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Chapter 1

Special Cases

by Sébastien Destercke, Didier Dubois

1.1 Introduction

As argued in Chapters ?? and ??, lower previsions and sets of desirable gambles are
very general models of uncertainty that have solid foundations and a clear behavioural
interpretation. However, this generality goes along with a high computational complexity
and a difficulty to easily explain such representations to users that are not experts in
imprecise probability theories.

Therefore, in practical applications, simplified representations can greatly improve
the applicability of imprecise probability theories. There are three main reasons for using
simplified representations:

• to facilitate the elicitation or information collection process;

• to improve the computational tractability of mathematical models;

• to improve the interpretability of results when answering some particular question
of interest.

The main objection to the use of such representations, or more precisely for restricting
oneself to them, is that they may not be general enough to exactly model the available
information. Moreover, even if some pieces of information can be exactly modelled by
such simplified representations, further processing may result in information no longer
exactly representable in a simple form (see Walley [54], for example). Indeed, if one works
with processing tools specific to coherent lower previsions (and therefore closed for such
representations), one can hardly expect more specific properties to be preserved (this
remains true for other theories, see Chapter ??). Nevertheless, summarising complex
outputs in the form of simplified representations may make these outputs easier to
interpret.

In this chapter, we will review several simplified representations that are special cases
of coherent lower previsions (actually, most of them are coherent lower probabilities). To
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6 CHAPTER 1. SPECIAL CASES

do so, we will adopt the languages of the previous chapters. For each representation, we
emphasise its interests and limitations.

1.2 Capacities and n-monotonicity

Capacities are set functions defined over the events of a possibility space X that can be
used to represent uncertainty about an experiment.

Definition 1.1. Given a finite possibility space1 X , a capacity on X is a function g,
defined on ℘(X ), such that:

• g(∅) = 0, g(X ) = 1, and

• for all A, B ⊆ X , A ⊆ B implies g(A) ≤ g(B) (monotonicity property).

The monotonicity property stresses the fact that if x ∈ A implies x ∈ B then
one cannot have more confidence in A than in B. Capacities were first introduced by
Choquet [7], and are also known as fuzzy measures [39].

A capacity is said to be super-additive if the property

A ∩ B = ∅ =⇒ g(A ∪ B) ≥ g(A) + g(B) (1.1)

holds for all events A, B ⊆ X . The dual notion, called sub-additivity, is obtained by
reversing the inequality. In particular, coherent lower and upper probabilities are super-
additive and sub-additive capacities, respectively. Among capacities, those satisfying
n-monotonicity are particularly interesting.

Definition 1.2. Let n ∈ N0, n ≥ 2. A capacity g is said to be n-monotone whenever for
any collection An ⊆ ℘(X ) of n events, it holds that

g



⋃

A∈An

A


 ≥

∑

∅6=A′⊆An

(−1)|A′|+1g



⋂

A∈A′

A




A capacity g is said to be ∞-monotone, totally monotone or completely monotone,
whenever it is n-monotone for every n ∈ N0, n ≥ 2. 2

If a capacity is n-monotone, then it is m-monotone for all m ∈ N0, 2 ≤ m ≤ n. Given
any capacity g defined on a finite possibility space X , we can define its Möbius inverse:

Definition 1.3. The Möbius inverse mg : ℘(X ) → R of a capacity g is defined, for every
event E ⊆ X , as

mg(E) :=
∑

A⊆E

(−1)|E\A|g(A). (1.2)

1(Pre-)Capacities on infinite spaces are discussed in the context of game-theoretic probability, see
page ??.

2The conjugated capacity g̃ with g̃(A) := 1 − g(Ac) for all ⊆ Ω is then p-alternating.
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Conversely, from a Möbius inverse mg, one can retrieve the value of g(A) on any
event A by computing

g(A) =
∑

E⊆A

mg(E). (1.3)

Chateauneuf and Jaffray [6] have shown that the Möbius inverse mg and the n-monotonicity
of the capacity g are related in the following way: if a capacity g is n-monotone, then its
Möbius inverse mg is positive for every subset A ⊆ X such that |A| ≤ n. Also note that
a Möbius inverse mg is always such that

∑
E⊆X mg(E) = 1. Two specific kinds of capaci-

ties are of particular importance for practical purposes: 2-monotone and ∞-monotone
capacities.

