Amrit Kumar

Pascal Lafourcade
email: pascal.lafourcade@imag.fr

Cédric Lauradoux

Performances of Cryptographic Accumulators

Keywords: Cryptographic accumulators, Bloom filter, Performance

Cryptographic accumulators are space/time efficient data structures used to verify if a value belongs to a set. They have found many applications in networking and distributed systems since their introduction by Benaloh and de Mare in 1993. Despite this popularity, there is currently no performance evaluation of the different existing designs. Symmetric and asymmetric accumulators are used likewise without any particular argument to support either of the design. We aim to establish the speed of each design and their application's domains in terms of their size and the size of the values.

Introduction

Cryptographic accumulators are space/time efficient data structures that are used to test if a value/element belongs to a given set. They are the cryptographic counterpart of a data structure very popular in the field of networking: the Bloom filters [START_REF] Bloom | Space/time trade-offs in hash coding with allowable errors[END_REF][START_REF] Broder | Survey: Network Applications of Bloom Filters: A Survey[END_REF].

Similar to a one-way hash function, (asymmetric) cryptographic accumulators generate a fixed-size digest representing an arbitrarily large set of values. Interestingly, a one-way accumulator further provides a fixed-size witness for any value of the set, which can be used together with the accumulated digest to verify membership of a value in the set. The security requirement being that the verification should fail for every value not in the set.

The first cryptographic accumulator by Benaloh and de Mare [START_REF] Benaloh | One-Way Accumulators: A Decentralized Alternative to Digital Sinatures[END_REF] is constructed using one-way RSA function x y mod N for a suitably chosen N . Secure Bloom filters can be considered to be a symmetric variant of cryptographic accumulators i.e. which do not require witness for membership testing. A more precise and formal description, together with other constructions based on elliptic curves [START_REF] Karlof | Distillation Codes and Applications to DoS Resistant Multicast Authentication[END_REF] and bi-linear pairings [START_REF] Camenisch | An Accumulator Based on Bilinear Maps and Efficient Revocation for Anonymous Credentials[END_REF][START_REF] Nguyen | Accumulators from Bilinear Pairings and Applications[END_REF], are developed in the next section.

Since their first appearance as a cryptographic primitive, accumulators have received attention in both directions: designing efficient and dynamic primitives and providing novel applications in different domains. Many applications have been found ranging from time-stamping schemes [START_REF] Massias | La certification cryptographique du temps[END_REF], search on encrypted data [START_REF] Bethencourt | New Techniques for Private Stream Searching[END_REF][START_REF] Goh | Secure Indexes[END_REF] to data aggregation in sensor networks [START_REF] Li | Efficient Authentication, Node Clone Detection, and Secure Data Aggregation for Sensor Networks[END_REF] and distillation codes [START_REF] Karlof | Distillation Codes and Applications to DoS Resistant Multicast Authentication[END_REF] among others. For instance, Sander et al. [START_REF] Sander | Blind, auditable membership proofs[END_REF] use RSA accumulator to design blind and auditable membership proof scheme in the context of e-cash. The idea is that an accumulator of all the valid electronic coins is created and published. During coins transfer, anyone can verify the validity of the exchange thanks to the accumulator.

In many works, the choice of the accumulator is not motivated: it is therefore hard to know if the proposed solution is the most appropriate one. For instance, Li [START_REF] Li | Efficient Authentication, Node Clone Detection, and Secure Data Aggregation for Sensor Networks[END_REF] uses a variant of HMAC based Bloom filter to securely aggregate events from sensors. A sensor upon detecting an unexpected event informs an aggregator station by sending a Bloom filter. The aggregator then merges the filters received and forwards it to the base station. In an earlier work, Zachary [START_REF] Zachary | A decentralized approach to secure management of nodes in distributed sensor networks[END_REF] uses RSA accumulator to detect unauthorized nodes in a sensor network. Indeed any other accumulator can potentially replace RSA accumulator as the only goal in this scenario is to test set-membership.

A full review of the performance of both symmetric and asymmetric accumulators with varied levels of security is clearly missing and is the motivation of our work.

