notions, easily expressible
in special cases of lower prevision using the language of the specialized theory become
very difficult to express in the more general setting that does not use this language. For
instance the setting of possibility theory enables many information fusion operations to
be defined, that have no clear counterparts in more general theories. Likewise Dempster’s
rule of combination in evidence theory is expressed in terms of set functions that are
not used in the theory of lower previsions, even these set-functions (Moebius transforms,
commonality) can be mathematically defined for lower previsions. In some cases, bridges
can be built and equivalent notions identified between these frameworks, but sometimes
only to a limited extent, as each theory uses different primitive notions. There is therefore
a need for both unifying concepts when possible and clarifying the underlying assumptions
made by each theory, so as to lay bare situations to which they apply, and better situate
them with respect to the lower prevision approach put forward in this book.

The route taken in this chapter is different from the one adopted so far. Indeed,
the framework of desirability assumes an additive linear bipolar "currency” scale (the
real line), and derives upper and lower probabilities and previsions from rationality
requirements. By linear bipolar value scale, we mean a scale where the zero plays a
key-role for separating the good from the bad [43], and that the positive and negative
parts of the currency scale are ratio scales.

However, events can exist without the need to express them as numerical functions,
and therefore one might want to develop uncertainty theories without such numerical
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underpinnings—this is particularly true if one starts from symbolic logic. Moreover, there
are situations where coherence may not be essential: for instance when one receives new
information that contradicts old information, it may be desirable to let go of some of
the initial information, and perform a revision step. The result of revision protects the
input information but is no longer consistent with the prior one. At least it achieves
minimal change of the prior information so as to accept the input one. A special case of
this situation is theory revision of Gärdenfors and colleagues in the setting of classical
logic ([1]) a setting subsumed by lower previsions. Another example will be Dempster’s
rule of conditioning that operates a revision but does not preserve coherence.

In the first part of this chapter, we start from epistemic logic nd derive the need for
capturing imprecision in information representations. We then bridge the gap between
uncertainty theories and epistemic logic showing that imprecise probabilities subsume
modalities of possibility and necessity as much as probability. In fact this is the joint
probabilistic and set-theoretic (and modal) nature of imprecise probabilities that makes
this approach to uncertainty so rich. In the second part of this chapter, we present
possibility and evidence theories, their origins, assumptions and semantics, discuss the
connections between them and the general framework of imprecise probability. Finally,
we point out the remaining discrepancies between the different theories regarding various
basic notions, such as conditioning, independence or information fusion and the existing
bridges between them.

1.1 Imprecise probability = modal logic + probability

Consider a variable X assuming values in a non-empty state space X . The usual numerical
representation of uncertainty consists of attaching to each statement of the form x ∈
A ⊂ X a degree of confidence g(A) to each subset of X . The confidence function thus
defined is chosen to be a capacity (see Definition ??).

The prototypical example of a confidence function is a probability measure. While
the frequentist view of probability looks natural for repeatable events, the notion of
subjective probability is more problematic for singular events in a situation of incomplete
information [42]. A piece of information concerning X is said to be incompletein a given
context if it is not sufficient to answer relevant question in this context.

1.1.1 Boolean possibility theory and modal logic

The typical form of a piece of incomplete information is ‘x ∈ E’ where E is a subset
of X containing more than one element. An important remark is that elements in E

are mutually exclusive, since X takes on a single value. Hence, a piece of incomplete
information takes the form of a disjunction of mutually exclusive values. To emphasize this
use of sets, we speak of disjunctive sets. Just like a subjective probability, a disjunctive
set E represents the epistemic state of an agent about the ill-known value of X, and is
attached to this agent.

This type of representation of incomplete information can be found in two areas:



8 CHAPTER 1. OTHER UNCERTAINTY THEORIES BASED ON CAPACITIES

classical logic and interval analysis. The two settings differ by the type of variable used to
describe the state space X : Boolean for logic, numerical for intervals. For instance, to say
that Peter is between 20 and 25 years old, i.e., x =age(Peter) ∈ E = {20, 21, 22, 23, 24, 25},
is to suppose x = 20 or x = 21 or x = 22 or x = 23 or x = 24 or x = 25. On the
real line, incomplete information is often of the form a ≤ X ≤ b, where E = [a, b] . In
logic, information comes in the form of a belief base K containing several propositions φi

expressed in some Boolean language. The corresponding epistemic state is the disjunctive
set of models of K.

There exists confidence measures that are more natural than probability measures
to handle this situation. From a consistent epistemic state x ∈ E 6= ∅, we can define
two binary confidence functions, namely a possibility measure Π such that Π(A) = 1 if
E ∩ A 6= ∅ and 0 otherwise, and a necessity measure N such that N(A) = 1 if E ⊆ A and
0 otherwise. It is clear that Π(A) = 1 if and only if proposition ‘x ∈ A’ is not inconsistent
with information item ‘x ∈ E’, and that N(A) = 1 if and only if proposition ‘x ∈ A’ is
entailed by information item x ∈ E.

Basically, Π(A) = 0 means that A is impossible if ‘x ∈ E’ is true. N(A) = 1 expresses
that A is certain if ‘x ∈ E’ is true. Moreover to say that A is impossible (A ∩ E = ∅) is
to say that the opposite event Ac is certain. So, functions N and Π are related by the
conjugateness property:

N(A) = 1 − Π(Ac). (1.1)

This is the Boolean version of possibility theory [37]. Possibilistic uncertainty is clearly
at work in classical logic. If a set of formulas K in propositional logic has E ⊆ X as set
of models (in this case, X is the set of interpretations of the language), and if proposition
p is the syntactic form of proposition x ∈ A, then N(A) = 1 if and only if K implies p,
and Π(A) = 0 if and only if K ∪ {p} is logically inconsistent.

However, in propositional logic, it cannot be expressed that N(A) = 0 nor Π(A) = 1.
To do so, a modal logic is needed (Chellas [12]), that prefixes propositions with modalities
such as possible (♦) and necessary (�): in a modal belief base Kmod, ♦p ∈ Kmod encodes
Π(A) = 1, and �p ∈ Kmod encodes N(A) = 1 (the latter is encoded by p ∈ K in classical
logic). The well-known conjugateness relation in modal logic reads: ♦p = ¬�¬p.