1.3 2-monotone capacities

A 2-monotone capacity, that is a capacity that satisfies for every pair of events A, B ⊆ X
the inequality g(A∪B) +g(A∩B) ≥ g(A) +g(B), is a coherent lower probability P . This
means that it induces a non-empty credal set M(P ), of which it is the lower envelope
on events. In contrast, satisfying only super-additivity (1.1) does not guarantee to have
M(P ) 6= ∅ (for a counter-example, see Papamarcou and Fine [42]). Due to their practical
interest, they have received particular attention in the literature [6, 53, 36, 5, 8]. When
X is finite, 2-monotone capacities have the following interesting properties (all detailed
in [6]):

• The natural extension E(f) of a 2-monotone lower probability P for any bounded
gamble f is given by the Choquet integral (see Section ?? on page ?? for details
on the Choquet integral).

• Let X = {x1, . . . , xk}, and let Σ denote the set of all permutations of {1, . . . , k}.
For any permutation σ ∈ Σ, we can define a probability distribution Pσ as follows:
for any i ∈ {1, . . . , k},

Pσ({xσ(i)}) := P (Aσ(i)) − P (Aσ(i−1)),

with A0 = ∅ and Aσ(i) = {xσ(1), . . . , xσ(i)}. Then, the set of extreme points of the
convex set M(P ) is given by ext(M(P )) = {Pσ : σ ∈ Σ}.

The above properties allow performing various computational tasks (coherence check-
ing, statistical testing3, . . . ) in an easier way than with generic coherent lower previsions.
However, 2-monotone lower probabilities still require, in the general case, to store 2|X |

values. Representations used in practice will, however, be of reduced complexity.

1.4 Probability intervals on singletons

Probability intervals on singletons [11, 55] are popular representations that play an
important role in graphical models (See Chapter ??) and in classification procedures (See

3See the so-called Huber-Strassen theory on generalized Neyman-Pearson testing outlined in Section ??.
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Chapter ??). They are defined as lower and upper probabilities specified on singletons
of a finite possibility space X . That is, they correspond to assessments P ({x}) and
P ({x}) = 1 − P ({x}c) for every x ∈ X .

De Campos et al. [11] have shown that probability intervals P avoid sure loss whenever

∑

x∈X

P ({x}) ≤ 1 ≤
∑

x∈X

P ({x}) (1.4)

and that P is coherent when, for each x ∈ X , the two following inequalities

P ({x}) +
∑

y∈X \{x}

P ({y}) ≤ 1 and P ({x}) +
∑

y∈X \{x}

P ({y}) ≥ 1 (1.5)

hold. Compared to generic algorithms of Chapter ??, these criteria are easy to check.
Provided P avoids sure loss (satisfies Eq. (1.4)), De Campos et al. [11] also describe
efficient methods to compute probability intervals that are coherent. From now on, we
will only consider such coherent probability intervals.

The natural extension E of probability intervals P to any event A ⊆ X can easily be
computed using the following formulas:

E(A) = max

{
∑

x∈A

P ({x}), 1 −
∑

x∈Ac

P ({x})

}
, (1.6a)

E(A) = 1 − E(Ac) = min

{
∑

x∈A

P ({x}), 1 −
∑

x∈Ac

P ({x})

}
. (1.6b)

It can also be shown that probability intervals are 2-monotone, allowing one to use
corresponding computational tools (De Campos et al. [11] also propose various algorithms
optimized for probability intervals).

From any lower prevision P , one can easily get outer-approximating probability
intervals by computing the natural extension of P over events {x} and {x}c. Note that
only 2|X | values need to be stored to describe probability intervals, instead of the 2|X |

needed values for generic 2-monotone capacities. As usual, this complexity reduction
goes along with a limited expressive power (i.e., not all 2-monotone capacities can be
expressed by probability intervals).