Contributions

Our goal is to evaluate the performances of existing cryptographic accumulators. Our main contributions are:

-A survey of existing asymmetric and symmetric accumulators.

-Software performance evaluation to determine which accumulator offers the best verification time. We also analyze the impact of implicit parameters (in particular hash functions) which affect efficiency.

From our benchmarks, we observe that elliptic curve cryptography (ECC) based accumulators have the best verification time followed by secure Bloom filters and lastly RSA. The former two are affected by the length of the values accumulated while RSA is immune to this. More details are provided in the following sections of the paper.

Outline In Section 2, we recall the definitions of cryptographic accumulators and the different existing designs proposed in the literature. In Section 3, we describe the setting and the softwares used for our evaluations. In Section 4, we analyze each accumulator separately and compare them.

Background on Cryptographic Accumulators

We first give cryptographic recalls concerning accumulators, then we present existing works on asymmetric and symmetric accumulators.

Definitions

Informally, an accumulator is a space/time efficient algorithmic solution to the set-membership problem, which consists in determining if a value belongs to a set. This set of values is often represented by a compact data structure such that for each value of the set it is possible to compute a witness that determines if the value is incorporated in the accumulator.

The notion of cryptographic accumulator, or accumulator for short, was first coined by Benaloh and de Mare in the seminal work [START_REF] Benaloh | One-Way Accumulators: A Decentralized Alternative to Digital Sinatures[END_REF]. The accumulators in this work are defined as a family of one-way hash functions (Definition 1) which satisfy an additional quasi-commutative property (Definition 2).

Definition 1 (One-way hash functions [START_REF] Benaloh | One-Way Accumulators: A Decentralized Alternative to Digital Sinatures[END_REF]). A family of one-way hash functions is an infinite set of functions H λ := {h u : X u × Y u → Z u } having the following properties:

1. For security parameter λ and each integer u, h u (x, y) is computable in time polynomial in the parameter λ for all x ∈ X u and for all y ∈ Y u . 2. For any probabilistic polynomial-time algorithm A the following probability is negligible in λ:

P r[h u $ ← H λ ; y, y ′ $ ← Y u ; x $ ← X u ; x ′ ← A(1 λ , x, y, y ′) : h u (x, y) = h u (x ′ , y ′)]
We recall that f : N → R is a negligible function in the parameter n, if for every positive polynomial p, there exists N , such that for all n > N , we have

f (n) < 1 p(n) . Definition 2 (Quasi-commutativity [2]). A function f : X × Y → X is quasi-commutative if: ∀x ∈ X, ∀y 1 , y 2 ∈ Y f (f (x, y 1), y 2) = f (f (x, y 2), y 1)
A one-way quasi-commutative function provides a primitive to design an accumulator. A function f : X × Y → X is chosen depending on some security parameter together with an initial value x ∈ X. A set of values Y ′ = {y 1 , y 2 , . . . , y n } ⊂ Y accumulates to a value z using the following equations

1 ≤ i ≤ n:    z 0 = x z i = f (z i-1 , y i) z = z n
A witness w i for a value y i is the accumulated value for the set Y ′ \ {y i }. Clearly, given a value y i , and its corresponding witness w i , one can easily verify if y i had been accumulated by verifying the equality z = f (w i , y i), which holds due to the quasi-commutativity of f .

State of the Art

We present the asymmetric accumulators before explaining the symmetric ones.

Asymmetric Accumulators

The first accumulator proposed by Benaloh and de Mare [START_REF] Benaloh | One-Way Accumulators: A Decentralized Alternative to Digital Sinatures[END_REF] is asymmetric i.e. requires witness for verification. The construction uses modular exponentiation f (x, y) = x y mod N as a one-way quasi-commutative function since it satisfies:

f (f (x, y 1), y 2) = (x y1) y2 = (x y2) y1 = f (f (x, y 2), y 1)
For exponentiation to be used for one-way accumulators, the modulus is chosen to be a product of two safe primes p and q of equal size. A prime p is safe if p-1 2 is also a prime number. A malicious attacker knowing the accumulated value z may try to forge a witness w for a randomly chosen value y by finding an initial value x verifying x y mod N = z. However, this is infeasible under the RSA assumption, Definition 3.