Within this setting, possibility and necessity measures naturally satisfy the following
equalities, respectively:

Π(A ∪ B) = max{Π(A), Π(B)} (1.2)

N(A ∩ B) = min{N(A), N(B)} (1.3)

besides N(X ) = Π(X ) = 1 and Π(∅) = N(∅) = 0. Possibility measures are said to be
maxitive, while necessity measures are said to be minitive. These properties are taken
as postulates even when possibility and necessity values lie in the unit interval [0, 1]
and are no longer Boolean. They also do not rely on a numeric setting, as taking the
minimum and maximum of N and Π also makes sense when they range on a lattice [21].
In the modal logic setting, these axioms respectively read ♦(p ∨ q) = ♦p ∨ ♦q and
�(p ∧ q) = �p ∧ �q and are well-known to hold in regular modal logics. A simple modal
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logic for Boolean possibility theory can be devised from a propositional language. It
corresponds to a fragment of the logic KD. Atoms of this logic are of the form �p, where p

is any propositional formula. Well-formed formulas in this logic are obtained by applying
standard conjunction and negation to these atoms. Models of such modal formulas are
epistemic states: for instance E is a model of �p means that E ⊆ A, where A is the set
of models of p [2].

Recall (see Section ??) that a possibility measure Π (and its dual necessity measure N)
is entirely determined by the knowledge of a so-called possibility distribution π : X → [0, 1]
such that π(x) := Π({x}). In the following, we extend this modal framework for possibility
and certainty to more general numerical settings.

1.1.2 A unifying framework for capacity based uncertainty theories

All numerical representations of incompleteness-tolerant uncertainty have the common
feature that the uncertainty of each event A ⊆ X is characterized by two, respectively
upper and lower, evaluations. We shall respectively call them (adopting a subjectively
biased language) degrees of epistemic possibility and certainty (in order to differentiate
them from coherent lower and upper probabilities), that will be denoted Ep and Cer.
Epistemic possibility refers to a lack of surprise and generalizes logical consistency (hence
the possibility modality and set function Π), while certainty generalizes logical entailment
(hence the necessity modality and set function N). These two degrees define monotonic
confidence functions (capacities) from the frame X to [0, 1] such that

∀A ⊆ X , Cer(A) ≤ Ep(A). (1.4)

They are supposed to be conjugate to each other, namely:

∀A ⊆ X , Cer(A) = 1 − Ep(Ac). (1.5)

The first condition, Eq. (1.4), postulates that an event must be epistemically possible
prior to being certain, and the second condition, Eq. (1.5), says that an event is all the
more certain as its opposite is less epistemically possible. This framework has the merit
of unambiguously encoding three extreme epistemic attitudes pertaining to event A:

• The case when A is certainly true: Cer(A) = 1 (hence Ep(A) = 1, Ep(Ac) =
0, Cer(Ac) = 0).

• The case when A is certainly false: Ep(A) = 0 (hence Cer(A) = 0).

• The case when the agent does not know if A is true or false: Cer(A) = 0 and
Ep(A) = 1 (then Ep(Ac) = 1; Cer(Ac) = 0).

It is clear that probability measures, as well as Boolean possibility and necessity
measures are special cases of this setting. In the case of probability measures, Cer(A) =
Ep(A) = P (A). Similarly, lower and upper probabilities on event A are important
general examples of epistemic certainty (Cer(A) = P (A)) and of epistemic possibility
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(Ep(A) = P (A)), respectively. It is clear that super-additivity implies g(A) + g(Ac) ≤ 1,
so that a super-additive capacity is a certainty function Cer, while a sub-additive capacity
is an epistemic possibility function.

1.2 From imprecise probabilities to belief functions and

possibility theory

All set functions proposed for the representation of uncertainty obey the above conventions
for epistemic certainty and possibility functions, hence extending the framework detailed
in Section 1.1.1. As seen in Chapter ??, such set functions can be interpreted (without
considering conditioning) as special cases of coherent upper and lower probabilities.
However, they also stand as proper extensions of Boolean possibility theory, as discussed
in this section.

A first idea to extend the framework of Section 1.1.1 is to consider a probability
distribution over the set of epistemic states. A second idea is to turn epistemic sets into
fuzzy sets, allowing for degrees of possibility.

1.2.1 Random disjunctive sets

The approach adopted in the theory of evidence (Shafer [74]) is somewhat opposite to
the one of the lower prevision school. Instead of augmenting the probabilistic approach
with higher order uncertainty due to incompleteness, described by sets of probabilities
or equivalent models, the idea is to add higher order probabilistic information to the
disjunctive set approach to incompleteness. So, instead of a single representation of the
form x ∈ E, a (generally) discrete probability distribution is defined over the various
possible assertions of the form x ∈ E (assuming a finite frame X ).

Mass functions

Let m be a probability distribution over the power set ℘(X ). The function m is called
mass assignment, m(E) is the belief mass allocated to the set E, and any subset E of
X such that m(E) > 0 is called a focal set. Let F ⊆ ℘(X ) be the collection of focal
sets of a given m. Usually, no positive mass is assigned to the empty set (m(∅) = 0
is assumed). However, the Transferable Belief Model, after Smets [77], does not make
this assumption. In this case m(∅) represents the degree of internal conflict of the mass
assignment. This is an essential difference with the theory of lower previsions, since the
notion of coherence is central in the latter, while allowing for m(∅) > 0 precisely means
that some degree of incoherence can be accepted in the Transferable Belief Model. Indeed,
the condition m(∅) = 0 is a form of normalisation. As m is a probability distribution,
the condition

∑
E⊆X m(E) = 1 must hold anyway. Also note that the mass assignment

m is here considered as the basic building block of the theory, while in Section ?? it is
just the Möbius transform of a lower probability, whose positivity is a useful by-product
of the ∞-monotone property.
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In this hybrid representation of uncertainty, it is important to understand the meaning
of the mass function, and it is essential not to confuse m(E) with the probability of
occurrence of event E.

• Shafer [74] says m(A) is the belief mass assigned to E only and to none of its
subsets.

• One may also see m(E) as the amount of probability to be shared between elements
of E without being assigned yet, by lack of knowledge. This is in agreement with a
frequentist view of the mass function and the idea of incomplete observation1.

• An explanation in the subjective line consists in saying that m(E) is the probability
that the subject only knows that x ∈ E. So, there is an epistemic modality implicitly
present in m(E), but absent from P (A) (see [2] for the connection between modal
logic and mass assignments).

These views explain why the function m is not required to be inclusion-monotonic. It
is allowed to have m(E) > m(F ) > 0 even if E ⊂ F , when the subject is sure enough
that what is known is of the form x ∈ E. In particular, m(X ) is the probability that the
agent is completely ignorant about the value of a variable X. We have already mentioned
in Section ?? a number of situations from which mass functions can arise, the most
well-known being a multivalued mapping between a probability space and a space X , as
proposed by Dempster [26].

Note that m can be formally associated to a random set such that m(E) is the
probability of observing the (random) disjunctive set E. However, in Dempster, Shafer
and Smets views, this is a random disjunctive set, in contrast with other views of random
sets [53, 61], where sets are conjunctions of their elements, i.e., they represent real objects
(like a region in a land). This difference is crucial when considering derived set-functions
and operations such as conditioning, which may differ in both situations.