1.5 ∞-monotone capacities

∞-monotone capacities also play an important role as special cases of coherent lower
probabilities. Indeed, given the relation between n-monotonicity and the Möbius inverse,
any ∞-monotone lower probability P on a finite space X has a non-negative Möbius inverse
mP : ℘(X ) → [0, 1]. This is a characteristic property, as any mapping m : ℘(X )\∅ → [0, 1]
such that

∑
A⊆X m(A) = 1 will induce a ∞-monotone measure by using Eq. (1.3).
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1.5.1 Constructing ∞-monotone capacities

The non-negativeness of m means that it can be seen as a probability mass function
defined over ℘(X ). In infinite spaces X , random sets [14, 38] also induce ∞-monotone
lower probabilities. Indeed, functions m often result from a situation where the available
(statistical) pieces of information only partially determine the quantity of interest. This
is typically the case when only a compatibility relation (instead of a mapping) between a
probability space and the possibility space X of interest is available. Suppose there is
a multimapping Γ : Y → ℘(X ) that defines for each value y ∈ Y of the quantity Y the
set Γ(y) of possible values of the ill-known quantity x in X . If the subject knows Y = y,
she only knows that x ∈ Γ(y) and nothing else. From the knowledge of a probability
function on Y, only a mass assignment on X is derived, namely: ∀E ⊆ X , m(E) =
P ({y ∈ Y : Γ(y) = E}) if ∃y ∈ Y, E = Γ(y), and 0 otherwise. The probability space Y
can be considered as a sample space like in the framework of frequentist probabilities,
but it is then assumed that observations are imprecise.4

Example 1.4. : Consider an opinion poll pertaining to a French presidential election. The
set of candidates is X = {a, b, c, d, e}, going from left-wing ({a, b}) to right-wing ({d, e}).
There is a population Y = {y1, . . . , yn} of n individuals that supply their preferences. But
since the opinion poll takes place well before the election, individuals may not have made
a final choice, even if they do have an opinion. The opinion of individual yi is modeled by
the subset Γ(yi) ⊆ X . For instance, a left-wing vote is modeled by Γ(yi) = {a, b}; for an
individual having no opinion, Γ(yi) = X , etc. In this framework, if individual responses
of this form are collected, m(E) is the proportion of opinions of the form Γ(yi) = E. �

Another method for constructing Γ can be devised when the frame X is multidimen-
sional, i.e., X = X1 × X2 × · · · × Xk, and a probability distribution P is available on part
of the frame, like X1 × X2 × · · · × Xi, i < k, and there is a set of constraints relating
the various variables X1, X2, . . . , Xk, thus forming a relation R on X . R represents all
admissible tuples in X . Let Y = X1 × X2 × · · · × Xi. Then if y = (x1, x2, . . . , xi) and if
[y] denotes its cylindrical extension to X , Γ(y) = R ∩ [y]. The watch Example 1.6 in the
next section is of this kind.

1.5.2 Simple support functions

A particular instance of ∞-monotone capacities that plays an important role in other
interpretations (see Chapter ??) are simple support functions.

Definition 1.5. A simple support function is a mass function where a mass α = m(A)
is given to a set A and 1 − α = m(X ).

Such functions are often used to model the reliability of some source of information,
as in the next example.

Example 1.6. Consider an unreliable watch. The failure probability ǫ is known. The set Y
describes the possible states of the watch Y = {KO, OK}. The subject cares for the time

4See also Section ??.
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it is. So, X is the set of possible time-points (discretised according to the watch precision).
Suppose the watch indicates time x. Then the multimapping Γ is such that Γ(OK) = {x}
(if the watch is in order, it provides the right time), and Γ(KO) = X (if the watch does
not work properly, the time it is is unknown). The induced mass assignment on X is thus
m({x}) = 1 − ǫ and m(X ) = ǫ, which is the probability of not knowing the time it is. �

