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Abstract

Given an elliptic self-adjoint pseudo-differential operator P bounded from below,
acting on the sections of a Riemannian line bundle over a smooth closed manifold M
equipped with some Lebesgue measure, we estimate from above, as L grows to infinity,
the Betti numbers of the vanishing locus of a random section taken in the direct sum
of the eigenspaces of P with eigenvalues below L. These upper estimates follow from
some equidistribution of the critical points of the restriction of a fixed Morse func-
tion to this vanishing locus. We then consider the examples of the Laplace-Beltrami
and the Dirichlet-to-Neumann operators associated to some Riemannian metric onM .
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Introduction

Let M be a smooth closed manifold of positive dimension n, by which we mean a smooth

compact n-dimensional manifold without boundary. Let |dy| be a Lebesgue measure on

M , that is locally the absolute value of some volume form. Let E be a real line bundle

over M equipped with some Riemannian metric hE. The space Γ(M,E) of smooth global

sections of E inherits from |dy| and hE the L2-scalar product

(s, t) ∈ Γ(M,E)2 7→ 〈s, t〉 =
∫

M
hE(s(y), t(y))|dy| ∈ R. (0.1)

Let then P : Γ(M,E) → Γ(M,E) be an elliptic pseudo-differential operator of orderm > 0

which is self-adjoint with respect to (0.1) and bounded from below, see §A.2. For every

L ∈ R, we denote by

UL =
⊕

λ≤L
ker(P − λId) (0.2)

and by NL its dimension. It is equipped with the restriction 〈 , 〉L of (0.1) and thus with

the associated Gaussian measure µL whose density with respect to the Lebesgue measure

|ds| of UL reads at every s ∈ UL,

dµL(s) =
1

√
π
NL
e−〈s,s〉|ds|.
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What is the expected topology of the vanishing locus s−1(0) ⊂ M of a section s taken at

random in (UL, µL)? A famous theorem of Courant [4] bounds from above the number of

connected components of s−1(0) whatever s is, when P is the Laplace-Beltrami operator

associated to a Riemannian metric on M . In the latter case, the expected value for this

number of connected components for the round two-sphere has been estimated by F.

Nazarov and M. Sodin [18], a work partially extended in several directions (see [17], [19],

[23], [21] ). We studied a similar question in real algebraic geometry, where M is replaced

by a real projective manifold X and UL by the space RH0(X,E⊗Ld) of real holomorphic

sections of the tensor product of some holomorphic vector bundle E with some ample real

line bundle L over X (see [11], [8], [10], [9]). We there could estimate from above and

below the expected value of each Betti number of s−1(0). Our aim now is, likewise, to

estimate from above the mathematical expectations of all Betti numbers of s−1(0) for a

random section s ∈ UL, as L grows to infinity, see Corollary 0.2. This turns out to involve

asymptotic estimates of the derivatives of the Schwartz kernel associated to the orthogonal

projection onto UL which we establish in Appendix A.3, see Theorem 2.3. The asymptotic

value of this kernel has been computed by L. Hörmander in [13], after Carleman [3] and

Gärding [7] and for some derivatives, it is given by Safarov and Vassiliev in [20], but we

could not find a general result for all derivatives in the literature.

Let us now formulate our main result. When n ≥ 2, we choose a Morse function

p :M → R and set

∆L = {s ∈ UL | s does not vanish transversally or p|s−1(0) is not Morse}.

Then, for every s ∈ UL \ ∆L and every i ∈ {0, · · · , n − 1}, we introduce the empirical

measure

νi(s) =
∑

x∈Criti(p|s−1(0))\Crit(p)
δx,

where Crit(p) denotes the critical locus of p, Criti(p|s−1(0)) the set of critical points of

index i of p|s−1(0) and δx the Dirac measure at x. When n = 1, we set

ν0(s) =
∑

x∈s−1(0)

δx.

The mathematical expectation of νi is defined as

E(νi) =

∫

UL\∆L

νi(s)dµL(s).

Recall that the pseudo-differential operator P has a (homogenized) principal symbol

σP : T ∗M → R which is homogeneous of degree m, see Definition A.6, and we set

K = {ξ ∈ T ∗M |σP (ξ) ≤ 1}. (0.3)
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The volume of K for the Lebesgue measure |dξ| induced on the fibres of T ∗M by |dy| is
encoded by the function

c0 : x ∈M 7→ 1

(2π)n

∫

K∩T ∗
xM

|dξ| ∈ R+. (0.4)

It turns out that K together with |dξ| induce a Riemannian metric on M , namely

gP : (u, v) ∈ TxM 7→ 1

(2π)n

∫

K∩T ∗
xM

ξ(u)ξ(v)|dξ| (0.5)

and we denote by |dvolP | the associated Lebesgue measure of M .

Theorem 0.1 Let M be a smooth closed manifold of dimension n equipped with a Morse

function p and a Lebesgue measure |dy|. Let (E, hE) be a Riemannian real line bundle over

M and P : Γ(M,E) → Γ(M,E) be an elliptic self-ajdoint pseudo-differential operator of

order m > 0 which is bounded from below. Then, for every i ∈ {0, · · · , n − 1},
1

L
n
m

E(νi) →
L→∞

1
√
π
n+1√

c0
E(i, ker dp)|dvolP |. (0.6)

The convergence given by (0.6) is the weak convergence on the wholeM . Also, in Theorem

0.1, E(i, ker dp) denotes, for every point x ∈ M , the expected determinant of random

symmetric operators of signature (i, n − 1 − i) on ker d|xp when n > 1, see (0.8), while

it equals 1 when n = 1. Namely, P together with |dy| induce a Riemannian metric 〈 , 〉P
on the space Sym2(TM) of symmetric bilinear forms on T ∗M , which reads for every

(b1, b2) ∈ Sym2(TM)2,

〈b1, b2〉P =
1

(2π)n

(

∫

K
b1(ξ)b2(ξ)|dξ| −

1
∫

K |dξ|

∫∫

K2

b1(ξ)b2(ξ
′)|dξ||dξ′|

)

, (0.7)

where in the right-hand side of (0.7) the quadratic forms associated to b1 and b2 are also

denoted by b1 and b2, by abuse of notation. The first term in the right-hand side of (0.7)

already defines a natural Riemannian metric on Sym2(TM), see §2.2, but the one playing
a rôle in Theorem 0.1 is indeed (0.7), where the second term induces some correlations

similar to the ones already observed by L. Nicolaescu in [19]. By duality and restriction to

(ker dp)∗, (0.7) induces a Riemannian metric on Sym2((ker dp)∗) see §2.3.1, with Gaussian

measure µP . Let Sym
2
i ((ker dp)

∗) be the open cone of non-degenerated symmetric bilinear

forms of index i on ker dp. We set

E(i, ker dp) =

∫

Sym2
i ((ker dp)

∗)
|det β|dµP (β), (0.8)

where det β is computed with respect to the metric gP restricted to ker dp and given by

(0.5).

From Theorem 0.1 we thus know that the critical points of index i of p|s−1(0) equidis-

tribute in the manifold M with respect to gP , with a density involving random symmetric

3



endomorphisms of ker dp ⊂ TM . Let us mention two consequences of Theorem 0.1. First,

for every s ∈ UL \∆L, we denote by mi(s) the i-th Morse number of s−1(0), that is

mi(s) = inf
f Morse on s−1(0)

#Criti(f)

and set

E(mi) =

∫

UL\∆L

mi(s)dµL(s). (0.9)

From Morse theory we know that these Morse numbers bound from above all i-th Betti

numbers bi of s
−1(0), whatever the coefficient rings are.

Corollary 0.2 Under the hypotheses of Theorem 0.1, when n ≥ 2,

lim sup
L→∞

1

L
n
m

E(mi) ≤
1

√
π
n+1 inf

p Morse function on M

∫

M

1√
c0
E(i, ker dp)|dvolP |,

while when n = 1, we have the convergence

1

L
1
m

E(b0) →
L→∞

1

π

∫

M

1√
c0
|dvolP |.

Theorem 0.1 also specializes to the case of the Laplace-Beltrami operator ∆g associated to

some Riemannian metric g on M . In this case, we denote by |dvolg| the Lebesgue measure

associated to g and by V olg(M) its total volume
∫

M |dvolg|.

Corollary 0.3 Let (M,g) be a closed Riemannian manifold of positive dimension n equipped

with a Morse function p :M → R. Then, when n ≥ 2, for every i ∈ {0, · · · , n− 1},

1√
L
nE(νi) →

L→∞
E(i, n− 1− i)

√
π
n+1√

(n+ 2)(n + 4)n−1
|dvolg|,

where the convergence is weak on M . In particular,

lim sup
L→∞

1√
L
nE(mi) ≤

E(i, n − 1− i)
√
π
n+1√

(n+ 2)(n+ 4)n−1
V olg(M).

When n = 1, 1√
L
E(ν0) →

L→∞
1

π
√
3
|dvolg| so that 1√

L
E(b0) →

L→∞
1

π
√
3
V olg(M).

The case n = 1 in Corollary 0.3 turns out also to follow from the volume computations

carried out by P. Bérard in [1]. Note that in Corollary 0.3, E(νi) is defined using P = ∆g

as a differential operator, so that m = 2 with the notations of Theorem 0.1. Moreover,

E(i, n− 1− i) =

∫

Sym(i,n−1−i,R)
|detA|dµ(A), (0.10)

where Sym(i, n− 1− i,R) denotes the open cone of non degenerated symmetric matrices

of index i, size (n−1)×(n−1) and real coefficients, while µ denotes the Gaussian measure

on Sym(n− 1,R) associated to the scalar product

(A,B) ∈ Sym(n− 1,R)2 7→ 1

2
Tr(AB) +

1

6
(TrA)(TrB) ∈ R, (0.11)
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see §3.1. This measure differs from the standard GOE measure on Sym(n − 1,R). When

M is a surface for example, Corollary 0.3 implies that for i ∈ {0, 1},

lim sup
L→∞

1

L
E(mi) ≤

1

8π2
V olg(M).

For large values of the dimension n, we observe some exponential decrease of the upper

estimates given by Corollary 0.3 away from the mid-dimensional Betti numbers. This

exponential decrease given by Proposition 0.4 is similar to the one given by Theorem 1.6

of [10].

Proposition 0.4 For every ǫ > 0, there exist δ > 0 and C > 0 such that for every smooth

closed Riemannian manifold M of positive dimension n,

lim sup
L→∞

1

NL

∑

| i
n
− 1

2
|≥ǫ

E(mi) ≤ C exp(−δn2).