Belief and plausibility functions

A mass assignment m induces two set-functions, respectively a belief function Bel and a
plausibility function Pl, defined by:

Bel(A) =
∑

E⊆A,E 6=∅

m(E); (1.6)

Pl(A) =
∑

E∩A6=∅

m(E). (1.7)

When m(∅) = 0, it is clear that Bel(X ) = Pl(X ) = 1, Pl(∅) = Bel(∅) = 0, and
Bel(A) = 1−Pl(Ac) so that these functions are another example of certainty (Cer = Bel)
and epistemic possibility (Ep = Pl).

1See also the construction in the context of data imprecision, most notably pages ?? and ??
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At the interpretive level, Bel and Pl can be viewed as direct extensions of Boolean
necessity and possibility functions respectively. They are recovered when m(E) = 1 for
some focal subset E. In fact, Bel(A) is an expected necessity degree (in the sense of m),
or a probability of provability [67] (the probability that m logically implies A). Likewise,
Pl(A) is an expected possibility degree (in the sense of m), or a probability of consistency
(the probability that m is logically consistent with A). In terms of modal operations �,♦

introduced earlier, it is clear that Bel(A) = P (�A) and Pl(A) = P (♦A).

Belief functions and lower probabilities

If m(∅) = 0, belief functions coincide with ∞-monotone capacities. However, if m(∅) > 0
then M(Bel) = ∅ and the connection with imprecise probability theory is lost.

It is also important to note that, when a mass assignment m is generated by a random
variable Y imprecisely observed through a multivalued mapping Γ : Y → ℘(X ), the
credal set M(Bel) is usually less informative than Γ [63]. In that case, the belief function
is viewed as a disjunctive set of random variables on X , each being defined by a selection
function φ : Y → X of Γ. So, for each element y ∈ X , the probability mass P ({y})
should be entirely transferred to one element x = φ(y) ∈ Γ(y), and the resulting set of
probabilities M(Γ) = {Pφ : φ ∈ Γ} is not generally convex. In contrast, when building
the credal set M(Bel), masses on focal subsets can be redistributed arbitrarily among
the elements of the focal sets, and M(Γ) ⊂ M(Bel).

Example 1.1. Consider a set of ages discretised in periods of 5 years (Y = {y1 =
[16, 20], y2 = [21, 25], . . .}). We are interested in the knowledge on the precise age X

of Pierre (X = {15, . . . , 100}). All we know is that Pierre is between 21 and 25 years
old. Y is reduced to the Dirac measure p({y2}) = 1, with Γ(y2) = A = {21, . . . , 25}.
The set M(Γ) corresponds to the 5 Dirac probabilities focusing on singletons in A. The
corresponding credal set contains all probability measures with support within A. �

However, as the convex hull of M(Γ) equals M(Bel), they have the same behavioral
consequences in the theory of lower previsions, i.e., expectations of any function f : R → X
have the same lower and upper bounds for M(Γ) and M(Bel). However, this equality
may not hold for other (non-linear) functionals like variance. In the above example, the
set of possible variances of probability distributions in M(Γ) is reduced to the singleton
{0}, while it is not so for distributions in M(Bel) (for instance, the uniform distribution,
which has a non-null variance, is in M(Bel)). See [16] for a discussion about variance in
Dempster-Shafer theory.

1.2.2 Numerical Possibility Theory

The roots of possibility theory can be traced back to the degree of potential surprise
introduced by the economist Shackle [73], and its revival is mainly due to Zadeh [87]
(starting from the representation of linguistic information). Other scholars dealing with
various aspects of possibility theory are Lewis [59], Dubois and Prade [36, 41, 34], and
De Cooman [21]. In this section, we focus on the numerical representation of possibility
and necessity.
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Possibility distributions

The basic idea of possibility theory is to refine epistemic states X ∈ E by introducing
degrees of epistemic possibility of elements. The disjunctive set E is replaced by a fuzzy
set, namely by a mapping π : X → L, where L is a possibility scale. L must be at least
a complete lattice bounded from above and from below by 1 and 0 respectively; more
often it is a totally ordered set, for instance the unit interval. It is generally assumed that
π(x) = 1 for some x. This is not always required, meaning that the theory permits the
presence of some inconsistency degree, as for the case of belief functions. More generally,
following Shackle’s ideas, 1 − π(x) is the amount of surprise that X = x, equating
impossibility to full surprize. A possibility distribution is a purely epistemic construction
representing in a graded way the knowledge of an agent.

This kind of representation has been found natural in the qualitative case where the
possibility scale is not numerical (only an ordering of more or less possible values of X is
useful in this case); this trend was initiated by Lewis [59] and pursued in the literature
of non-monotonic reasoning and belief revision [30].

Zadeh [87] considers that natural language propositions modelled by fuzzy sets
generate possibility distributions on domains of interest. For instance, the statement
John is tall involves the gradual predicate tall delimiting an elastic constraint on the set
of human heights X , modelled by the membership function µtall : X → [0, 1]. Then the
piece of information John is tall defines the possibility distribution π = µtall. Beyond
these original motivations, possibility distributions seem to be ubiquitous in uncertainty
theories, in connection with probability theory as seen later on.

Possibility and necessity measures

From the knowledge of π ranging on the unit interval, we can define two confidence
functions, namely a possibility measure Π, already encountered in the previous chapter
?? (see section ??) such that

Π(A) = sup
x∈A

π(x). (1.8)

and a necessity measure N such that

N(A) = inf
x 6∈A

1 − π(x). (1.9)

The possibility distribution π is here the primitive concept from which are induced
the two measures Π and N . Again, Π(A) = 1 measures the degree of consistency of
proposition ‘x ∈ A’ with information item π, and N(A) is a degree of logical entailment
of proposition ‘x ∈ A’ by information item π, thus extending the Boolean version of
possibility theory [37]. The same conventions for extreme values of Π and N are valid:
in fact, they are yet another example of certainty (Cer = N) and epistemic possibility
(Ep = Π).

Outside their interpretation as specific cases of ∞-monotone capacities, another
interpretation of numerical possibility distributions is the likelihood function in non-
Bayesian statistics (Smets [75], Dubois et al. [33]). In the framework of an estimation
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problem, one is interested in determining the value of some parameter θ ∈ Θ that defines
a probability distribution P (· | θ) over X . Suppose that we observed the event A. Then
L(θ) := P (A | θ), as a function of θ ∈ Θ, is not a probability distribution, but a likelihood
function2: a value θ is considered as being all the more plausible as P (A | θ) is higher,
and the hypothesis θ will be rejected if P (A | θ) = 0 (or is below some threshold).