1.5.3 Further elements

Apart from offering practical ways to build coherent lower probabilities from imprecise
observations, the fact that m (or Γ) can be interpreted as a probability mass function (or
a random variable) over ℘(X ) means that usual sampling methods such as Monte-Carlo
methods can be used to simulate them. A good review of such methods is given by
Wilson5 [58]. In finite spaces X , ∞-monotone lower probabilities are mathematically
equivalent to so-called belief functions [47, 14] (see Chapter ?? for further discussion on
belief function interpretations). This means that practical results concerning such models
can be transposed to ∞-monotone capacities. For example, the fast Möbius transform [31]
can be used to quickly compute mP , or approximation methods [15] can be used to

reduce the representation complexity. Indeed, such models still generally require 2|X |

values to be entirely specified, however in practice many sets A ⊆ X will be such that
m(A) = 0 (e.g., k-additive belief functions [28], that will not be discussed further in this
chapter, give positive masses only to sets whose cardinality is at most k).

In infinite settings, the definition of ∞-monotone lower probabilities poses tricky
mathematical problems (initially discussed by Shafer [48] in the setting of belief functions
and Matheron [34] in the setting of random sets). Nevertheless, it is possible to define
a belief function on the reals, based on a continuous mass density bearing on closed
intervals [50] (see Smets [49] for more details and Alvarez [1] for simulation techniques).

Except in specific [55, p.40] [11, Sec. 6], there are no specific relations between ∞-
monotone capacities and probability intervals studied in Section 1.4. However, several
authors have proposed mappings from probability intervals to ∞-monotone capacities
(see Denoeux [16], Hall and Lawry [29] and Quaeghebeur [44])

1.6 Possibility distributions, p-boxes, clouds and related

models

In this section, we study practical representations linked by the fact that they correspond
to assessments over some collections of nested sets. Like previous models, they have a
limited expressiveness but possess interesting properties making them handy.

5The review concentrates on a different interpretation of m, but many tools can be used within a
lower prevision approach.
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1.6.1 Possibility distributions

A possibility distribution [23, 24, 22] is a function π : X → [0, 1] with π(x) = 1 for at
least one x ∈ X . From this distribution can be defined a possibility measure P such that

P (A) = sup
x∈A

π(x). (1.7)

This measure is supremum-preserving [12], in the sense that for any A ⊆ ℘(X ), we have

P

(
⋃

A∈A

A

)
= sup

A∈A
P (A).

P is a coherent upper probability, and the dual coherent lower probability (called necessity
measure) is defined as P (A) = 1 − P (Ac) = 1 − supx∈Ac π(x). When X is finite, the
supremum in Eq. (1.7) can be replaced by a maximum.

This supremum-preserving property makes possibility measures very easy to use (i.e.,
evaluations of P (A) or P (A) are straightforward). On the other hand, this property
induces that the inequality P (A) ≤ P (A) holds in a strong form, as P (A) > 0 implies
P (A) = 1. In particular, we cannot have P (A) = P (A) for values other than zero and
one, hence possibility measures are unable to model linear previsions except in the most
trivial cases, this in contrast with previous simple representations. However, possibility
distributions and measures have strong connections with the probabilistic setting, as we
will see next.

From a possibility distribution π and for any value α ∈ [0, 1], the strong and reg-
ular α-cuts are subsets respectively defined as Aα = {x ∈ X : π(x) > α} and Aα =
{x ∈ X : π(x) ≥ α}. These α-cuts are nested, since if α > β, then Aα ⊆ Aβ. The linear
previsions included in the corresponding credal sets M(P ) can be characterised in a
particularly interesting way [21], that links them to the concept of strong α-cut (see [10]
for extensions on general spaces):

Proposition 1.7. Given a possibility distribution π and the corresponding credal set
M(P ), we have for all α in (0, 1], P ∈ M(P ) if and only if

1 − α ≤ P (Aα)

Conversely, given any indexed family of nested intervals Aα, α ∈ [0, 1], such that
Aα ⊆ Aβ whenever α ≥ β, the credal set M = {P : P (Aα) ≥ 1 − α} defines a possibility
measure, with distribution π(x) = infx6∈Aα