In particular,

lim sup
L→∞

1

NL
E(b0) →n→∞ 0,

which has to be compared with the Courant upper bound b0 ≤ NL, see [4]. Again, in

Proposition 0.4, E(mi) is defined using P = ∆g a s a differential operator.

As a second example, Theorem 0.1 specializes to the case of the Dirichlet-to-Neumann

operator on the boundary M of some compact Riemannian manifold (W, g), see §3.2. We

then obtain

Corollary 0.5 Let (W, g) be a smooth compact Riemannian manifold of positive dimen-

sion n + 1 with boundary M , Λg be the Dirichlet-to-Neumann operator on M , and p :

M → R be a fixed Morse function. Then, when n ≥ 2, for every i ∈ {0, · · · , n− 1},

1

Ln
E(νi) →

L→∞
E(i, n− 1− i)

√
π
n+1√

(n+ 2)(n + 4)n−1
|dvolg|,

where the convergence is weak on M and |dvolg | is the volume form on M induced by g.

In particular,

lim sup
L→∞

1

Ln
E(mi) ≤

E(i, n − 1− i)
√
π
n+1√

(n+ 2)(n + 4)n−1
V olg(M).

When n = 1, 1
LE(ν) →

L→∞
1

π
√
3
|dvolg| so that 1

LE(b0) →
L→∞

1
π
√
3
V olg(M).

In the first section we study the general case of an ample finite dimensional subspace U

of Γ(M,E) equipped with any scalar product, see Definition 1.1. We get estimates similar

to the ones given by Theorem 0.1 and Corollary 0.2, in terms of the Schwartz kernel

associated to U and its derivatives, see §1.3. The second section is devoted to the special

case of U = UL for some elliptic self-adjoint pseudo-differential operator bounded from
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below, see (0.2), and to the proofs of Theorem 0.1 and Corollary 0.2. The third section is

devoted to examples, namely the case of the Laplace-Beltrami and Dirichlet-to-Neumann

operators, where we prove Corollary 0.3, Proposition 0.4, and Corollary 0.5. In the last

section we discuss some related problems which we plan to consider in a separated paper.

We finally give in Appendix A several auxiliary results, in particular the proof of Theorem

2.3, which provides estimates of the derivatives of the Schwartz kernel associated to UL.

Aknowledgements. The research leading to these results has received funding from
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1 Morse numbers of the vanishing locus of random sections

Let M be a smooth manifold of positive dimension n, E → M be a real line bundle and

p : M → R be a Morse function. We denote by H the singular foliation by level sets of p

and for every x ∈M \ Crit(p) we set

Hx = TxH = ker d|xp.

1.1 Ample linear subspaces and incidence varieties

For every l ≥ 0, we denote by J l(E) the fibre bundle of l-jets of sections of E and for

every m ≥ l ≥ 0, we denote by πm,l : Jm(E) → J l(E) the tautological projections which

restricts the m-jets to l-jets. The jet maps are denoted by

jl : s ∈ Γ(M,E) 7→ jl(s) ∈ Γ(M,J l(E)).

Recall that the kernel of πl+1,l is canonically isomorphic to the bundle Syml+1(T ∗M)⊗E
of symmetric (l+1)-linear forms on TM with values in E. In particular, any Riemannian

metric on J l(E) induces an isomorphism

J l(E) ∼= Sl(T ∗M)⊗ E,

where Sl(T ∗M) =
⊕l

k=0 Sym
k(T ∗M).

Let U ⊂ Γ(M,E) be a linear subspace of positive dimension N and U =M ×U be the

associated rank N trivial bundle over M . The maps jl define bundle morphisms

jl : (x, s) ∈ U 7→ (x, jl(s)|x) ∈ J l(E).

Definition 1.1 (compare Def. 2.1 of [19]) The vector subspace U of Γ(M,E) is said to

be l-ample if and only if the morphism jl : U → J l(E) is onto. It is said to be ample if

and only if it is 1-ample.

We also need a relative version of this ampleness property. For every l ≥ 0, we denote

by J l(E|H) →M \Crit(p) the fibre bundle of l-jets of restrictions of sections of E to the

leaves of H. If x ∈ M \ Crit(p) and Hx = p−1(p(x)), then the fibre of J l(E|H) over x

is the space of l-jets at x of sections of the restriction E|Hx
. These bundles are likewise

equipped with projections

πm,l : Jm(E|H) → J l(E|H),

m ≥ l ≥ 0 and with jet maps

jlH : s ∈ Γ(M,E) 7→ jlH(s) ∈ Γ(M \ Crit(p),J l(E|H)).
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These jet maps induce bundle morphisms

jlH : (x, s) ∈ U |M\Crit(p) 7→ (x, jlH(s)|x) ∈ J l(E|H). (1.1)

Definition 1.2 The linear subspace U of Γ(M,E) is said to be relatively l-ample if and

only if the bundle morphism jlH : U |M\Crit(p) → J l(E|H) is onto. It is said to be relatively

ample if and only if it is relatively 1-ample. The kernel of jlH is then called the l-th incidence

variety and denoted by I l.

The incidence varieties given by Definition 1.2 are equipped with projections

πM : (x, s) ∈ I l 7→ x ∈M \ Crit(p) and
πU : (x, s) ∈ I l 7→ s ∈ U,

see A.1 for further properties. We set

∆0 = {s ∈ U | s does not vanish transversally} and if n ≥ 2,

∆1 = ∆0 ∪ {s ∈ U \∆0 | p|s−1(0) is not Morse.} (1.2)

Then, for every i ∈ {0, · · · , n− 1}, we set

I1
i = {(x, s) ∈ (M \ Crit(p))× (U \∆1) | s(x) = 0 and x ∈ Criti(p|s−1(0))},

where Criti(p|s−1(0)) denotes the set of critical points of index i of the restriction of p

to s−1(0). The disjoint union I1
0 ∪ · · · ∪ I1

n−1 provides a partition of I1 \ π−1
U (∆1), see

Appendix A.1.

These incidence varieties equip U |M\Crit(p) with some filtration whose first graded maps

read

gr0 : (x, s0) ∈ U/I0 7→ s0(x) ∈ E

and

gr1 : (x, s0, s1) ∈ U/I0 ⊕ I0/I1 7→ (s0(x),∇s1|Hx
) ∈ E ⊕ (H∗ ⊗ E).

Finally, we set

H◦ = {λ ∈ T ∗M |λ|H = 0} and

j : (x, s) ∈ I1 7→ (x,∇s,∇2s|Hx
) ∈ (H◦ ⊕ Sym2(H∗))⊗ E

when n ≥ 2, while we set

j0 : (x, s) ∈ I0 7→ (x,∇s) ∈ T ∗M ⊗ E

when n = 1. Note that det(gr1) = det(j1H) : det(U/I1) → det(H∗)⊗ (detE)n and that for

every (x, s) ∈ I1, j(x, s) induces the morphisms

j(x, s) : TxM/Hx ⊕Hx → Ex ⊕ (H∗
x ⊗ Ex) and

det(j(x, s)) : det(TxM) → det(H∗)⊗ (detE)n.

8



1.2 The induced Riemannian metrics

Lemma 1.3 Let F , G be two finite dimensional real vector spaces and A : F → G be an

onto linear map. Let 〈, 〉F be a scalar product on F and # : F ∗ → F be the associated

isomorphism. Then, the composition (A#A∗)−1 : G → G∗ defines a scalar product 〈 , 〉G
on G. Moreover, if µF (resp. µG) denotes the Gaussian measure associated to 〈 , 〉F (resp.

〈 , 〉G), then µG = A∗µF .

Let |df | (resp. |dg|) be the Lebesgue measure associated to 〈 , 〉F (resp. 〈 , 〉G). Then

dµF (f) =
1

√
π
dimF

e−‖f‖2 |df |

and dµG(g) =
1√

π
dimG e

−‖g‖2 |dg|, where ‖f‖2 = 〈f, f〉F and ‖g‖2 = 〈g, g〉G.

Proof. Let g∗1 , g
∗
2 ∈ G∗. Then 〈g∗1 , g∗2〉G∗ = g∗2(A#A

∗(g∗1)) = A∗(g∗2)(#A
∗(g∗1)) =

〈#A∗(g∗2),#A
∗(g∗1)〉F . Since A∗ is injective, we deduce that 〈 , 〉G∗ is a scalar product on

G∗ and hence that 〈 , 〉G is a scalar product on G. Moreover, #A∗ : G∗ → (kerA)⊥ is an

isometry, so that A : (kerA)⊥ → G is an isometry. Since µF is a product measure, we

deduce that µG = A∗µF . ✷

Definition 1.4 Under the hypotheses of Lemma 1.3, 〈 , 〉G (resp. µG ) is called the push-

forward of 〈 , 〉F (resp. µF ) under A.

Definition 1.5 Let U ⊂ Γ(M,E) be an ample finite dimensional linear subspace, which

is equipped with a scalar product 〈 , 〉. The latter induces a Riemannian metric on the

trivial bundle U which restricts to a metric on I l, l ∈ N. We denote by µIl the associated

Gaussian measure and by

• g1 the push-forward on E ⊕ (H∗ ⊗ E) of 〈 , 〉 under gr1,

• hl the push-forward on J l(E|H) of 〈 , 〉 under jlH and

• h the push-forward on Im(j) ⊂ (H◦ ⊕ Sym2(H∗))⊗ E of 〈 , 〉 under j,

see §1.1 and Lemma 1.3.

When n = 1, we denote by

• g0 the push-forward on E of 〈 , 〉 under gr0,

• h0 the push-forward on Im(j0) ⊂ T ∗M ⊗ E of 〈 , 〉 under j0.

Definition 1.6 The Schwartz kernel of (U, 〈 , 〉) is the section e of U ⊗ E satisfying for

every s ∈ U and x ∈M, s(x) = 〈ex, s〉.
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Note that if (s1, · · · , sN ) denotes an orthonormal basis of U , then for every x ∈ M ,

ex =
∑N

i=1 si(x)si. The metrics g1, hl and h given by Definition 1.5 can be computed in

terms of the Schwartz kernel e, as follows from Lemma 1.7 and 1.8, compare [5], [19]

Lemma 1.7 Let E be a real line bundle over a smooth manifold M equipped with a Morse

function. Let U be a finite dimensional linear subspace of Γ(M,E) which is relatively l-

ample for l ∈ N
∗ and equipped with a scalar product. Let e be its Schwartz kernel. Then, the

metrics hl and g1 are given by the restriction to the diagonal of (jlHj
l
He)

−1 and (gr1gr1e)−1.