Often, this function is renormalized so that its maximum is 1. We are allowed to let
π(θ) := P (A | θ) (thanks to this renormalisation) and to interpret this likelihood function
in terms of possibility degrees. In particular, it can be checked that for all B ⊆ Θ, bounds
for the value of P (A | B) can be computed as:

inf
θ∈B

P (A | θ) ≤ P (A | B) ≤ sup
θ∈B

P (A | θ)

The reason for these inequalities is that P (A|B) is a weighted arithmetic mean of the
P (A|θ) where the weights are proportional to (unknown) prior probabilities attached
to the parameter values θ ∈ B. It shows that adopting the maxitivity axiom (Eq. (1.2))
corresponds to an optimistic computation of P (A | B) = Π(B). It is easy to check that
letting P (A | B) := supθ∈B P (A | θ) is the only way for building a confidence function
about Θ from P (A | θ), θ ∈ Θ. 3 Indeed, the monotonicity w.r.t. inclusion of the likelihood
function L(·) = P (A | ·) forces P (A | B) ≥ supθ∈B P (A | θ) to hold [13]. Also note that
the maximum likelihood principle originally due to Fisher, which consists in choosing the
value θ = θ∗ that maximizes P (A | θ), is in total agreement with possibility theory.

1.2.3 Overall picture

We can now draw a picture (Figure 1.1) of the different imprecision tolerant basic
uncertainty representations and their formal relationships. It does not reflect the variety
of existing viewpoints but it helps to situate the different theories in a common framework.

Once we have Figure 1.1 in mind, notions such as set intersection and unions then
needs to be extended to possibility theory, random sets, lower previsions, etc. Similarly,
probabilistic notions such as conditioning or independence modelling needs to be properly
and meaningfully extended to other frameworks. Since the new frameworks are usually
richer than basic ones, such extensions are usually not unique, whence the apparitions of
discrepancies that needs to be understood and reconciled across the different theories.

1.3 Discrepancies between uncertainty theories

The generality of desirable gambles and lower previsions may suggest that the apparent
diversity of uncertainty theories is delusive, and that a single formalism is at work, the
choice of a representation framework depending on practical considerations. However this
is not the end of the story.

2see also ??
3See also the profile-likelihood approach in section ??
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Sets of desirable gambles

Lower previsions

Lower probabilities

Belief functions

Random Sets

Necessity measures

Possibility distributions

Binary Necessity measures

Sets

Probability measures

Probability distributions

Precise information

Singleton

Figure 1.1: Summary of uncertainty theories and basic representations

On the one hand, each uncertainty theory has its own history and was motivated
by different problems, so a proper unification also needs to figure out whether these
various stories fit together. Already in standard probability theory, there is more than one
story leading to a probability measure: noticeably, the frequentist and the subjectivist
stance [47]. Each one leads to a different definition of probability (for instance, sigma-
additivity, central in Kolmogorov approach, is not part of the subjectivist approach after
De Finetti). This distinction between frequentist and subjectivist views is still present
across all uncertainty theories.

On the other hand, each uncertainty theory can be seen as a language for describing
and solving problems. These languages rely on primitive notions that are used in all
subsequent definitions, and these are not equally expressive. To summarize, one may
say that the basic building block in possibility theory is the possibility distribution; in
evidence theory it is the Möbius mass function; in Walley theory the basic building block
is the coherent lower prevision, to which can be associated a corresponding credal set. In
each theory, everything is defined by means of the primitive building block. So there will
be some discrepancies on important concepts, such as conditioning or fusion operations.
This section provides some examples of such discrepancies.
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1.3.1 Objectivist vs. subjectivist standpoints

A very important distinction must be drawn between singular and generic information. It
underlies the opposition between frequentist and subjectivist sides of uncertainty theories,
but is in some sense more fundamental. Generic information refers to a collection of
cases or a population of situations. It could be a physical law, a statistical model built
from a sample of observations, or a piece of commonsense knowledge like “birds fly”. A
probability distribution can be used to represent the behaviour of a population, and
has then a frequentist flavor. One can then speak of the true (or the best) probability
distribution underlying this population. A credal set may represent incomplete knowledge
of this best model and it then underlies a currently unreacheable probability measure
induced by this population. However, the population need not even be well-defined for
the concept of generic information to make sense.

In contrast, singular information refers to a particular situation, the occurrence of a
single event: for instance, an observation (a patient has fever at a given time point), or
a testimony (the crazy driver’s car was blue). A probability degree attached to a piece
of singular information is a degree of belief, and is not necessarily related to frequentist
information. The idea of probability degrees justified by betting odds precisely aims
at attaching probabilities to unique events, bypassing the need to resort to frequentist
notions. This is the spirit of Walley’s lower previsions. However an agent often has some
experience about the world, and possesses some generic knowledge, be it imprecise. It has
been argued that one can use generic knowledge on the frequency of an event to derive a
degree of belief in the singular occurrence of this event in a specific situation (Hacking
[50]). This reasoning looks valid for imprecise probabilities as well.

Evidence theory after Shafer clearly stands on the subjectivist side, degrees of belief
being derived from the perceived reliability of testimonies about singular events. Like in
Walley’s approach, a belief function is a full-fledged representation of belief, and Smets
has insisted that referring to an ill-known probability degree P (A) lower bounded by
Bel(A) made no practical sense in the approach. On the contrary Dempster’s view is fully
compatible with a frequentist interpretation of belief functions. Indeed, if the underlying
probability space Y reflects statistical information, the corresponding belief function is
a lower probability having a frequentist flavour. So the random set underlying a belief
function may have frequentist or subjectivist interpretations.

Similar comments make sense for possibility distributions as well. It has been shown
that while they can be built from subjective linguistic information as suggested by Zadeh,
they are present in frequentist statistics, in the form of nested prediction, dispersion
or confidence intervals or likelihood functions. But a possibility measure can serve as a
special type of upper prevision in the subjectivist view as well [22].

1.3.2 Discrepancies in conditioning

Most of the time, a probability distribution refers to a population. This is a form of generic
information, typically frequentist. This information can be used for inferring beliefs about
a particular situation for which we have incomplete but clear-cut observations. This is
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called prediction. In this framework, P (A | C) is the (frequentist) probability of event A

in context C and it can quantify the belief of the agent in A when it has been observed
that C is true in the current situation and nothing else (assuming that the situation is
typical of environment C). The degree of belief of the agent in context C has changed
from P (A) to P (A | C). Conditioning here is used for updating the beliefs of the agent
about the current situation by exploiting (but not modifying) generic information. One
only applies the available generic knowledge to a reference class C, what is called focusing
by Dubois, Moral, and Prade [32]. For instance, the probability measure P represents
medical knowledge (often compiled under the form of a Bayesian network). The singular
information item C represents the results of tests for a patient. P (A | C) is the probability
of having disease A for patients for whom C has been observed; this value also estimates
the singular probability (belief) that this patient has this disease.