α [21].
One useful consequence of this result is that any lower prevision P can be outer

approximated by a possibility distribution, simply specifying a set of nested sets A1 ⊂
. . . ⊂ An and considering the natural extension E(Ai) for each Ai. This also means
that any probabilistic inequality of the form {P ([x∗ − αa, x∗ + αa]) ≥ f(α) : α ≥
0}, where x∗ is some landmark value, is captured by a possibility distribution. For

instance, in the Chebychev inequality, x∗ is the mean, a is the variance, f(α) = a2

α2

and π(x) = min(1, 1 − a2

(x−x∗)2 ). On finite spaces, the set {π(x) : x ∈ X } is of the form
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0

1
π

α = 0.3
A0.3

a bc

P (A0.3) = 0.7

Figure 1.1: Illustration of a triangular fuzzy interval with α-cut of level 0.3

α0 = 0 < α1 < . . . < αM = 1, and there are M distinct α-cuts in this case6. In practice,
this means that the coherent lower probability induced by a possibility distribution can
be expressed (in the finite case) by M lower bounds on the probability of nested events
Aαi

, i = 0, . . . , M − 1.

Finally, we note that lower probabilities induced by possibility distributions are
specific cases of ∞-monotone lower probabilities. The Möbius inverse m of the lower
probability P induced by π can be easily computed: assuming that elements of X are
ranked such that π(x1) ≥ . . . ≥ π(x|X |), m is such that

m(Ei) = π(xi) − π(xi+1), i = 1, . . . , |X |, (1.8)

where Ei = {x1, . . . , xi} and letting π(x|X |+1) = 0. Note that events Ei are nested.
Shafer [47] showed that there is a one-to-one correspondence between possibility measures
and upper probabilities P whose Möbius inverse is positive on a collection of nested sets
only.

1.6.2 Fuzzy intervals

When working with possibility distributions on the real line, fuzzy intervals constitute by
far the most usual representation.

Definition 1.8. A fuzzy interval π : R → [0, 1] is a possibility distribution such that for
all x and y ∈ R,

π(z) ≥ min{π(x), π(y)} for all z ∈ [x, y].

A fuzzy interval π is said to be normalised when there is an x ∈ R such that π(x) = 1.

The α-cut Aα of a fuzzy interval π is an interval of the real-line. The piece of
information Aα can then be processed by using classical interval analysis or optimisation.
Figure 1.1 pictures a triangular fuzzy interval together with an α-cut Aα. Fuzzy intervals
have been proposed as a natural representation in practical situations where only limited
(probabilistic) information is available:

6Note that this is true as long as π only assumes a finite number of values, even on non-finite spaces.
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• when the expert gives a set of confidence intervals around a “best guess” value
together with confidence levels (the result is then a possibility distribution with a
finite number of values) [46];

• when only the support [a, b] and modal value c of a distribution is known, it can be
shown that the credal set induced by the triangular fuzzy set of Figure 1.1 includes
all distributions having this support and this mode [2]7;

• when only a handful of (not necessarily nested) sensor measurements are avail-
able [35];

• when considering probabilistic inequalities providing sets of confidence intervals
around a central value (for instance the Chebychev inequality).

The features of fuzzy intervals make them handy tool for various applications, including
uncertainty propagation for risk analysis [41], uncertainty analysis in scheduling[20], signal
filtering [33], . . .

1.6.3 Clouds

As mentioned earlier, possibility distributions are useful but poorly expressive represen-
tations, as they cannot capture linear previsions. Clouds [40] are representations that
extend possibility distributions while still remaining simple.

Definition 1.9. A cloud [δ, π] on X is a pair of mappings δ : X → [0, 1], π : X → [0, 1]
such that δ is point-wise less than π (i.e., δ ≤ π). Moreover, π(x) = 1 for at least one
element x in X , and δ(y) = 0 for at least one element y in X . δ and π are called the
lower and upper distributions of the cloud [δ, π], respectively.