Note that e is a section of E⊠E over M×M , so that jlHj
l
He (resp. gr

1gr1e), which applies

jlH (resp. gr1) on each variable of e, is a section of J l(E|H)
⊠2 (resp. (E ⊕ (H∗ ⊗ E))⊠2).

Its restriction to the diagonal thus defines a symmetric bilinear form on J l(E|H)
∗ (resp.

(E ⊕ (H∗ ⊗ E))∗).

Proof. Let θ∗ ∈ J l(E|H)
∗ and s ∈ U . Then, s = 〈e, s〉 and (jl∗Hθ

∗)(s) = 〈θ∗(jlHe), s〉.
Consequently, #(jlH)

∗θ∗ = θ∗(jlHe) and j
l
H#(jlH)

∗ = jlHj
l
He. Likewise, gr

1#gr1∗ = gr1gr1e.

✷

Lemma 1.8 (Compare appendix A of [19]) Let A : F → G be a linear map between two

real finite dimensional vector spaces. Let KF (resp. KG) be a subspace of F (resp. G) such

that A(KF ) ⊂ KG and a : KF → KG be the restriction of A. Let 〈 , 〉F be a scalar product

on F and let KF be equipped with its restriction. Let LG be a complement subspace of KG

in G and b : K⊥
F → KG (resp. c : K⊥

F → LG) be such that

A =

[

a b
0 c

]

: KF ⊕K⊥
F → KG ⊕ LG.

Then,

A#A∗ =

[

a#a∗ + b#b∗ b#c∗

c#b∗ c#c∗

]

.

�

Remark 1.9 Since a#a∗ = (a#a∗+ b#b∗)− b#c∗(c#c∗)−1c#b∗, we deduce from Lemma

1.8 that the scalar product (a#a∗)−1 can be computed from (A#A∗)−1. Applying Lemma

1.8 to














F = U,
G = J 1(E)×M J 2(E,H),
KF = I1 and
KG = Im(j) ⊂ (H◦ ⊕ Sym2(H∗))⊗ E,

we deduce that the metric h can be computed in terms of the Schwartz kernel e of U and

the jet maps j1 and j2H.
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1.3 Distribution of critical points

1.3.1 The main result

Let U ⊂ Γ(M,E) be a relatively l-ample linear subspace of finite dimension N , see Defini-

tion 1.2. We equip U with a scalar product 〈 , 〉 and denote by µU the associated Gaussian

measure, so that at every point s ∈ U its density against the Lebesgue measure |ds| on U
equals 1√

π
N e

−〈s,s〉. Then, for every i ∈ {0, · · · n − 1} and every s ∈ U \ ∆1, where ∆1 is

given by (1.2) we set

νi(s) =
∑

x∈Criti(p|s−1(0))\Crit(p)
δx

E(νi) =

∫

U\∆1

νi(s)dµU (s)

when n ≥ 2, while when n = 1, we set

ν0(s) =
∑

x∈s−1(0)

δx

E(ν0) =

∫

s∈U\∆0

ν0(s)dµU (s).

Note that we have no control a priori on the number of critical points of the restriction of

p to s−1(0), so that E(νi) may not be well defined.

Theorem 1.10 Let E be a real line bundle over a smooth n-dimensional manifold M

equipped with a Morse function. Let U ⊂ Γ(M,E) be a finite dimensional relatively ample

linear subspace equipped with a scalar product. Then, when n ≥ 2, for every i ∈ {0, · · · , n−
1},

E(νi) =
1√
π
n

∫∫

(H◦⊕Sym2
i (H

∗))⊗E
|(α, β)∗dvolg1 |j∗dµI1(α, β). (1.3)

Moreover, this measure has no atom and its density with respect to any Lebesgue measure

lies in C∞(M \ Crit(p)). If in addition at every point x ∈ Crit(p) the jet map j1 : U →
J 1(E)|x is onto, then this density lies in L1

loc(M), so that E(νi) defines a measure on the

whole M . When n = 1,

E(ν0) =
1√
π

∫

T ∗M⊗E
|α∗dvolg0 |j0∗dµI0(α).

Theorem 1.10 describes the expected distribution of critical points of the restriction

p|s−1(0). Every pair (α, β) ∈ (H◦ ⊕ Sym2(H∗))⊗E defines a morphism

(α, β) : (TM/H)⊕H → E ⊕ (H∗ ⊗ E),

while the bundleE⊕(H∗⊗E) is equipped with the metric g1 and its associated volume form

dvolg1 , see Definition 1.5. It follows that (TM/H) ⊕H inherits the n-form (α, β)∗dvolg1 .

11



The latter induces a n-form on TM , also denoted by (α, β)∗dvolg1 , since det(TM) is

canonically isomorphic to det((TM/H)⊕H). Finally, we have denoted by Sym2
i (H

∗) the

open cone of non-degenerated symmetric bilinear forms of index i on H. Recall that the

index of a symmetric bilinear form is the maximal dimension of a subspace on which

the form restricts to a negative definite one. Note that the form (α, β)∗dvolg1 depends

polynomially on (α, β), so that it is integrable with respect to the Gaussian measure

j∗µI1 . Note finally that from Lemma 1.7 and Remark 1.9, both g1 and j∗dµI1 can be

computed in terms of the Schwartz kernel of (U, 〈 , 〉), see Definition 1.6.

Proof. By definition, E(νi) = (πM |I1
i
)∗π∗UdµU since the measure of ∆1 vanishes by

Lemma A.1. From the coarea formula, see Theorem 3.2.3 of [6] or Theorem 1 of [22], we

get

(πM |I1
i
)∗π

∗
UdµU =

1√
π
n

∫

I1
i

|dvol((dπM ◦dπ−1
U

)#(dπM◦dπ−1
U

)∗)−1 |dµI1 ,

Note indeed that I1 has codimension n in U , so that the normalization in dµI1
i
and dµU

differs by a factor 1/
√
π
n
. For every (x, s) ∈ I1,

T(x,s)I1 = {(ẋ, ṡ) ∈ T(x,s)U | j1H(ṡ) +∇J
ẋ (j

1
H(s)) = 0},

see (A.2), so that d|(x,s)πM ◦ d|(x,s)π−1
U = −(∇J (j1H(s)))

−1 ◦ j1H. The operator ∇J (j1H(s))

is invertible since s ∈ UL \ ∆1, see Remark A.2. It follows that the determinant of the

morphism U/I1 → TM induced by d|(x,s)πM ◦ d|(x,s)π−1
U coincides with the one of

−j(s)−1 ◦ gr1 : U/I0 ⊕ I0/I1 → TM/H ⊕H

via the canonical isomorphisms det(U/I1) ∼= det(U/I0⊕I0/I1) and det(TM) ∼= det(TM/H⊕
H). We deduce that

dvol((dπM ◦dπ−1
U

)#(dπM◦dπ−1
U

)∗)−1 = dvol((j(s)−1◦gr1)#(j(s)−1◦gr1)∗)−1 = j(s)∗dvolg1 .

Using the substitution (α, β) = j(s), we conclude that

E(νi) =
1√
π
n

∫

(H◦⊕Sym2
i (H

∗))⊗E
|(α, β)∗dvolg1 |j∗µI1(α, β).

Note that g1 is a smooth metric on E⊕ (H∗⊗E) since µI1 is a smooth family of Gaussian

measures on I1 and j a smooth morphism. We deduce that E(νi) has no atom and that

its density with respect to any Lebesgue measure on M belongs to C∞(M \ Crit(p)).
Now, let us assume in addition that at every critical point x of p, the jet map j1 : U →

J 1(E)|x is onto and let us prove that this density then also belongs to L1
loc(M), so that

E(νi) extends to a measure without atom on the wholeM . We denote by π : P (T ∗M) →M

the projectivization of the cotangent bundle and by τ ⊂ π∗(T ∗M) the tautological line
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bundle over P (T ∗M). From the inclusion τ ⊗ π∗E → π∗(T ∗M ⊗ E) we deduce the short

exact sequence

0 → τ ⊗ π∗E → π∗J 1(E) → π∗J 1(E)/τ ⊗ π∗E → 0.

With a slight abuse of notation, we denote byH ⊂ π∗(TM) the codimension one subbundle

given by the kernels of the elements of τ \ {0} and by J 1(E,H) the quotient bundle

π∗J 1(E)/τ⊗π∗(E). Let V be a compact neighbourhood of Crit(p) such that the restriction

of the morphism j1 : U |V → J 1(E)|V is onto. We deduce a morphism j1 : π∗U →
π∗J 1(E) over P (T ∗M)|V which is onto and by composition with the onto map π∗J 1(E) →
J 1(E,H), an onto morphism π∗U → J 1(E,H). We denote, with an abuse of notation, by

I the kernel of the latter and by g1 the metric that this morphism induces by push-forward

on J 1(E,H) over P (T ∗M)|V , see Lemma 1.3. Now, let ∇ be a torsion-free connection on

M and let ∇E be a connection on E. They define a bundle morphism

J : s ∈ I 7→ (∇s|H ,∇(∇Es)|H2) ∈ (τ ⊕ Sym2(H∗))⊗ π∗E.

We then set

Ω =
1

πn

∫

I
J (s)∗|dvolg1 |dµI(s) =

1

πn

∫

τ⊗π∗E

∫

Sym2(H∗)⊗π∗E
(α, β)∗|dvolg1 |(J∗dµI)(α, β),

where µI denotes the fiberwise Gaussian measure associated to the restriction of the metric

of π∗U to I. Consequently, Ω provides a section of the fibre bundle π∗ det(T ∗M) over the

compact P (T ∗M)|V . Let ω be a volume form on V . It trivializes det(T ∗M) over V and

π∗ det(T ∗M) over P (T ∗M)|V . We deduce that there exists a positive constant c > 0 such

that |Ω| ≤ c|ω| over P (T ∗M)|V . However, from Lemma A.3, the jet map j on I1 factors as

j = T ◦ J , where T denotes the trigonal endomorphism of (H◦ ⊕ Sym2(H∗))⊗E defined

by

(α, β) 7→ (α, β − (
1

dp
∇(dp)|H2)α)

and where I1 is identified with the pull-back [dp]∗I by the section [dp] of P (T ∗M)|M\Crit(p)
defined by the differential of p. Finally,

E(νi) =
1

πn

∫∫

(H◦⊕Sym2
i (H

∗))⊗π∗E
|T ∗(α, β)∗dvolg1 |J∗dµI1

≤ C|ω|
πn

∫∫

(H◦⊕Sym2
i (H

∗))⊗π∗E
|detT (α, β)|J∗dµI1 .