When probability P is subjective, it has a singular nature (when betting on the
occurrence of a non-repeatable event). In this case conditioning can be interpreted as the
revision of the singular probability function by a piece of information of the same nature.
In this case, information C is interpreted as P (C) = 1, which represents a constraint that
has to be taken into account when revising P . For instance [42], in a criminal affair where
the investigator suspects Peter, Paul and Mary with probabilistic confidence degrees 1

4 ,
1
4 and 1

2 respectively, and then learns that Peter has an alibi, i.e. P ({Mary, Paul}) = 1.
We then have to revise these singular probabilities. The use of conditional probability for
handling this revision of the probabilities is often proposed (and justified by the minimal
change principle, already mentioned above), which yields probabilities 1

3 and 2
3 for Paul

and Mary respectively. However, the problem of revising P is different from the one of
updating singular beliefs on the basis of generic information.

In the case where the generic knowledge of the agent is represented by imprecise
probabilities, Bayesian prediction is generalized by performing a sensitivity analysis on
the conditional probability. Let M be a generic credal set on X . For each proposition A a
lower bound P (A) and an upper bound P (A) of the probability degree of A are known. In
the presence of singular observations summarized under the form of a context C, the belief
of an agent in a proposition A could be represented by the interval [P (A | C), P (A | C)]
defined by

P (A | C) = inf{x : P (A ∩ C) = x · P (C), P ∈ M}

P (A | C) = sup{x : P (A ∩ C) = x · P (C), P ∈ M}.

which is the conditioning rule obtained by means of the natural extension of Section ??.
It may happen that the interval [P (A | C), P (A | C)] is larger than [P (A), P (A)], which
corresponds to a loss of information (a dilation in the sense of Seidenfeld and Wasserman
[72]) in specific contexts. This property reflects the idea that the more singular information
is available about a situation, the less informative is the application of generic knowledge
to it (since the number of relevant statistical data, i.e. where C is true, may become
very small). We see that this form of conditioning does not correspond at all to the
idea of enriching generic information, it is only a matter of querying it. Indeed the
input information pertains to a singular situation, and focuses generic knowledge (the
credal set) on a specific subset of possible worlds, on which the credal set may be totally
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uninformative (typically if the lower probability of C is zero, that is when nothing
supports C in the credal set, we get [P (A | C), P (A | C)] = [0, 1]).

If belief and plausibility functions are used as generic knowledge, m(E) represents, for
instance, the proportion of imprecise results, of the form x ∈ E, in a statistical test on a
random variable X. In this framework, prediction in context C consists in evaluating
the weight function m(· | C) induced by the mass function m on the subset C of states,
taken as the new frame. Three cases should be considered:

• E ⊆ C: In this case, m(E) remains assigned to E.

• E ∩ C = ∅: In this case, m(E) no longer matters and is eliminated.

• E ∩ C 6= ∅ and E ∩ C 6= ∅: In this case, some fraction αE · m(E) of m(E) remains
assigned to E ∩ C and the rest, i.e. (1 − αE) · m(E), is allocated to E ∩ C. But this
sharing process is unknown.

The third case corresponds to incomplete observations E that neither confirm nor
disconfirm C. The scalar value αE is the proportion of the population for which C is
true among those observations for which all that is known is that E holds. We have
not enough information in order to know if, for each of these observations, C is true
or not, since only E is known and it overlaps both C and its complement. Suppose
that the values {αE , E ⊆ S} were known. Note that αE = 1 and αE = 0 in the first
and second cases, respectively. Then, we can build a mass function mC

α (·). Note that
a renormalisation of this mass function is necessary, in general, as soon as Pl(C) < 1

(letting mα(· | C) = mC
α (·)

P l(C) ). If one denotes by Belα(A | C) and Plα(A | C) the belief and
plausibility functions obtained by focusing on C, based on the allocation vector α, the
conditional belief and plausibility degrees on C are defined by [20]:

Bel(A | C) = inf
α

Belα(A | C), (1.10)

and
Pl(A | C) = sup

α
Plα(A | C). (1.11)

One still obtains belief and plausibility functions (Jaffray [52]), and necessity and possibil-
ity measures if we start with such measures (Dubois and Prade [40]). The following results
show that what is obtained is a generalization of Bayesian inference [45]: if Bel(C) > 0,
then

Bel(A | C) = inf{x : P (A ∩ C) = x · P (C), P ≥ Bel} =
Bel(A ∩ C)

Bel(A ∩ C) + Pl(A ∩ C)
,

Pl(A | C) = sup{x : P (A ∩ C) = x · P (C), P ≥ Bel} =
Pl(A ∩ C)

Pl(A ∩ C) + Bel(A ∩ C)
.

It corresponds again to Walley’s updating rule for upper and lower probabilities in
Section ?? based on the natural extension. It is easy to see that Pl(A | C) = 1−Bel(A | C),
and that these formulas generalize probabilistic conditioning. This closed form already
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appears in the first report by Walley [79], and in [20, 45]. It is present with a different
notation in the seminal paper of Dempster [26]. Jaffray [52] expresses this conditioning
in terms of mass functions, laying bare the Möbius transform of Bel(· | C) in terms of m.

Note that if Bel(C) = 0 and Pl(s) > 0, ∀s ∈ C (no value in C is impossible but C

has no certainty) then all the focal sets of m either overlap (possibly contain) C or are
disjoint from C, none being contained in it. In this case, from equations (1.10) and (1.11),
Bel(A | C) = 0 and Pl(A | C) = 1 for all non-trivial (i.e. A 6= C and A 6= ∅) events
A ⊂ C: one cannot infer anything in context C. However, if Pl(A) = 0 for some A ⊂ C,
then Pl(A | C) = 0 as well. So this kind of conditioning usually expressed using credal
sets, can be couched in terms of mass functions as well.

However the usual type of conditioning in evidence theory, called ‘Dempster rule of
conditioning’, proposed by Shafer [74] and Smets [77], systematically assumes αE = 1
as soon as E ∩ C 6= ∅ in the above construction. It supposes a transfer of the full mass
of each focal set E to E ∩ C 6= ∅ (followed by a renormalisation). This means that we
interpret the new information C as allowing us to restrict to probability functions such
that P (C) is maximal: situations where C is false are considered as impossible. If one
denotes by Pl(A || C) the plausibility function based on this assumption, we have:

Pl(A || C) =
Pl(A ∩ C)

Pl(C)
.

This constitutes another generalisation of probabilistic conditioning. The conditional
belief is then obtained by duality Bel(A || C) = 1 − Pl(A || C). With this conditioning,
the size of focal sets diminishes, thus information becomes more precise, and when
Pl(C) = 1, the intervals [Bel, Pl] become tighter, in the sense that [Bel(A || C), Pl(A ||
C)] ⊆ [Bel(A), Pl(A)] for all A ⊆ C (they are also always tighter than those obtained by
focusing [56]).