Definition 3 (RSA assumption). When the modulus N is sufficiently large and randomly generated, and the exponent y and a value z are given, it is hard to compute x satisfying x y mod N = z.

However, as informally noticed in [START_REF] Benaloh | One-Way Accumulators: A Decentralized Alternative to Digital Sinatures[END_REF] and later recognized by Nyberg in [START_REF] Nyberg | Fast Accumulated Hashing[END_REF], one-wayness imposed in the definition might not suffice for certain applications where an adversary has access to the list of values to be accumulated. To remedy, one should consider a stronger property called strong one-wayness (Definition 4) where the attacker is not imposed the choice of y ′ as in Definition 1.

Definition 4 (Strong one-way hash functions [START_REF] Benaloh | One-Way Accumulators: A Decentralized Alternative to Digital Sinatures[END_REF]). A family of strong oneway hash functions is an infinite set of functions H λ := {h u : X u × Y u → Z u } having the following properties:

1. For security parameter λ and each integer u, h u (x, y) is computable in time polynomial in the parameter λ for all x ∈ X u and for all y ∈ Y u . 2. For any probabilistic polynomial-time algorithm A the following probability is negligible:

P r[h u $ ← H λ ; y $ ← Y u ; x $ ← X u ; x ′ , y ′ ← A(1 λ , x, y) : h u (x, y) = h u (x ′ , y ′)]
As recommended in [START_REF] Benaloh | One-Way Accumulators: A Decentralized Alternative to Digital Sinatures[END_REF], a value to be accumulated is either hashed or encrypted before taking it to the accumulator, which hence provides strong onewayness.

Barić and Pfitzmann in [START_REF] Bari | Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees[END_REF] noticed that for certain applications even strong one-wayness might not suffice as the adversary might be able to choose the values himself. Authors in [START_REF] Bari | Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees[END_REF] propose a stronger notion of collision-free accumulators and provide a construction which is secure under strong RSA assumption (Definition 5). Collision-free accumulators capture the notion that a probabilistic polynomial-time adversary can not generate a set of values Y ′ = {y 1 , y 2 , . . . , y n } yielding an accumulated value z for which she can generate another value y ′ / ∈ Y ′ and a witness w ′ such that f (w ′ , y ′) = z.

Definition 5 (Strong RSA assumption). When the modulus N is sufficiently large and randomly generated, and a value z is given, it is hard to find x and y satisfying x y mod N = z.

The authors further generalize the definition of accumulators to include accumulators that do not require the quasi-commutative property. Following the terminology of [START_REF] Bari | Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees[END_REF], the class of accumulators as defined in [START_REF] Benaloh | One-Way Accumulators: A Decentralized Alternative to Digital Sinatures[END_REF] are referred to as elementary accumulators. Moreover, as proved in [START_REF] Bari | Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees[END_REF], collision-resistance under strong RSA assumption is achieved only when the values to be accumulated are prime.

As raised by Benaloh and de Mare, one should be able to construct accumulators without trapdoor. Trapdoors are redundant in an accumulator scheme.

The party who provides N during the system setup, knows also the trapdoor p and q. Unfortunately, a party who knows p and q can completely bypass the system's security. Because, by knowing p and q, it is possible to recover the initial value, and then independently accumulate extra values and generate false witnesses. A non-trapdoor solution would not rely on trusted on-line or off-line services. A non-trapdoor accumulator is presented in [START_REF] Sander | Efficient Accumulators Without Trapdoor Extended Abstracts[END_REF] and is provably secure in the standard model. The authors suggest to use generalized RSA modulus Of Unknown complete Factorization and refer it as RSA-UFOs. A number N is a RSA-UFO if N has at least two large prime factors p and q such that it is infeasible for any coalition of players including those that generated N to find a splitting of N into factors N 1 and N 2 such that p|N 1 and q|N 2 . A probabilistic algorithm is also proposed to generate such numbers. The security is proved in the standard model under a new assumption called Strong RSA-UFO Assumption. This assumption is very similar to strong RSA assumption (Definition 5), the only difference being that the modulus N is set to be a RSA-UFO.