Since the differential dp vanishes transversally on Crit(p), the function detT (α, β) is

polynomial in α, β and his coefficients are smooth functions on M \ Crit(p) with poles

of order at most n − 1 at M \ Crit(p). After integration against the Gaussian measure

J∗dµI1 , we deduce that the function
∫

H◦⊗E

∫

Sym2
i (H

∗)⊗π∗E
|detT (α, β)|J∗dµI1
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is smooth over M \Crit(p) with poles of order at most n−1 on Crit(p) (compare Remark

3.3.3 of [9]). Since dimM = n, we deduce that this function belongs to L1
loc(M), so that

E(νi) extends to a measure without atom over the whole M .

In the case n = 1,

T(x,s)I0 = {(ẋ, ṡ) ∈ T(x,s)U | ṡ(x) +∇ẋs|x = 0},

so that d|(x,s)πM ◦ d|(x,s)π−1
U = −(j0(s))

−1 ◦ gr0. We deduce that

dvol((dπM ◦dπ−1
U

)#(dπM◦dπ−1
U

)∗)−1 = dvol((j0(s)−1◦gr0)#(j0(s)−1◦gr0)∗)−1 = j0(s)
∗dvolg0 .

Using the substitution α = j0(s), we conclude that E(ν) =
1√
π

∫

T ∗M⊗E |α∗dvolg0 |j0∗µI0(α).

✷

1.3.2 Mean Morse numbers

Under the hypotheses of Theorem 1.10, assume in addition that M is compact without

boundary. Then, for every s ∈ U \∆1, s
−1(0) is a smooth compact hypersurface of M and

for every i ∈ {0, · · · , n− 1}, we set

E(mi) =

∫

U\∆1

mi(s)dµU (s),

see (0.9).

Corollary 1.11 Under the hypotheses of Theorem 1.10, we assume in addition that M is

closed. Then, for every i ∈ {0, · · · , n− 1} and every volume form ω on M ,

E(mi) ≤
1√
π
n

∫

M

∫∫

(H◦⊕Sym2
i (H

∗))⊗E
|(α, β)∗dvolg1 |j∗dµI1(α, β).

Proof. Corollary 1.11 is a consequence of Theorem 1.10 after integration of the constant

function 1. ✷

1.3.3 An asymptotic result

Let now (UL)L∈R∗
+

be a family of finite dimensional linear subspaces of Γ(M,E) which

are ample for L large enough. We want to estimate the asymptotic of the measure E(νi)

computed by Theorem 1.10 as L grows to infinity. In order to do so, we need to assume

that the family (UL)L∈R∗
+
is tamed in some sense and from Remark 1.9, we know that it

is sufficient to tame the Schwartz kernel (eL)L∈R∗
+
, see Definition 1.6. However, we found

it convenient to tame directly the induced metrics given by Definition 1.5, see Definition

1.14.

Definition 1.12 Let p, q be two positive integers. A one-parameter (p, q)-group of endo-

morphisms of jet bundles is a one-parameter group (aL)L∈R∗
+
of diagonalizable endomor-

phisms on the jet bundles J l(E), l ∈ N such that
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1. For every 0 ≤ l ≤ m, the projection πm,l : Jm(E) → J l(E) is aL-equivariant.

2. For every l ∈ N, the restriction of aL to kerπl+1,l = Syml+1(TM∗)⊗ E is a homo-

thetic transformation of ratio L−p−(l+1)q.

Any such one-parameter (p, q)-group of endomorphisms is obtained in the following way.

We choose, for every l ∈ N, a complement subspace Kl+1 to kerπl+1,l in J l+1(E) and then

we require that aL preservesKl+1 for every l ∈ N, L ∈ R
∗
+. The two conditions of Definition

1.12 then determine (aL)L∈R∗
+
in a unique way. Note that any metric on J l+1(E) provides

such a complement Kl+1 to ker πl+1,l, namely its orthogonal complement and induces then

an isomorphism J l+1(E) ∼= Sl+1(T ∗M ⊗E).

Lemma 1.13 Let E be a real fibre bundle over a smooth manifold M . Let (aL)L∈R∗
+
and

(bL)L∈R∗
+
be two one-parameter (p, q)-groups of jet bundle endomorphisms, p, q > 0. Then,

for every l ∈ N, the composition

aL ◦ b−1
L : J l(E) → J l(E)

converges to the identity as L grows to ∞.

Proof. We proceed by induction on l ∈ N. When l = 0, aL and bL are homothetic

transformations of ratio L−p on J 0(E), so that aL ◦ b−1
L equals the identity for every

L ∈ R
∗
+. Let us now assume that Lemma 1.13 holds true up to l ∈ N and prove it for

l + 1. The endomorphisms aL and bL are diagonalizable and hence leave invariant some

complement subspaces Ka
L and Kb

L of kerπl+1,l in J l+1(E). These complement subspaces

do not depend on L ∈ R
∗
+ since aL and aL′ (resp. bL and bL′) commute for all L, L′ ∈ R

∗
+.

We deduce that in a diagonalization basis of aL, where the eigenvalues are ordered in

the decreasing way, L−p, L−p−q, L−p−2q, · · · , L−p−(l+1)q, there exists a lower unipotent

endomorphism T such that bL = T ◦aL ◦T−1. It follows that aL ◦b−1
L = (aL ◦T ◦a−1

L )◦T−1

is a product of unipotent endomorphisms (aL ◦ T ◦ a−1
L ) and T−1. The coefficients of

aL ◦T ◦a−1
L converge outside the diagonal to 0 and the same holds for those of the product

aL ◦ T ◦ a−1
L ◦ T−1. ✷

Note that every one-parameter (p, q)-group of endomorphisms (aL)L∈R∗
+

of jet bundle

J l(E), l ∈ N, induces a one-parameter group of endomorphisms of the bundle J l(E|H)

denoted by (aL)L∈R∗
+
too.

Now, let (UL)L∈R∗
+
be a family of finite dimensional subspaces of Γ(M,E) which are

asymptotically ample, meaning ample for L large enough. We equip them with scalar

products 〈 , 〉L∈R∗
+
For L large enough the latter induces after push-forward by gr0 and gr1

respectively, a sequence of Riemannian metrics g0L, g
1
L on E and E⊕(H∗⊗E) respectively,

see Definition 1.5. It also induces the sequence of push-forwarded measures j0∗µI0 and

j∗µI1
i
on (H◦ ⊕ Sym2(H))⊗ E.
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Definition 1.14 The family (UL, 〈 , 〉L)L∈R∗
+
is said to be (p, q)-tamed if and only if there

exists a one-parameter (p, q)-group of endomorphisms (aL)L∈R∗
+
of jet bundles such that

• When n ≥ 2, (aL)
−1∗g1L converges to a metric g∞ on E ⊕ (H∗ ⊗ E) and for every

i ∈ {0, · · · , n− 1}, (aL)∗j∗µI1
i
converges to a measure µi∞.

• When n = 1, (a∗L)
−1g0L converges to a metric g∞ on E and (aL)∗j0∗µI0 converges to

a measure µ∞.

Corollary 1.15 Let E be a real line bundle over a smooth manifold equipped with a Morse

function. Let (UL, 〈 , 〉L)L∈R∗
+
be a family of asymptotically ample finite dimensional linear

subspaces of Γ(M,E), which are (p, q)-tamed for some p, q > 0. Then, for every i ∈
{0, · · · , n− 1},

1

Lqn
E(νi) →

L→∞
1√
π
n

∫∫

(H◦⊕Sym2
i (H))⊗E

|(α, β)∗dvolg∞ |dµi∞(α, β)

weakly on M when n ≥ 2. When n = 1, 1
LqE(ν) →

L→∞
1√
π

∫

T ∗M⊗E |α∗dvolg∞ |dµ∞(α).

Proof. From Theorem 1.10, for every L ∈ R
∗
+,

E(νi) =
1√
π
n

∫∫

(H◦⊕Sym2
i (H))⊗E

|(α, β)∗dvolg1 |j∗µI1
i
(α, β).

Let (aL)L∈R∗
+
be the one-parameter (p, q)-group of endomorphisms of jet bundles such that

(a−1
L )∗g1L converges to g∞ as L grows to infinity and (aL)∗j∗µI1

i
converges to µi∞. Then,

dvola−1∗
L

g1
L
= a−1∗

L dvolg1
L
= Lp+(n−1)(p+q)dvolg1

L
,

so that dvola−1∗
L

g1
L

∼
L→∞

L−p−(n−1)(p+q)dvolg∞ . We perform the substitution aLα = α̃ and

aLβ = β̃, so that

E(νi) ∼
L→∞

L−p−(n−1)(p+q)Lp+q+(n−1)(p+2q) 1√
π
n

∫∫

(H◦⊕Sym2
i (H))⊗E

|(α̃, β̃)∗dvolg∞ |dµi∞(α̃, β̃)

since (aL ◦ j)∗µI1
i

→
L→∞

µi∞. The proof in the case n = 1 is similar. ✷

2 Random eigensections of a self-adjoint elliptic operator

The aim of this section is to prove Theorem 0.1 and Corollary 0.2, see §2.3.2. We first

recall in §2.1 the asymptotic estimates of the derivatives of the spectral function along

the diagonal, which are needed to get these results from Remark 1.9. A proof of these

estimates is given in Appendix A.3 while several basic definitions on pseudo-differential

operators are recalled in Appendix A.2.
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2.1 Asymptotic derivatives of the spectral function along the diagonal

Under the hypotheses of Theorem 0.1, we assume P to be positive, see Remark A.9 and

for every L ∈ R
∗
+, we denote by eL ∈ Γ(M ×M,E ⊠ E) the spectral function of UL, so

that

∀s ∈ UL,∀x ∈M,s(x) =

∫

M
hE(eL(x, y), s(y))|dy|,

compare Definition 1.6. In particular, if (s1, · · · , sNL
) denotes an orthonormal basis of UL,

then for every x, y ∈M,eL(x, y) =
∑NL

i=1 si(x)si(y). The metric hE induces an isomorphism

between the restriction of E⊠E to the diagonal of M ×M and the trivial line bundle over

M and under this isomorphism, for every x ∈ M,eL(x, x) =
∑NL

i=1 hE(si(x), si(x)) > 0.