Dempster rule of conditioning thus corresponds to a process where information
is enriched, or more generally significantly altered, which contrasts with focusing. In
particular, when Pl(C) < 1 this kind of conditioning violates coherence in the sense of
Walley, contrary to the previous one [81].

However, if the credal set represents singular uncertain evidence, this conditioning
performs a revision of the underlying credal set. The incurred lack of coherence then is
not surprising. When revising our beliefs, if the new information is at odds with previous
beliefs, it can be expected that the new beliefs be conflicting with the previous one, not
that it be coherent with it. On the contrary, the focusing conditioning operation for
prediction of singular events out of generic knowledge preserves coherence because the
prediction is a consequence of the credal set, and the latter is never altered, just exploited
in a subset of X .

In the more general framework of imprecise probabilities, a blind application of
the revision process by a piece of information C consists in adding the supplementary
constraint P (C) = 1 to the family M, i.e.

P (A || C) = inf{P (A | C), P (C) = 1, P ∈ M};
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P (A || C) = sup{P (A | C), P (C) = 1, P ∈ M}.

If P (C) = (1) it coincides with Dempster rule of conditioning (and then, coherence is
preserved). But clearly, it may happen that the set {P ∈ M, P (C) = 1} is empty (it is
always the case in the classical Bayesian framework since M is a singleton). Dempster rule
of conditioning then corresponds to applying the maximal likelihood principle (Gilboa
and Schmeidler [49]) and we replace the condition P (C) = 1 by P (C) = P (C) in the
above equation. In this way, we generalize Dempster rule (which is recovered if P is a
plausibility function) to 2-monotone lower probabilities (unless P (C) = 0).

This type of conditioning has nothing to do with focusing. Indeed, Shafer and Smets
view the Möbius mass function m only as singular information, and no generic knowledge
is taken into account in the picture[77]. In the crime example (originally due to Smets),
suppose that the organizer of the crime tossed a coin for deciding whether a man or
a woman is recruited to be the killer. This piece of uncertain singular information is
represented by the mass function m({Peter, Paul}) = 1

2 (there is no information available
about Peter alone and Paul alone), and m({Mary}) = 1

2 . Now, if we learn that Peter has
an alibi, the focal set {Peter, Paul} reduces to {Paul} and we deduce after revision, that
P ({Mary}) = P ({Paul}) = 1

2 . We have seen that the Bayesian approach shares the mass
m({Peter, Paul}) equally between Peter and Paul, so that Bayesian conditioning then
yields P ({Mary}) = 2 · P ({Paul}) = 2

3 . This result may sound debatable when dealing
with uncertain singular pieces of information (let alone at a court of law).

As seen from the above discussion, discrepancies between belief functions and lower
previsions concerning conditioning can be solved to a large extent. Shafer and Walley
use different conditioning rules in their theories because they deal with different kinds of
problems. Once it is acknowledged that Walley’s conditioning is tailored for prediction,
and Dempster rule of conditioning is tailored for revision of singular uncertain information,
some kind of reconciliation can take place. In the case of possibility measures, both forms
of conditioning make sense and preserve consonance [40, 82].

1.3.3 Discrepancies in notions of independence

Independence plays an important role in uncertainty theories, both for practical and
theoretical reasons4. When dealing with precise probabilities, independence can be
modelled in two conceptually different but formally equivalent ways. Consider two
variables X, Y assuming their values in possibility spaces X , Y. Let PX , PY be the
marginal probability measures on X , Y , and P be the joint probability measure modeling
our uncertainty about the value that (X, Y ) assume jointly. According to the first point
of view, Y is independent of X if learning the value of Y does not change the uncertainty
about X, i.e., if

PX(A | B) = PX(A), ∀A ⊆ X , B ⊆ Y [marginalization]. (1.12)

4See also the discussion in section ??.
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We call this definition causal independence, since what is expressed here is the absence
of (direct or indirect) causal influence of Y on X (this view is called epistemic in
Chapter ??). Note that Eq. (1.12) looks asymmetric. Only the axioms of probability
theory make it symmetric when P is non-null. The second point of view, called here
decompositional independence (and called formalist in Chapter ??), requires the joint
model to be computable from the marginals alone. This condition is expressed by

P (A, B) = PX(A) · PY (B), ∀A ⊆ X , B ⊆ Y [factorisation], (1.13)

which is symmetric by definition. Eqs. (1.12) and (1.13) are equivalent when P is
assumed to be non-null everywhere, and correspond to stochastic independence. The
two approaches are no longer equivalent in the other uncertainty theories, and they give
rise to different independence notions and joint models. Also, the meaning of Eq. (1.12)
depends on the choice of a conditional capacity g(A | B), hence the corresponding
causal independence notion depends on the considered conditioning operation. Since
probabilistic conditioning has multiple generalisations, Eq. (1.12) gives rise to different
notions.

The extension of Eq. (1.12) to evidence theory has been investigated by Ben Yaghlane
et al. [5]. Let m(· || B) denote the mass distribution obtained by applying Dempster’s
conditioning to m, and mX denote the marginal mass on X obtained for any A ⊆ X by
mX(A) =

∑
B⊆Y m(A × B). In this setting, Y is said to be causally independent from X

if the following condition

mX(A || B) = mX(A), ∀A ⊆ X (1.14)

holds for every B ⊆ Y, where mX(· || B) is the mass obtained by conditioning m and
marginalizing it on X . This condition turns out to be symmetric and to be equivalent to
Shafer’s definition of cognitive independence that requires the joint plausibility measure
of the Cartesian product of events be the product of marginal plausibilities.

The extension of Eq. (1.12) to possibility theory has been studied by De Campos and
Huete [19]. In this case, one starts from a joint possibility distribution π defined over
X × Y. Causal independence of Y from X comes down to stating that for every x ∈ X ,
y ∈ Y, we have

π(x || y) = πX(x) (1.15)

where πX(x) = maxy∈Y π(x, y) is the marginal possibility distribution on X and condi-
tional possibility is defined by

π(x || y) =
π(x, y)

πY (y)
. (1.16)

Again, this independence notion turns out to be symmetric, and corresponds to requiring
that the joint possibility distribution be the product of the marginal distributions. Other
extensions using other T-norm operators instead of the product have been studied [8,
18], however, such extensions, e.g. using minimum instead of product, can suffer from
continuity problems in the numerical setting [21]. The problem of characterising the most
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conservative joint model that has some given marginals and satisfies Conditions (1.14)
and (1.16) is still open. Likewise, the causal independence notion associated to the
prediction conditioning [45] based on focusing [32] has received little attention in the
frameworks of possibility theory and evidence theory.