From a cloud [δ, π], Neumaier [40] defines the following probabilistic constraints for
every α ∈ [0, 1]:

P (Bα := {x ∈ X : δ(x) ≥ α}) ≤ 1 − α ≤ P (Aα = {x ∈ X : π(x) > α}). (1.9)

These constraints are equivalent to the lower prevision such that P (Aα) = 1 − α and
P (Bc

α) = α for α ∈ [0, 1]. If X is continuous, then M(P ) 6= ∅ as soon as [δ, π] satisfies
Definition 1.9. On finite spaces, [δ, π] must also satisfy the following condition [18]:
∀A ⊆ X , maxx∈A π(x) ≥ miny 6∈A δ(y). Clouds generalise possibility distributions in the
sense that if δ = 0, then P is the lower probability induced by the possibility distribution π.
We also have that M(P ) = M(P π)∩M(P 1−δ), with P π and P 1−δ the lower probabilities
induced by the possibility distributions π and 1 − δ, respectively.

In general, P is not 2-monotone [18], hence harming the practical interest of clouds.
However, comonotonic clouds are specific clouds for which P is ∞-monotone.

7Note that it also includes multi-modal distributions, and that the full language of lower previsions is
needed to exactly represent this information.
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0

1
π

δ
α

β
A

a bc

1 − α ≤ P (A) ≤ 1 − β, πα = δβ = A

Figure 1.2: Illustration of a comonotonic cloud and of the bounds over event A.

Definition 1.10. A comonotonic cloud [δ, π] is defined as a cloud such that δ and π are
comonotone, i.e., for any x, y ∈ X , π(x) > π(y) =⇒ δ(x) ≥ δ(y)

In the finite case, comonotonicity means that there exists a common permutation σ

of X = {x1, . . . , x|X |} such that

π(xσ(1)) ≥ π(xσ(2)) ≥ · · · ≥ π(xσ(|X |))

and
δ(xσ(1)) ≥ δ(xσ(2)) ≥ · · · ≥ δ(xσ(|X |))

The simplest comonotonic cloud, that is the cloud summarised by a constraint
α ≤ P (A) ≤ 1 − β with α ≤ 1 − β, provides an interesting example as it directly extends
simple support functions of Section 1.5.2. Indeed, its Möbius inverse m is such that
m(A) = α, m(Ac) = β, m(X ) = 1 − α − β, and simple support functions are retrieved
when α = 0 or β = 0.

A cloud is comonotonic if and only if the sets {Aα, Bα : α ∈ [0, 1]} form a nested
sequence (i.e., they are completely ordered w.r.t. inclusion). In the light of constraints
in Eq. (1.9), this means that comonotonic clouds correspond to sets of nested intervals
to which are associated upper and lower probabilistic bounds (thus adding an upper
bound to the lower bound of possibility distributions). Figure 1.2 illustrates the notion
of comonotonic cloud on the real line.

As for possibility distributions, a lower probability induced by a cloud can be described
(in the finite case) by M constraints corresponding to the M distinct values assumed by
the cloud distributions. Conversely, any lower prevision P can be outer-approximated by a
comonotonic cloud by simply specifying a set of nested sets A1 ⊂ . . . ⊂ An and considering
the lower and upper natural extensions E(Ai) and E(Ai) for each Ai. Recently, clouds
have been proposed as practical representations to deal with robust design problems [27]
and signal filtering [19].

1.6.4 P-boxes

A p-box [26] (short for probability box) was originally defined as a pair [F , F ] of cumulative
distributions, an upper one F : R → [0, 1] and a lower one F : R → [0, 1] such that both
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Figure 1.3: Illustration of p-box.

F , F are non-decreasing and ∃r such that F (r) = F (r) = 1. This model corresponds to
specifying lower and upper probabilities on events (−∞, x] such that P ([−∞, x]) = F (x)
and P ([−∞, x]) = 1 − P ((x, ∞]) = F (x). The resulting lower probability P is coherent
and ∞-monotone.

The concept of p-box has been extended to preordered spaces [17, 51]. This allows
to define them on nested confidence regions, or to consider orders on R that differ from
the natural order of numbers. In finite spaces X , it has been shown that such p-boxes
generalise possibility distributions and are actually equivalent to comonotonic clouds [18].