The dimension NL of UL then reads NL =
∫

M eL(y, y)|dy|. The asymptotic behaviour of

the spectral function eL along the diagonal is given by Theorem 2.1, due to Carleman [3]

when m = 2 and to G̊arding [7] in general.

Theorem 2.1 ([3], [7]) Let P be an elliptic pseudo-differential operator of order m > 0,

which is self-adjoint and bounded from below, acting on a real Riemannian line bundle

over a smooth closed manifold (M, |dy|) of positive dimension n. Let σP be the principal

symbol of P and eL be its spectral function, L ∈ R+. Then, for every x ∈M ,

eL(x, x) ∼
L→∞

1

(2π)n

∫

KL

|dξ|,

where |dξ| denotes the measure on T ∗
xM induced by |dy| and

KL = {ξ ∈ T ∗M |σP (ξ) ≤ L}. (2.1)

Note that K1 = K, see (0.3). In particular, the asymptotic given by Theorem 2.1 neither

depends on the Riemannian metric of E, nor on the global geometry ofM , it only depends

on the measure |dy| of M at x and on the symbol of P .

Remark 2.2 Recall that Theorem 2.1 recovers Weyl’s theorem, which computes the di-

mension
1

L
n
m

NL →
L→∞

∫

M
c0(y)|dy|,

see (0.4). For example, when P stands for the Laplace-Beltrami operator associated to

some Riemannian metric on M , this formula reads

1√
L
nNL →

L→∞
1

(2π)n
V ol(Bn)V olgM,

where V ol(Bn) denotes the volume of the unit ball in R
n, see §3.1.

In order to apply the results of §1, we have to know in addition the asymptotic of the

partial derivatives of the spectral function eL along the diagonal. This is the object of

Theorem 2.3.
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Theorem 2.3 Under the hypotheses of Theorem 2.1, let Q1 and Q2 be two differential

operators on E with principal symbols σQ1 and σQ2 , of order |σQ1 | and |σQ2 |, acting on

the first and second variables of eL respectively. Then, for every x ∈M ,

Q1Q2eL|(x,x) =
1

(2π)n

∫

KL

σQ1(iξ)σQ2(iξ)|dξ|+O(L
n+|σQ1

|+|σQ2
|−1

m ), (2.2)

see (2.1).

Theorem 2.3 is proved by L. Hörmander in [13] when Q1 and Q2 are trivial, providing the

order of the error term in Theorem 2.1. It is written in [20] when Q1 and Q2 are of the same

order, see Theorem 1.8.5 of [20], but we did not find a reference for the general case, which

we need here. In the particular case where P is the Laplace-Beltrami operator, Theorem

2.3 is proved in [2], see also [19]. We give in Appendix A.3 a proof of Theorem 2.3 which

follows closely [13]. Note that when |σQ1 | and |σQ2 | are not of the same parity, the main

term of the right-hand side of (2.2) vanishes since for every ξ ∈ T ∗M, σP (−ξ) = σP (ξ)

while the principal symbols σQ1 and σQ2 are homogeneous. When |σQ1 | = |σQ2 |mod(2),
(2.2) reads

Q1Q2eL|(x,x) ∼
L→∞

1

(2π)n
(−1)

|σQ1
|−|σQ2

|

2

∫

KL

σQ1(ξ)σQ2(ξ)|dξ|.

2.2 Metrics on symmetric tensor algebras

Let V be a real vector space and V ∗ be its dual. For every k ∈ N, we denote by Symk(V )

the space of symmetric k-linear forms on V ∗. For every q ∈ Symk(V ) and every ξ ∈ V ∗,

we set q(ξ) = q(ξ, · · · , ξ) and q(iξ) = ikq(ξ). For every l ∈ N, we set

Sl(V ) =
⊕

0≤k≤l
Symk(V ),

Sl+(V ) = {q ∈ Sl(V ) | q(ξ) = q(−ξ)},
Sl−(V ) = {q ∈ Sl(V ) | q(ξ) = −q(−ξ)}.

Lemma 2.4 Let V be a real vector space and l ∈ N. Let K ⊂ V ∗ and µ be a positive finite

measure on K such that

1. −id preserves K and µ

2. The support of µ is not included in any degree l algebraic hypersurface of V .

Then, the bilinear form

κl : Sl(V )× Sl(V ) → C

(q1, q2) 7→ 1

µ(K)

∫

K
q1(iξ)q2(iξ)dµ(ξ) ∈ C

associated to (K,µ) only takes real values and defines a scalar product on Sl(V ). Moreover,

Sl+(V ) and Sl−(V ) are orthogonal to each other with respect to κl.
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Proof. The form κl is bilinear and the change of variables ξ ∈ K 7→ −ξ ∈ K yields that

Sl+(V ) and Sl−(V ) are orthogonal to each other. Moreover, the restrictions of κl to Sl+(V )

and Sl−(V ) are real and symmetric, so that κl itself is symmetric and takes only real values.

Lastly, if q =
∑⌊l/2⌋

j=0 qj ∈ Sl+(V ), where for every j ∈ {0, · · · , ⌊l/2⌋}, qj ∈ Sym2j(V l), then

κl(q, q) =
1

µ(K)

∫

K
(

⌊l/2⌋
∑

j=0

(−1)jqj(ξ))
2dµ(ξ),

so that the restriction of κl to Sl+(V ) is non negative and the second hypothesis implies

that it is positive definite. The same conclusion holds for the restriction of κl to Sl−(V ),

hence the result. ✷

Remark 2.5 1. Under the hypotheses of Lemma 2.4, the restriction of κ1 to Sym1(V ) =

V defines a scalar product on V .

2. If the measure µ can be chosen to be the absolute value of an alternated dimV -linear

form on V , then the scalar products κl given by Lemma 2.4 do not depend on the

choice of this form and only depend on K. This is the case when K is bounded and

has a non-empty interior.

2.3 Proof of Theorem 0.1 and Corollary 0.2

2.3.1 Induced metric on the symmetric tensor bundle

Since P is real and self-adjoint, the set KL = {ξ ∈ T ∗M |σP (ξ) ≤ L} is invariant under

−Id and induces thus a Riemannian metric onM and even on all symmetric tensor powers

Sl(TM), l ∈ N, see Lemma 2.4 and Remark 2.5.

Definition 2.6 For every L ∈ R
∗
+ and l ∈ N, we denote by κlL the Riemannian metrics

induced by KL on Sl(TM), see Lemma 2.4.

Together with the metric hE , κ
l
L induces a metric on Sl(TM)⊗E∗ and by duality a metric

on Sl(T ∗M)⊗ E, still denoted by κlL.

Proposition 2.7 Under the hypotheses of Theorem 2.1, for every l ∈ N and every large

enough L ∈ R
∗
+, (UL, 〈 , 〉L) is l-ample and ( n

2m ,
1
m)-tamed. Moreover, the push-forward of

〈 , 〉L under jl : UL → J l(E) satisfies

jl∗〈 , 〉L ∼
L→∞

L
n
m c0κ

l
L,

see §1.3.3.

Proof. From Lemma 1.7, the push-forward hL of 〈 , 〉L under jl induces on J l(E)∗ the

metric jljleL. Let us fix a torsion-free connection ∇ on TM and a connection ∇E on
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E. They induce a decomposition J l(E) ∼= Sl(T ∗M) ⊗ E which equips J l(E)∗ with the

metric κlL. From Theorem 2.3 follows that the metrics h1L and L
n
m c0κ

l
L are equivalent as

L grows to infinity. In particular the asymptotic value of the induced metric L
n
m c0κ

l
L on

J l(E)∗ does not depend on the chosen decomposition J l(E) ∼= Sl(T ∗M)⊗E, see Lemma

1.13. Now, κlL is (p, q)-tamed with p = n/(2m) and q = 1/m. Indeed, the one-parameter

(p, q)-group of fibre bundles endomorphisms

aL :

l
⊕

k=0

Symk(T ∗M)⊗ E →
l

⊕

k=0

Symk(T ∗M)⊗ E

(qk)k∈{0,··· ,l} 7→ (L− n
2m

− k
m qk)k∈{0,··· ,l}.

is such that Ln/ma−1∗
L κlL converges to the metric associated to (K, dξ) given by Lemma

2.4. ✷

Corollary 2.8 Under the hypotheses of Theorem 0.1, the push-forward of 〈 , 〉L under j

gets equivalent, as L grows to infinity and when n ≥ 2, to

(

(H⊥ × Sym2(H∗))⊗ E∗)2 → R

((a1, b1), (a2, b2)) 7→ 1

(2π)n
(

∫

KL

hE(a1(ξ), a2(ξ)) + hE(b1(ξ), b2(ξ))|dξ| − · · ·

· · · 1
∫

KL
|dξ|

∫∫

K2
L

hE(b1(ξ), b2(ξ
′))|dξ||dξ′|

)

.

When n = 1, the push-forward of 〈 , 〉L under j0 gets equivalent, as L grows to infinity,

to (a1, a2) ∈ (T ∗M ⊗ E∗)2 7→ 1
2π

∫

KL
hE(a1(ξ), a2(ξ))|dξ|.

In Corollary 2.8, H⊥ denotes the orthogonal of H with respect to the Riemannian metric

of M associated to KL, given by Definition 2.6. The distribution H is defined in §1 and j

in §1.1.

Proof. From Proposition 2.7, the metric j2#(j2)∗ of J 2(E)∗ gets equivalent to L
n
m c0κ

2
L

as L grows to infinity. By restriction to the fibre product
(

J 1(E)×J 1(E|H) J 2(E|H)
)∗
, we

deduce that the metric induced on this space gets equivalent to

((R ⊕ TM ⊕ Sym2(H))⊗ E∗)2 → R

((c1, a1, b1), (c2, a2, b2)) 7→ 1

(2π)n

∫

KL

hE(c1, c2)(ξ) − hE(c1, b2)(ξ)− · · ·

· · · hE(b1, c2)(ξ) + hE(b1, b2)(ξ) + hE(a1, a2)(ξ)|dξ|.

We apply then Lemma 1.8 and Remark 1.9 to F = UL, G = (J 1(E)×J 1(E|H) J 2(E|H))
∗,

KF = I1 and KG = (H⊥⊕Sym2(H))⊗E∗, where the middle term TM splits as H⊕H⊥.

We deduce that the factors H⊥ ⊗ E∗ and Sym2(H)⊗ E∗ get asymptotically orthogonal,
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that the metric induced on H⊥ ⊗ E∗ is asymptotically equivalent to µ(KL)
(2π)n times the one

induced by KL and finally that the one induced on Sym2(H)⊗ E∗ is equivalent to

(b1, b2) 7→
1

(2π)n
(

∫

KL

hE(b1, b2)(ξ)|dξ| −
1

∫

KL
|dξ|

∫∫

KL×KL

hE(b1(ξ), b2(ξ
′))|dξ||dξ′|

)

.