This is in contrast with the theory of lower previsions, where it corresponds to the well-
studied notions of epistemic irrelevance and independence presented in Chapter ??, but
where extensions of Conditions (1.14) and (1.16) to more general frameworks than belief
functions (i.e. coherent lower probabilities and previsions) have not been investigated.
This may be explained by the fact that neither n-monotonicity nor supremum-preserving
properties of marginals are preserved in the most conservative joint model obtained with
such an assumption. For example, Miranda and De Cooman [64] have attempted to
embed epistemic independence in possibility theory, reaching the conclusions that the
limited expressiveness of possibility distributions may not be sufficient to model epistemic
independence. Extensions of Eq. (1.13) are usually more straightforward and mostly
consists in applying product rules to the basic building block of each theory. In evidence
theory, the extension applies the product rule to the marginal mass distributions mX , mY .
This comes down to building the joint model m over X × Y such that

m(A × B) = mX(A)mY (B). (1.17)

Shafer called this kind of independence evidential, but it is often called random set
independence. It expresses independence between sources informing about X and Y ,
respectively. In possibility theory, the obtained joint model [19] from πX , πY using the
product rule is simply

π(x, y) = πX(x)πY (y). (1.18)

and is equivalent to Eq. (1.15) when possibility degrees are positive. The decompositional
independence in the framework of lower previsions, called strong independence, is detailed
in Chapter ??. There exist some formal links between the three notions, since the credal
set induced by the possibility distribution (1.18) is included in the credal set induced
by strong independence, while the latter credal set is included in the one induced by the
mass distribution given by Eq. (1.17) (see Fetz [46], for example). Finally, it is worth
mentioning that the so-called non-interactive [87] joint possibility distribution π∧ that
has the following form

π∧(x, y) = min(πX(x), πY (y)) ∀(x, y) ∈ X × Y, (1.19)

does not have strong connections with the previously mentioned joint models [78]. This
is due to the fact that it assumes a complete dependence between the sources supplying
the possibility distributions (via the choice of the same α-cuts for both sources) instead
of independence between them 5, and no knowledge on the dependence between X and
Y [3].

Discrepancies between independence notions across the different theories appear more
severe than for conditioning. However, works attempting to fill in the gaps between

5in which case random set independence is retrieved.
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these notions are more recent than for conditioning [17]. As mentioned previously, what
form would causal independence take using Dempster conditioning for lower previsions is
still unknown. Studies linking the focusing rule with a causal independence notion in
possibility and evidence theory should be carried out. Discrepancies among decompo-
sitional independence notions are less severe, and the main interest of such a notion is
computational.

1.3.4 Discrepancies in fusion operations

Fusion is the operation consisting in merging uncertain information from several sources.
This notion emerged first in the theory of belief functions, where the rule of combination
originally due to Dempster plays a major role. In probability theory, this question is
seldom addressed, due to the fact that it has been traditionally envisaged (since the
XIXth cenrury) from a statistical and frequentist point of view, despite the fact that the
problem of merging testimonies (i.e., non-statistical evidence) motivated early research
in probability back in the XVIIth and XVIIIth centuries [68].

In subjective probability, one is often concerned with a single agent, however the
problem of modeling expert opinions in reliability has prompted probabilists to address
the issue of fusion of subjective probabilities supplied by experts [15]. Walley [80] himself
devoted a long report to this problem.

Considering that imprecise probabilities generalise both probabilities and sets, the
two building blocks of uncertain information fusion are the fusion of probabilities and
the fusion of sets. There are basically two approaches to merging probabilities

• The non-Bayesian approach [15] supposes that n sources (experts) supply n subjec-
tive probability distributions Pi pertaining to the location of a variable x. Reliability
weights ri ∈ [0, 1] such that

∑n
i=1 ri = 1 are attached to each source. Then the

merging rule prescribes to consider the convex mixture
∑n

i=1 riPi as the result
of the fusion. This form of fusion is basically the only possible way of retrieving
a probability measure as the result [62]. It presupposes each expert is a kind of
random source and the fusion can be seen as the direct extension of the statistical
view relying on identical, yet independent processes

• On the contrary the Bayesian view considers a holistic approach to the fusion,
whereby there is a joint probability that each source produces the output xi when
the real value of the quantity under concern is x. The fusion tries to compute
the probability distribution P (x|x1, x2, . . . xn), when the observations x1, . . . xn are
obtained and assuming a known likelihood and prior. This is a very demanding
approach in terms of data, and the requirement of a prior is questionable as the
reason for undertaking a fusion process is generally a lack of prior knowledge.

In contrast, if information comes in the form of epistemic states modelled by sets, the
fusion can be envisaged from a logical perspective [38]. Suppose one source provides the
information items x ∈ A and x ∈ B. There are three fusion modes:
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• A first option is to perform the conjunction of the two sets. It presupposes that
both sources can be trusted, and the two pieces of information are consistent.

• A second option is to perform the disjunction of the two sets. It is enough to assume
that one source is reliable without knowing which one of the two. It then makes
sense even if the pieces of information are inconsistent.

• A third option is to count the number of times each value of x is considered possible
by the sources. This is in line with the accumulation method of statistics, assuming
sources are independent and identical.

In case of n > 2 sources, the two first options would often respectively yield inconsistent or
uninformative results, and the most natural approach is then to find maximal consistent
subsets of sources, perform conjunction among the information items from each source
in each group and perform a disjunction of the results, an idea going back to Rescher
and Manor [70] in the logical setting. Alternatively one may assume the knowledge of a
number of reliable sources, and perform a k-out-of-n kind of merging [39].

The above set-based modes of fusion directly extend to possibility and evidence
theories. For instance the conjunction mode exploits fuzzy set intersections to combine
possibility theories and random set intersections for combining belief functions. Here, we
can observe some discrepancies between the two approaches:

• There are many conjunctive fusion operations for merging possibility distributions,
usually using T-norms operators [54]. In particular, if dependencies between sources
are unknown the minimum idempotent operator applies, and if independence
is assumed one can perform the pointwise product of possibility distributions.
One may even perform a fusion mode assuming that a prescribed number of
sources may lie (Mundici [65]). In general, merging possibility distributions under
the conjunctive mode yields a possibility distribution, but the result may be
subnormalized (π(x) < 1, ∀x). A renormalization step is often considered, assuming
the remaining values of positive possibility, however implausible, contain the true
one.