P-boxes have been proposed as a practical representation in situations where only
limited (probabilistic) information is available [26, 2]:

• when the mean value µ and the support I of a random variable X are known.
However, as underlined in [2], it results in a fairly imprecise p-box. Actually, the
language of lower previsions is needed to represent exactly this kind of information;

• when only a small number of samples is available. In this case, the use of Kolmogorov-
Smirnov confidence limits [25] allow to build bounds over events of the type [−∞, x];

• when experts provide imprecise assessments about percentiles (already in Walley [53,
Sec. 4.6]).

To outer approximate a given lower prevision P by a p-box, it is sufficient to define
a pre-order � on the possibility space X and to consider its lower and upper natural
extension over events [0X , x] := {y ∈ X : 0X � y � x}, where 0X denotes a smallest
element of X with respect to �.

P-boxes are most often used as initial or final representations in reliability and safety
studies, as well as in (industrial) risk analysis (see, for example, Chapter ??). The reason
for that is that cumulative distributions answer the question: “Does quantity X exceeds
a given (safety) threshold x or not?”
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1.7 Neighbourhood models

Starting from an initial probability measure P0, neighbourhood models consist in weak-
ening this initial information by means of a parameter ǫ ∈ [0, 1] that we will call here
discounting parameter . The three main neighbourhood models are the so-called pari-
mutuel model(named after horse races, for it was used to determine betting rates), the
linear-vacuous model and the odds-ratio model.

1.7.1 Pari-mutuel

The pari-mutuel model is described by the following constraint on the upper probability
of every event A: P pm(A) = min{(1 + ǫ)P0(A), 1} and, by duality (conjugacy), P pm(A) =
max{(1 + ǫ)P0(A) − ǫ, 0}. It can be shown (see [53, Sec. 3.2.5]) that this lower probability
is 2-monotone, hence previous results concerning this particular representation can be
applied to it.

The pari-mutuel model inherits its name from the betting world. Consider a gambler
betting on a event A and considering P0(A) as a fair price for a bet that returns 1 if A

happens. In this case, the gamblers gain is IA − P0(A), while the house (a bookmaker, an
insurance, . . . ) gain is P0(A) − IA. In real-world situations, the house asks for a positive
gain expectation. A way to insure such a positive expectation is to increase the price
of the bet by 1 + ǫ, transforming house gain into (1 + ǫ)P0(A) − IA. The coefficient
ǫ is then interpreted as some kind of taxation or commission coming from the house.
The use of this pari-mutuel model of the associated upper probability in insurance risk
measurements is discussed by Pelessoni et al. [43].

1.7.2 Odds-ratio

The odds-ratio model is described by the following inequalities for each pair of events
A, B:

P (A)

P (B)
≤ (1 − ǫ)

P0(A)

P0(B)
.

In the finite case, this model corresponds to a finite set of quantitative comparisons
between probabilities of events. Except for degenerate cases, it cannot be represented by
means of lower probabilities alone (lower previsions are needed).

We will denote by P or the lower prevision generated by this neighbourhood model.
The odds-ratio neighbourhood model and the more general family of models called density
ratio class in the robust Bayesian literature [4, Sec. 4] are particularly interesting for
statistical inference purposes (see Chapter ??). Indeed, the posterior generated from the
combination of an odds-ratio prior with a likelihood function is also an odds-ratio model,
which is not the case for other neighbourhood models.

1.7.3 Linear-vacuous

The linear-vacuous model, also called ǫ-contamination model in the robust Bayesian
literature, corresponds to the convex mixture of the linear prevision P0 (weighted by
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(1 − ǫ)) with the vacuous lower prevision infX (f) := infx∈X f(x) (which is equivalent
to the vacuous necessity measure, N(A) = 0 for all A ⊂ X , or to the vacuous mass
assignment m(X ) = 1). It can be described by the following constraint on the lower
probability of every event A: P lv(A) = (1 − ǫ)P0(A). The natural extension E(f) of a
linear-vacuous model to a gamble f ∈ L(X ) is given by

E(f) = (1 − ǫ)EP0
(f) + ǫinfX (f), (1.10)

with EP0
the expectation of f given P0. Since both linear and vacuous lower previsions

are ∞-monotone measures, so is the linear-vacuous model. In this model, 1 − ǫ can be
seen as the probability that the information P0 is reliable, hence ǫ is the probability that
the source is unreliable, i.e., the probability that we know nothing about a particular
variable value (explaining why we combine the initial assessment with the vacuous lower
prevision). A generalized version of this scheme is Shafer’s discounting technique for
belief functions [47]. The watch Example 1.6 is of this kind. Thanks to its simplicity, the
linear-vacuous model has been used in many applications [59, 3].