Indeed, with the notations of Lemma 1.8, LG = (R ⊕ H) ⊗ E∗ gets a metric c#c∗ for

which the factors R ⊗ E∗ and H ⊗ E∗ are asymptotically orthogonal to each other and

the metric on R ⊗ E∗ is 1
(2π)nµ(KL)hE . Moreover, the correlation b#c∗ only involves the

factors R⊗ E∗ and Sym2(H)⊗ E∗ and reads

(c1, b2) ∈ E∗ ⊕ (Sym2(H)⊗ E∗) 7→ − 1

(2π)n

∫

KL

hE(c1, b2)(ξ)|dξ|.

Finally a#a∗ + b#b∗ is a metric on (H⊥ ⊕ Sym2(H)) ⊗ E∗ for which both factors are

asymptotically orthogonal, the metric induced on H⊥ ⊗ E∗ is asymptotically equivalent

to µ(KL)
(2π)n times the one induced by KL, and the one induced on Sym2(H)⊗ E∗ is

(b1, b2) ∈ Sym2(H)⊗ E∗ 7→ 1

(2π)n

∫

KL

hE(b1, b2)(ξ)|dξ|.

We deduce now that the correlation term b#c∗(c#c∗)−1c#b∗ just reads

1

(2π)n
∫

KL
|dξ|

∫∫

KL×KL

hE(b1(ξ), b2(ξ
′))|dξ||dξ′|.

Hence the result. ✷

2.3.2 Proof of Theorem 0.1 and Corollary 0.2

We know from Proposition 2.7 that UL =
⊕

λ≤L ker(P −λId) equipped with the L2-scalar

product 〈 , 〉L gets ample for L large enough and ( n
2m ,

1
m)-tamed, see Definition 1.14. From

Corollary 1.15, we deduce that 1

L
n
m
E(νi) weakly converges on the whole M to the measure

1√
π
n

∫∫

(H⊥×Sym2
i (H

∗))⊗E
|(α, β)∗dvolg∞ |dµi∞(α, β), (2.3)

where the metric g∞ and the measure µi∞ are given by Definition 1.14. From Proposition

2.7 and Corollary 2.8, the factors E and H∗⊗E are orthogonal to each other with respect

to g∞, and g∞ restricts to c0hE on E and to the metric gP ⊗ hE on H∗ ⊗ E, see (0.5).

Likewise, from Corollary 2.8 the measure µi∞ is a product of the measure on H◦ ⊗ E

induced by gP and hE, and the measure on Sym2
i (H) ⊗ E induced by (0.7) and hE . We

deduce that dvolg∞ = 1√
c0
dvolhE and that (2.3) becomes

1√
π
n√

c0
E(i, ker dp)

(

∫

H⊥⊗E
|α|dµP (α)

)

|dvolP |.
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We conclude thanks to the equality
∫

H⊥⊗E
|α|dµP (α) =

∫

R

|a|e−a2 da√
π
=

1√
π
.

When n = 1, 1

L
1
m
E(ν) weakly converges to the measure

1√
π

∫

T ∗M⊗E
|α∗dvolg0∞ |dµ∞(α) =

1√
π
√
c0

∫

T ∗M⊗E
|α|dµK(α)|dvolP |

=
1

π
√
c0
|dvolP |.�

Proof of Corollary 0.2. It is a consequence of Theorem 0.1 after integration of the

constant function 1, compare Corollary 1.11. ✷

3 Examples

We investigate in this third section two examples, the Laplace-Beltrami operator in §3.1,
where we prove Corollary 0.3 and Proposition 0.4, and the Dirichlet-to-Neumann operator

in §3.2, where we prove Corollary 0.5.

3.1 The Laplace-Beltrami operator

3.1.1 Proof of Corollary 0.3

The principal symbol of the Laplace-Beltrami operator ∆g reads σ∆g : ξ ∈ T ∗M 7→
g(ξ, ξ) ∈ R, so that the compact K defined by (0.3) reads

K = {ξ ∈ T ∗M | g(ξ, ξ) ≤ 1}.

The Riemannian metric g∆g induced on M by the pair (K, |dξ|) reads at every point

x ∈M , (u, v) ∈ TxM
2 7→ 1

(2π)n

∫

K ξ(u)ξ(v)|dξ| by (0.5), so that

g∆g = c1g (3.1)

and

|dvol∆g | =
√
c1
n|dξ|, (3.2)

where

c1 =
1

(2π)n

∫

K
ξ21 |dξ|. (3.3)

Let us choose an orthonormal basis (∂/∂x1 , · · · , ∂/∂xn) of TxM such that (∂/∂x1 , · · · , ∂/∂xn−1)

spans Hx and let us denote by (ξ1, · · · , ξn) its dual basis. They induce isomorphisms

Sym2(H) ∼= Sym(n − 1,R) and Sym2(H)∗ ∼= Sym(n − 1,R)∗. From Corollary 2.8, when

n > 2 the metric induced by (K, |dξ|) on Sym(n− 1,R)∗ then reads

∀(A,B) = ((aij)1≤i,j≤n−1, (bij)1≤i,j≤n−1) ∈ (Sym∗(n− 1,R))2,
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〈A,B〉∆g =
1

(2π)n
(

∫

K
A(ξ)B(ξ)|dξ| − 1

∫

K |dξ|

∫

K
A(ξ)|dξ|

∫

K
B(ξ)|dξ|

)

where
∫

K
A(ξ)B(ξ)|dξ| =

∫

K
(

n−1
∑

i=1

aiiξ
2
i + 2

∑

1≤i<j≤n−1

aijξiξj)(

n−1
∑

i=1

biiξ
2
i + 2

∑

1≤i<j≤n−1

bijξiξj)|dξ|

and
∫

K
A(ξ)|dξ|

∫

K
B(ξ)|dξ| =

∫

K
(
n−1
∑

i=1

aiiξ
2
i + 2

∑

1≤i<j≤n−1

aijξiξj)|dξ| · · ·

· · ·
∫

K
(

n−1
∑

i=1

biiξ
2
i + 2

∑

1≤i<j≤n−1

bijξiξj)|dξ|,

so that

〈A,B〉K = (c4 −
c21
c0
)

n−1
∑

i=1

aiibii + (c2 −
c21
c0
)

∑

1≤i 6=j≤n−1

aiibjj + 4c2
∑

1≤i<j≤n−1

aijbij

= 2c2 Tr(AB) + (c2 −
c21
c0
)(TrA)(TrB),

where
c4 = 1

(2π)n

∫

K ξ
4
1 |dξ|,

c2 = 1
(2π)n

∫

K ξ
2
1ξ

2
2 |dξ| and

c0 = 1
(2π)n

∫

K |dξ|.
This indeed follows from the relation c4 = 3c2, see [2], [19] and from the fact that
∫

K ξ
k
1ξ
l
2|dξ| = 0 whenever k or l is odd. Note that

c2 = c0
(n+4)(n+2) ,

c1 = c0
n+2 and

c2 − c21
c0

= −2c2
n+2 ,

(3.4)

see [2] and [19]. Hence, the scalar product induced by (K, |dξ|) on Sym(n − 1,R)∗ is

given, with the notations of the appendix B of [19], by the symmetric endomorphism

2c2Q(a, b, c) with a = n+1
n+2 , b = −1

n+2 and c = 1. As a consequence, the induced scalar

product on Sym(n − 1,R) is given by the symmetric endomorphism 1
2c2
Q(a′, b′, c′) with

a′ = 4
3 , b

′ = 1
3 and c′ = 1, see [19]. Hence, for every (A,B) ∈ Sym(n− 1,R)2,

〈A,B〉∆g =
1

2c2
(Tr(AB) +

1

3
(TrA)(TrB)).

Finally,

E(i, ker dp) =

∫

Sym2(H)
|det β|dµ∆g (β)

=
1

cn−1
1

∫

Sym(i,n−1−i,R)
|detB|e−

1
2c2

(Tr(B2)+ 1
3
(TrB)2)

dµ∆g (B)

=

√
c2
n−1

cn−1
1

E(i, n − 1− i),
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see (0.10), since from (3.1), |detB| = cn−1
1 |det β| under the substitution B = β. We

deduce from Theorem 0.1 and (3.2) the weak convergence on M

1√
L
nE(νi) →

L→∞
1

√
π
n+1√

c0

√
c2
n−1

cn−1
1

E(i, n − 1− i)
√

cn1 |dvolg|.

The result follows now from (3.4) and Corollary 0.2. The proof goes along the same lines

when 1 ≤ n ≤ 2 and the result remains true in these cases. �

Example 3.1 When n = 2, E(0, 1) = E(1, 0) =
∫ +∞
0 ae−

2
3
a2dµ(a) =

√
3

2
√
2
√
π
, so that from

Corollary 0.3, for every j ∈ {0, 1},

1

L
E(νj) →

L→∞
1

8π2
|dvolg | (3.5)

and lim sup
L→∞

1

L
E(mj) ≤ 1

8π2
V olg(M). (3.6)

3.1.2 Proof of Proposition 0.4

By Corollary 0.3 and Weyl’s Theorem, see Remark 2.2, it is enough to prove that there

exist C > 0 and δ > 0 such that

∀n ∈ N,
∑

| i
n
− 1

2
|≥ǫ

E(i, n− i) ≤ C exp(−δn2),

since log V ol(Bn) ∼n→∞ −n
2 log n. Now, if dµGOE denotes the Gaussian probability mea-

sure on Sym(n,R) associated to the scalar product 〈A,B〉 = Tr(AB), then the Gaussian

probability measure µ associated to (0.11) satisfies the bound µ ≤ cnµGOE with cn = O(n).

Indeed, 1
2 TrA

2+ 1
6(TrA)

2 ≥ 1
2 TrA

2, whereas the ratio between the determinants of these

scalar product is a O(n), see (B.6) in [19]. Now, Theorem 1.6 of [8] provides the result.

3.2 The Dirichlet-to-Neumann operator

Let (W, g) be a smooth compact Riemannian manifold with boundary and ∆g be its

Laplace-Beltrami operator. Let us denote by M the boundary of W and for every smooth

function f :M → R, we denote by u ∈ C∞(M,R) the solution of the Dirichlet problem

{

∆gu = 0
u|M = f.