• There is essentially one conjunctive merging rule in evidence theory (Dempster’s
rule of combination) and it presupposes independence between sources. Usually the
resulting belief function is subnormal in the sense that m(∅) > 0, which can be
renormalized (however Smets recommends not to do it so as to keep track of the
conflict). This combination rule is the cornerstone of Shafer’s theory of evidence,
and the possibility of decomposing any belief functions into simple support functions
is studied in Shafer’s book.6 This situation contrasts with the case of possibility
theory where many operations are available. The possibilistic product rule is in
some agreement with the unnormalized Dempster rule of combination because the
obtained contour functions are proportional to each other. But merging consonant

6This turns out to be possible only for a subclass of so-called support belief functions. This difficulty
is overcome by Smets [76] by enlarging the notion of simple support belief function.
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belief functions by the conjunctive rule does not preserve consonance, and the
normalization factors in both theories differ. Worse, there is no clear idempotent
merging rule in belief function theory; in particular it is generally impossible to find
a joint mass function whose marginals are the source information items and whose
contour function would be the minimum of the two contour functions [28]. However
Denoeux [27] has enlarged the set of combination rules for belief functions, including
an idempotent one, by exploiting Smets [76] decomposition of belief functions via
Dempster’s combination rule.

Disjunctive fusion modes in possibility theory and evidence theory have similar discrep-
ancies. Random set disjunction corresponds to computing the product of belief functions
(or necessity measures) [35]. Since the latter applies to probability measures, the enlarged
setting enables the product of probability measures to make sense as a disjunctive combi-
nation thereof, yielding random sets having at most two-element realizations, a benefit of
considering a unified view of uncertainty theories.

Moreover, the convex combination of belief or plausibility functions and necessity
or possibility measures makes sense, but does not preserve consonance. However it
comes down to extending the counting mode of fusion to possibility distributions, when
restricting to contour functions.

Turning to the general setting of credal sets, Walley [80] extensively discusses the
fusion problem in the context of upper and lower probabilities. He proposes a number of
properties a rational fusion method should satisfy, which can be adapted to possibility
theory and belief functions. Given two familles M1 and M2 of probabilities provided by
two reliable sources, it is natural to consider that the result of a fusion is the intersection
M = M1 ∩ M2, when non-empty. The most natural way of merging n probability
functions is to consider the credal set of which they are the vertices. The latter is an
idempotent rule adopting a disjunctive mode of combination. This rule has the merit of
satisfying all criteria requested by Walley. It is clear that the rule consisting of considering
the convex hull of M1 ∪ M2 (called the unanimity rule by Walley) extends this rule
to sets of probabilities. Walley also considers the hybrid fusion rule based on maximal
consistent subsets of sources, as well as the credal set extension of the weighted average
probability combination rule.

The fusion of imprecise probabilities and the fusion of belief functions are not really in
agreement. It sounds hard to justify Dempster rule of combination in terms of imprecise
probabilities and, in the same way, it is not easy to express the mass function induced
by M1 ∩ M2 in terms of the mass functions induced by M1 and M2. Walley rejects
Dempster rule of combination on the basis of its failing to satisfy criteria he considers
important [81]. One may apply the idempotent fusion of imprecise probabilities to belief
functions, by performing the intersection of sets Mi = {P : P (A) ≥ Beli(A), ∀A ⊆ S}
for i = 1, 2. But the lower bounds of the induced probabilities are not belief functions in
general. Chateauneuf [10] explores these issues in some detail.

The setting of uncertainty theories explicitly handling incomplete information seems
to be more flexible than pure probability theory for the purpose of merging uncertain
information. However many questions remain open on this topic, regarding the most
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appropriate rules of combination of credal sets and their relationships with similar
combination modes in more specialised settings.

1.4 Further reading

We have tried in this chapter to present the main uncertainty theories explicitly coming
to grips with imprecision, together with their original motivations. In contrast with the
theory of lower previsions, the other uncertainty theories rely on the use of special cases of
capacities. We have provided a brief account of some discrepancies between the different
theories on central concepts such as conditioning, independence and combination rules,
pointing out the existing bridges between these discrepancies. We could have done the
same with methods of information comparison.

We have not discussed other emerging approaches such as info-gap theory [4] or the
game-theoretic approach of Shafer and Vovk, described in Chapter ??, for their links
with the theories introduced in this chapter largely remain to be studied in more detail.

In this chapter, we have also focused on quantitative representations of uncertainty,
leaving aside qualitative representations. However, a purely ordinal framework looks
natural when dealing with subjective uncertainty assessments. Indeed, it is easier for an
agent to assert that one proposition is more credible than another, rather than providing
a numerical belief degree. Ordinal or qualitative approaches represent uncertainty by
means of a confidence relation between propositions (or events) obeying some natural
properties like consistency with logical deduction. An uncertainty relation formalizes a
pairwise comparison of events in terms of relative likelihood. The idea of representing
uncertainty by relations over sets of propositions (or events) dates back to De Finetti [23],
Koopman [55] and Ramsey [69]. These authors tried to find ordinal counterparts to
subjective probabilities. Later on, philosophers such as Lewis [60] have considered other
kinds of uncertainty relations in the framework of modal logic, including what eventually
turned out to be comparative counterparts to possibility measures [29]. The survey of
bridges between (imprecise) probability theory and modal logic [83] is also interesting to
consult. Starting from this basic ordinal framework, one may start to redefine the notions
of conditioning, independence, fusion, etc. in order to have a full-fledged qualitative
uncertainty theory.

Qualitative approaches may also rely on a finite scale of confidence levels. Possibility
theory is particularly well adapted to such a qualitative framework, as the minimum and
maximum operators are well defined on any lattice (see de Cooman [21] for lattice-valued
possibility measures, and [6] and [31] for discussions about qualitative conditioning
and qualitative independence, respectively). A recent paper on conditional comparative
uncertainty structures is [14].

Conversely, one can search for conditions under which a relation ≤κ on events is
compatible with some numerical representations. When only one confidence function
g : ℘(X ) → [0, 1] is considered, then it is natural to require ≤κ to be complete and
transitive. A confidence function g is then said to represent the relation ≤κ as soon as

A ≤κ B if and only if g(A) ≤κ g(B).
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Conditions under which a relation ≤κ is representable by a probability measure, a
possibility measure, a belief function and a lower probability were respectively studied
by Koopman [55], Dubois [29], Wong et al. [86] and Capotorti et al. [9]. The reader may
benefit from consulting books like the one by Fine [47] and the survey paper by Fishburn
[48], for an account of early results on ordinal versions of probability.

On the other hand, one may relax the completeness of ≤κ and search under which
conditions a partial preorder is representable by pairs of dual confidence functions. There
are however less results concerning such representations. Section 4 of Chapter ?? relates
partial preferences with desirable gambles, however gambles are naturally numerical, and
can hardly be characterised from the qualitative standpoint. Recently, Nerhing [66] has
explored under which conditions a partial preorder ≤κ where A ≤κ B is interpreted as
P (A) ≤κ P (B) is representable by a credal set.
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