This linear-vacuous model can be extended to the more general case where an
information source provides an initial assessment in the form of a lower prevision P

(or any other model interpretable as such). A lower-vacuous mixture P ǫ can then be
defined, for any gamble f , as P ǫ(f) = (1 − ǫ)E(f) + ǫinfX (f), where E is the natural
extension of P . For the particular case of events, this gives P ǫ(A) = (1 − ǫ)P (A). When
P is ∞-monotone or when P is a possibility measure, this lower-vacuous mixture then
coincides with the classical discounting operation of the corresponding theory. Also,
simple support functions correspond to the case where P is itself vacuous w.r.t. some
events A.

1.7.4 Relations between neighbourhood models

For given ǫ and P0, the credal set induced by the odds-ratio model is included in the
credal sets induced by the linear-vacuous and the pari-mutuel model, while the two latter
generally just overlap, that is, max{P lv, P pm} ≤ P or

Example 1.11 (From [53], Sec. 4.6.). Let us consider a probability P0 on a 3 element
space X = {x1, x2, x3} with P0({x1}) = 0.5, P0({x2}) = 0.3, P0({x3}) = 0.2, with a
reliability 1 − ǫ = 0.8. The different credal sets induced by each neighbourhood model
are illustrated in the simplex of Figure 1.4 (each point of the simplex is a probability
distribution). Note that the odds-ratio neighbourhood is the only model whose edges are
not parallel to one of the simplex edges, showing that it cannot be exactly represented
by lower probabilities alone. �

1.8 Summary

In this section, we have reviewed the main practical representations that have emerged
as instrumental tools for representing imprecise probabilities and computing with them.
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pari-mutuel

linear-vacuous
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Figure 1.4: Neighbourhood models of Example 1.11

However, while they may be helpful in many situations, such as uncertainty prop-
agation in risk analysis or uncertainty assessment procedures, there are still a number
of situations where such simplified representations will not be sufficient. For instance,
practical representations presented here cannot handle the case where the information
consists of quantitative comparative assessments of probabilities [45], nor can lower and
upper probabilities. Other typical situations where the use of generic lower previsions
may be needed is in the extension of classical statistical notions such as:

• statistical inference (see Chapter ??);

• combination of marginal assessments through independence concepts (see Chap-
ter ??);

• combination of conditional assessments (see Chapter ??);

• extension of notions expressed by the means of expectation operators, such as
characteristic or generating functions.

Indeed, for the above problems, even if one starts from simple representations, the
representation resulting from information processing will usually not have the same
properties.

Figure 1.5 summarises the relations between the different representations detailed
in this chapter when X is finite. Note that for clarity purposes, some relations are not
present, for instance probability intervals on singletons include linear vacuous mixtures,
which themselves include linear and vacuous previsions as special cases. Similarly simple
support functions, that are special cases of possibility distributions, are not in the picture.
Note that such relations may not hold in infinite spaces, as in this case the different
models may not coincide in some specific situations.

For example, when X is infinite, finitely maxitive upper probabilities may fail to
possess an underlying possibility distribution, even in the Boolean case. For instance
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Lower Previsions
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Linear-Vacuous
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Figure 1.5: Summary of relations between practical representations

suppose X is the set of natural integers, and P (A) = 1 if A is infinite, 0 if finite, then
P ({x}) = 0, ∀x ∈ X . Similarly, extending Proposition 1.7 is not trivial [10]. Relations
between models of Figure 1.5 for infinite spaces largely remain to be explored, but we can
mention some results: Miranda et al. [37] explore the relation between consonant random
sets and possibility measures in the general case, while other works [52] explore the links
between p-boxes defined on totally pre-ordered spaces and possibility distributions.
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