We then denote by ∂nu :M → R the outward normal derivative of u along M . Then, the

Dirichlet-to-Neuman operator Λg reads

Λg : C
∞(M,R) → C∞(M,R)

f 7→ ∂nu.
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Theorem 3.2 ([16]) Let (W, g) be a smooth compact Riemannian manifold with bound-

ary M . The Dirichlet-to-Neumann operator Λg is an elliptic pseudo-differential operator

of order one on M . Its principal symbol equals ξ ∈ T ∗M 7→ ‖ξ‖g.

Proof of Corollary 0.5. The compact KΛ defined by (0.3) coincides with K∆g , where

K∆g is the compact associated to the Laplace-Beltrami operator on M induced by the

restriction of g to M . The proof of Corollary 0.5 thus goes along the same lines as the one

of Corollary 0.3. ✷

4 Some related problems

Let us mention several related problems which we plan to discuss in a separate paper.

First, we may consider, as our probability space, the span of eigensections with eigenvalues

belonging to a window [a(L)L,L] instead of [0, L], where a is some function of L, compare

[17], [21]. That is, we may set

UaL =
⊕

λ∈[a(L)L,L]
ker(P − λId).

When limL→∞ a(L) = γ ∈ [0, 1], Theorem 0.1 still holds true, with the following modifica-

tions:K given by (0.3) should be replaced by the annulusKγ = {ξ ∈ T ∗
xM | γ ≤ σP (ξ) ≤ 1}

and when γ = 1, we should assume that L− 1
m = o(1 − a(L)) and replace |dξ| by some

Lebesgue measure on the sphere K1. In the latter case for example, when P stands for

the Laplace-Beltrami operator associated to some Riemannian metric g on the closed

n-dimensional manifold M , we get the weak convergence

1√
L
nE(νi) →

l→∞
1

√
π
n+1

1
√

n(n+ 2)n−1
ES(i, n − 1− i)|dvolg |,

where ES(i, n − 1 − i) =
∫

Sym(i,n−1−i),R |detA|dµS(A), and µS is the Gaussian measure

on Sym(n− 1,R) associated to the scalar product

(A,B) ∈ Sym(n− 1,R)2 7→ 1

2
Tr(AB) +

1

2
(TrA)(TrB) ∈ R, (4.1)

Finally, a manifold of special interest is the round unit sphere, where we may consider

the space of pure harmonics U1
L = ker(P −LId) as a probability space, compare [18], [17].

Recall that the spectrum of the Laplace-Beltrami operator on the round unit n-dimensional

sphere is the set {l(l+n− 1) | l ∈ N} and that the eigenspace associated to the eigenvalue

λl = l(l + n − 1) has dimension
(n+l
n

)

−
(n+l−2

n

)

. This case of pure spherical harmonics is

unfortunately not a special case of the previous one, because γ = 1 but L−1/m cannot be

a o(1− a(L)). However, the result remains valid and we also get the weak convergence

1√
L
nE(νi) →

l→∞
ES(i, n − 1− i)

√
π
n+1√

n(n+ 2)n−1
|dvolg|
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on the whole M . In the case n = 2, this provides the upper estimate

lim sup
l→∞

1

L
E(b0) ≤

1

π
√
2
, (4.2)

for the expected number b0 of connected component of pure spherical harmonics, compare

relation (2.41) of [19].

A Appendix

A.1 The incidence varieties

We recall that for every subspace U of Γ(M,E),

∆0 = {s ∈ U | s does not vanish transversally} and

∆1 = ∆0 ∪ {s ∈ U \∆0 | p|s−1(0) is not Morse, }

see §1.1 (1.2).

Lemma A.1 (compare Proposition 2.8 of [10]) Let E be a real line bundle over a

smooth manifold M equipped with a Morse function p : M → R and let U be a relatively

l-ample linear subspace of Γ(M,E), l ∈ {0, 1}. Then, I l is a submanifold of U |M\Crit(p) =

(M \Crit(p))×U of codimension rank(J l(E|H)). Moreover, ∆0 coincides with the critical

locus of πU : I0 → U , whereas ∆1 \∆0 coincides with the critical locus of the restriction

πU |(I1\π−1
U

(∆0))
: I1 \ π−1

U (∆0) → U .

From Lemma A.1 and Sard’s Lemma, when U is relatively l-ample, l ∈ {0, 1}, ∆l has

measure zero.

Proof. Let us first assume that l = 0 and let (x, s) ∈ I0. We fix some connection ∇E

on E. Then, the differential of j0 at (x, s) reads

d|(x,s)j
0 : T(x,s)U → T(x,0)E

(ẋ, ṡ) 7→ (ẋ, ṡ(x) +∇E
ẋ s).

Since j0 is onto, d|(x,s)j
0 is onto as well and it follows from the implicit function theorem

that I0 is a codimension one submanifold of U |M\Crit(p) with tangent space

T(x,s)I0 = {(ẋ, ṡ) ∈ T(x,s)U | ṡ(x) +∇E
ẋ s = 0}. (A.1)

Moreover, the differential d|(x,s)πU : (ẋ, ṡ) ∈ T(x,s)I0 7→ ṡ ∈ TsU = U is onto if and only

if ∇Es is, since j0 is onto. Hence, ∆0 coincides with the locus of the singular values of

πU : I0 → U .

Now, assume that l = 1 and let (x, s) ∈ I1. The differential of j1H at (x, s) reads

d|(x,s)j
1
H : T(x,s)U → T(x,0)J 1(E|H)

(ẋ, ṡ) 7→ (ẋ, j1H(ṡ) +∇J
ẋ (j

1
H(s))),
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where ∇J denotes a connection on the bundle J 1(E|H). Since j1H is onto, d|(x,s)j
1
H is

onto as well and it follows from the implicit function theorem that I1 is a submanifold of

U |M\Crit(p) of codimension rank(J 1(E|H)) = n, with tangent space

T(x,s)I1 = {(ẋ, ṡ) ∈ T(x,s)U | j1H(ṡ) +∇J
ẋ (j

1
H(s)) = 0}. (A.2)

Let us assume that s /∈ ∆0 and let (ẋ, ṡ) ∈ ker d|(x,s)πU . Then ṡ = 0, which implies

that ∇E
ẋ s = 0, so that ẋ ∈ ker∇s|x = Hx. Then, 0 = ∇H

ẋ (j
1
H(s)) = j2H(ẋ, ·), so that

ẋ ∈ ker j2H(s). We deduce that the kernel of d|(x,s)πU is reduced to {0} if and only if j2H is

non-degenerate. From Lemma A.3, j2H(s) is non-degenerate if and only if s /∈ ∆1. ✷

Remark A.2 It follows from the proof of Lemma A.1 that for every s ∈ I1 \ ∆1, the

operator ∇J (j1H(s)) which appears in (A.2) is invertible.

Lemma A.3 (compare Lemma 2.9 of [10]) Let E be a real fibre bundle over a smooth

manifold M equipped with a Morse function p : M → R. Let s be a section of E which

vanishes transversally and x ∈M \Crit(p) be a critical point of p|s−1(0). Let λ ∈ E∗
x such

that λ ◦ ∇Es|x = d|xp. Then,

λ ◦ ∇p(∇Es|Hx
)|x = λ ◦ ∇(∇Es)|x −∇(dp) = −∇s(dp|s−1(0)).

In Lemma A.3, ∇E, ∇p, ∇s and ∇ denote connections on, respectively, the fibre bundles

E, H, T (s−1(0)) and TM . These connections induce connections on, respectively, H∗⊗E,

T ∗(s−1(0))⊗E and T ∗M⊗E, denoted in the same way by ∇p, ∇s and ∇. Note that ∇Es,

∇p(∇Es|H) and ∇s(dp|s−1(0))|x do not depend on the choices of ∇E, ∇p, ∇s, whereas

∇(∇Es) and ∇dp depend on the choice of ∇.

Proof. Let v,w be two vector fields on s−1(0) defined in the neighbourhood of x. Then,

0 = ∇E
v (∇E

ws)|x = ∇(∇Es)(v,w) +∇E
∇vws

and likewise ∇s(dp)|x(v,w) = d|x(dp(w))(v) = ∇(dp)(v,w) + d|xp(∇vw). We deduce the

relation ∇|x(dp|s−1(0))(v,w) = ∇(dp)|x(v,w)−λ ◦∇(∇Es)(v,w). Likewise, if v′ and w′ are

two vector fields of Hx defined in the neighbourhood of x, we have

0 = d|x(dp(w
′))(v′) = ∇(dp)(v′, w′) + dp(∇v′w

′)

and ∇p(∇Es)(v′, w′) = ∇E
v′(∇E

w′s) = ∇(∇Es)(v′, w′) +∇E
∇v′w

′s. Finally,

λ ◦ ∇p(∇Es)|x = λ ◦ ∇(∇Es)|x −∇(dp)|x = −∇s(dp|s−1(0)).

✷
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A.2 Pseudo-differential operators

Let M be a smooth manifold of positive dimension n and E be a real line bundle over M .

We denote by Γ(M,E) the space of smooth global sections of E.

Definition A.4 (compare Definition 18.1.32 of [15]) A linear operator P : Γ(M,E) →
Γ(M,E) is called pseudo-differential of order m ∈ R if and only if there exist an atlas

(Ui)i∈I of M and local trivializations Φi : E|Ui
→ Vi×R, where Vi denotes a bounded open

subset of Rn, such that

1. ∀i ∈ I, there exist smooth kernels ki ∈ Γ(M × M,E∗
⊠ E) such that for every

si ∈ Γ(M,E) with support in Ui and every x ∈M \ Ui,

P (si)(x) =

∫

M
ki(x, y)si(y)|dy|,

where |dy| denotes a Lebesgue measure on M .

2. ∀i ∈ I, there exist smooth symbols pi : Vi × R
n ∼= T ∗M|Ui

→ C such that for every

si ∈ Γ(M,E) with support in Ui and every x ∈ Vi,

Φi(P (si))(x) =

∫∫

Vi×Rn

pi(x, ξ)e
i〈x−y,ξ〉Φi(si)(y)dξdy,

where dydξ si the standard Lebesgue measure on Vi × R
n.

3. For every compact subset Ki ⊂ Vi and every α, β ∈ N
n, there exist positive constants

cKi,α,β such that

∀(x, ξ) ∈ Ki ×R
n, | ∂

∂xβ
∂

∂ξα
pi(x, ξ)| ≤ cKi,α,β(1 + |ξ|)m−|α|.

Now, let hE be a Riemannian metric on E and |dy| be a Lebesgue measure on M , which

we assume to be compact and without boundary. Then, Γ(M,E) inherits the L2-scalar

product (0.1).

Definition A.5 The adjoint of the pseudo-differential operator P is the operator tP sat-

isfying for every s, t ∈ Γ(M,E), 〈P (s), t〉 = 〈s, tP (t)〉. When tP = P, the operator is said

to be self-adjoint.

Definition A.6 (see [12], [13], [14]) A self-adjoint pseudo-differential operator of order

m ∈ R given by Definitions A.4, A.5 is said to be elliptic if and only if for every i ∈ I and

every (x, ξ) ∈ T ∗M|Ui
such that ξ 6= 0, the limit

σP (x, ξ) = lim
t→+∞

1

tm
pi(x, tξ)

exists and is positive. This limit then does not depend on the choice of i ∈ I and defines

a positive homogeneous function σp : T
∗M → R of order m and class C∞.
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The function σP given by Definition A.6 will be called the homogenized principal symbol

of P . It is symmetric in the sense that for every (x, ξ) ∈ T ∗M, σP (x,−ξ) = σP (x, ξ).

Example A.7 Recall that if in a local trivialization of E the differential operator Q of

order m reads f ∈ C∞
c (Rn,R) 7→ Q̃(∂/∂x1, · · · , ∂/∂xn)(f) ∈ C∞

c (Rn,R), where Q̃ ∈
C∞(Rn)[X1, · · · ,Xn], and if Q̃m is the homogeneous part of order m of Q̃, then the prin-

cipal symbol of Q is the homogeneous function of order m σQ : (Rn)∗ → C satisfying

σQ(ξ1dx1 + · · ·+ ξndxn) = Q̃m(iξ1, · · · , iξn).

Definition A.8 An elliptic self-adjoint pseudo-differential operator P on Γ(M,E) is said

to be bounded from below if and only if there exists a constant c ∈ R such that for every

s ∈ Γ(M,E), 〈P (s), s〉 ≥ c〈s, s〉. It is said to be positive when c > 0.

Remark A.9 The transformation P → P − cId turns any elliptic self-adjoint pseudo-

differential operator bounded from below into a positive one. Since our results are not

sensitive to this transformation, they hold for any operator bounded from below even if we

sometimes assume it to be positive for simplicity. Recall finally that these operators have

discrete spectrum with finite dimensional eigenspaces.

A.3 Proof of Theorem 2.3

Set L = λm and ẽλ = eL. The strategy followed by Hörmander is the following. The

derivative of ẽλ with respect to λ is a distribution whose support is the set of eigenvalues

of P . Its Fourier transform with respect to λ is the kernel of the hyperbolic equation

∂tu + iP 1/m = 0, where P 1/m stands for the operator with the same eigenfunctions as

P and whose eigenvalues are the m-th root of the corresponding ones of P . Hörmander

proves that in a neighbourhood V of the diagonal of M ×M and for small values of the

time t, this kernel takes the form of a Fourier integral operator, modulo an operator with

smooth kernel. Consequently, if ρ : R → R is a non negative function in the Schwartz

space such that its Fourier transform ρ̂ satisfies ρ̂(0) = 1 and Supp(ρ̂) ⊂ [−ǫ, ǫ], then for

every x, y ∈ V ,

∫ +∞

−∞
ρ(λ− µ)∂µẽµ(x, y)dµ −

∫

T ∗
yM

R(x, λ− p′|y(ξ
′), y, ξ)eiψ(x,y,ξ)dξ

is a rapidly decreasing function as λ→ +∞, where

• ψ(x, y, ξ) = 〈x − y, ξ〉 + O(|x − y|2|ξ|) when x → y, for a scalar product 〈 , 〉 in a

chart of M that contains x and y.

• p′(ξ) = σP (ξ)
1/m +O(1)

• R(x, λ, y, ξ) = 1
2π

∫

R
ρ̂(t)q(x, t, y, ξ)eitλdt with q(x, 0, y, ξ) = ( 1

2π )
n + O(1/|ξ|), see

Lemma 4.1 of [13].
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This function R is rapidly decreasing as λ grows to infinity. After differentiation we deduce

likewise that
∫ +∞

−∞
ρ(λ− µ)∂µQ1Q2ẽµ(x, y)dµ −

∫

T ∗
yM

Q1Q2(R(x, λ− p′|y(ξ), y, ξ)e
iψ(x,y,ξ))dξ (A.3)

is a rapidly decreasing function as λ grows to infinity.

Lemma A.10 (Compare Lemma 4.3 of [13]) Under the hypotheses of Theorem 2.3, there

exists a constant c > 0 such that for every (x, y) in a neighbourhood V of the diagonal of

M ×M , for every λ ≥ 0 and every 0 ≤ µ ≤ 1,

‖Q1Q2ẽλ+µ(x, y)−Q1Q2ẽλ(x, y)‖hE ≤ C(1 + |λ|)n−1+|σQ1
|+|σQ2

|.

Proof. Let us assume first that Q1 = Q2 and x = y. We proceed as in the proof of Lemma

4.3 of [13]. The function

∂µQ1Q1ẽµ(x, x) =
∑

k

δλkhE(Q1sk(x), Q1sk(x))

is positive, where sk is an eigenfunction with eigenvalue λmk . We deduce the existence of a

constant C1 > 0 such that

‖Q1Q1ẽλ+µ(x, y)−Q1Q1ẽλ(x, y)‖hE ≤ C1

∫

R

ρ(λ− µ)∂µQ1Q1ẽµ(x, x)dµ.

From (A.3), it is enough to bound from above the integral

∫

T ∗
xM

Q1Q1

(

R(x, λ− p′(ξ), y, ξ)eiψ(x,y,ξ)
)

dξ

From the ellipticity of P we deduce the existence of C2 > 0 such that

∀ξ ∈ T ∗
xM, |Q1Q1ψ(x, y, ξ)||(x,x) = |σQ1(ξ)|2 ≤ C2(1 + p′(ξ))2|σQ1

|.

Following [13, p 210], we deduce that

|
∫

T ∗
xM

Q1Q1|(x,x)(R(x, λ− p′(ξ), y, ξ))eiψ(x,y,ξ)dξ| ≤ C3

∫

R

(1 + |λ− σ|−N )(1 + |σ|)2|σQ1
|dm(y, σ)

≤ O(λ−∞) + C4(1 + |λ|)n−1+2|σQ1
|,

where C3, C4 are positive constants, N denotes a large enough integer and

m(x, σ) =

∫

{ξ∈T ∗
xM | σP (ξ)≤σ}

dξ.

We deduce the result when Q1 = Q2 and x = y, then likewise when (x, y) lies in a

neighbourhood V of the diagonal, see Lemma 3.1 of [13]. The general case is now a conse-

quence of the Cauchy-Schwarz inequality and there exists a positive constant c such that

30



∀x, y ∈ N,∀λ > 0,∀µ ∈ [0, 1],

‖Q1Q2ẽλ+µ(x, y) −Q1Q2ẽλ(x, y)‖hE = ‖
∑

k | λ≤λk≤λ+µ
Q1(sk(x))Q2(sk(y))‖

≤
(

∑

k | λ≤λk≤λ+µ
‖Q1(sk(x))‖2

)1/2 · · ·

· · ·
(

∑

k | λ≤λk≤λ+µ
‖Q2(sk(y))‖2

)1/2

≤ (‖Q1Q1|(x,x)ẽλ+µ −Q1Q1|(x,x)ẽλ‖2)1/2 · · ·
· · · (‖Q2Q2|(y,y)ẽλ+µ −Q2Q2|(y,y)ẽλ‖2)1/2

≤ C(1 + |λ|)n−1+|σQ1
|+|σQ2

|.

✷

Proof of Theorem 2.3. We proceed as in [13], p. 211. We deduce from Lemma A.10

that ∀x, y ∈ U,∀λ ≥ 0,∀µ ≥ 0,

‖Q1Q2ẽλ+µ(x, y)−Q1Q2ẽλ(x, y)‖hE ≤ C(1 + λ+ µ)n−1+|σQ1
|+|σQ2

|(1 + µ).

Thus, there exists C ′ > 0 such that

‖
∫

R

ρ(λ− µ)Q1Q2ẽµ(x, y)dµ −Q1Q2ẽλ(x, y)‖hE ≤ C ′(1 + λ)n−1+|σQ1
|+|σQ2

|.

However, by integration of (A.10) over the interval ] −∞, λ], we deduce the existence of

C ′′ > 0 such that

‖Q1Q2ẽλ+µ(x, y)−
∫

T ∗
yM

∫ λ

−∞
Q1Q2(R(x, σ − p′|y, y, ξ)e

iψ(x,y,ξ))dξdσ‖hE ≤ C ′′.

Moreover, by definition of ψ and R,
∫

T ∗
yM

∫ λ
−∞Q1Q2(R(x, σ − p′|y(ξ), y, ξ)e

iψ(x,y,ξ))dξdσ

equals

1

(2π)n

∫

{ξ∈T ∗
yM | p′(ξ)≤λ}

(1 +O(1/|ξ|))Q1Q2e
iψ(x,y,ξ)dξ + · · ·

· · ·
∫

T ∗
yM

Q1Q2(R1(x, λ− p′|y(ξ), y, ξ)e
iψ(x,y,ξ))dξ,

where

R1 =

{
∫ τ
−∞R(x, σ, y, ξ)dσ if τ ≤ 0

∫ τ
−∞R(x, σ, y, ξ)dσ − q(x, 0, y, ξ) if τ > 0

is a function which decreases faster than any polynomial, see [13, p. 211]. Thus, there

exists a constant C ′′′ > 0 such that

‖
∫

T ∗
yM×]−∞,λ]

Q1Q2(R(x, σ − p′|y(ξ), y, ξ)e
iψ(x,y,ξ))dξdσ − · · ·

· · · 1

(2π)n

∫

ξ∈T ∗
yM | p′(ξ)≤λ}

σQ1(ξ)σQ2(ξ)dξ‖ ≤ C ′′′(1 + λ)n−1+|σQ1
|+|σQ2

|.
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From the triangle inequality, we finally deduce that there exists C ′′′′ > 0 such that for

every (x, y) ∈ V ,

‖Q1Q2eL(x, y)−
1

(2π)n

∫

{ξ∈T ∗
yM | σP (ξ)≤L}

σQ1(ξ)σQ2(ξ)dξ‖ ≤ C ′′′′(1 + λ)n−1+|σQ1
|+|σQ2

|.

Hence the result. ✷
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