Unlike the previous works [START_REF] Bari | Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees[END_REF][START_REF] Benaloh | One-Way Accumulators: A Decentralized Alternative to Digital Sinatures[END_REF][START_REF] Nyberg | Fast Accumulated Hashing[END_REF][START_REF] Sander | Efficient Accumulators Without Trapdoor Extended Abstracts[END_REF], where the list of values to be accumulated is statically defined, Camenisch et al. in [START_REF] Camenischn | Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials[END_REF] introduce the notion of dynamic accumulators. A dynamic accumulator permits to dynamically add and delete values to or from the accumulator, such that the cost of an add or delete is independent of the number of accumulated values. The authors use the standard RSA function based construction as proposed in [START_REF] Bari | Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees[END_REF]. To achieve constant cost of updating the witnesses the factorization of the modulus is used as a trapdoor. The security of the scheme relies on strong RSA assumption.

Nguyen in [START_REF] Nguyen | Accumulators from Bilinear Pairings and Applications[END_REF] proposes a dynamic accumulator based on bilinear pairings. The author considers a symmetric pairing e : G × G → G T (the construction also holds in the asymmetric case). The groups have the same order p and G is generated by P . The values to be accumulated need not to be prime but should only belong to the finite field Z/pZ. An initial seed x ∈ Z/pZ and a trapdoor s ∈ Z/pZ\{0} are chosen to be used in the quasi-commutative function

f : Z/pZ × Z/pZ → Z/pZ where f (x, y) = x • (y + s). A function g : Z/pZ → G where g(v) = vP is used to map the output of f to an element of G. The accumulated value z for a set Y ′ = {y 1 , y 2 , . . . , y n } ⊂ Z/pZ \ {-s} is z = g(f (x, Y ′)) = (x • n i=1
(y i + s)) P , and can be easily computed given access to (P, sP, . . . , s q P), where q is the upper bound on the number of elements to be accumulated. Witness w i corresponding to a value y i is the accumulated value for Y ′ \ y i . Verification involves checking if w i • (y i + s) = z which can be done using the pairing e by verifying if: e((y i + s)P, w i) = e(z, P)

The security of the scheme is based on the q-Strong Diffie-Hellman Assumption.

Definition 6 (q-Strong Diffie-Hellman assumption [START_REF] Boneh | Short Group Signatures[END_REF]). Given a tuple t = (p, G, P), where p is prime, G is a cyclic group generated by P and a tuple of values in Z/pZ of the form (P, sP, . . . , s q P), where s ∈ Z/pZ \ {0}, for any probabilistic polynomial-time algorithm A the following probability is negligible: P r[A(t, P, sP, . . . , s q P) = (c,

1 s + c P)) ∧ (c ∈ Z/pZ)]
Authors in [START_REF] Tartary | Analysis of bilinear pairing-based accumulator for identity escrowing[END_REF] provide an attack against collision-resistance property of the scheme and hence refute the claim in [START_REF] Nguyen | Accumulators from Bilinear Pairings and Applications[END_REF] that the accumulator is collisionresistant. The attack is based on the improperly defined security model where the adversary has access to the functions f and g. The proposed patch consists of providing the composite function g(f (•)) to the adversary instead of the functions f and g separately. The patch proposed by the author however does not prevent other kinds of attacks and it has been proven that the scheme is insecure [START_REF] Zhang | Cryptanalysis and Improvement of an ID-based Ad-hoc Anonymous Identification Scheme at CT-RSA 05[END_REF]. Another dynamic pairing based accumulator is proposed in [START_REF] Camenisch | An Accumulator Based on Bilinear Maps and Efficient Revocation for Anonymous Credentials[END_REF], which provides a more efficient witness update algorithm.

In their survey on accumulators [START_REF] Fazio | Cryptographic Accumulators : Defintions, Constructions and Applications[END_REF], Fazio and Nicolosi noted that the construction in [START_REF] Camenischn | Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials[END_REF] is such that the time to update a witness after m changes to the accumulator is proportional to m. They posed the question whether batch update was possible, namely if it was possible to build an accumulator where the time to update the witnesses is independent of the number of changes to the accumulated set. Wang et al. answered in affirmative by designing an accumulator with batch update in [START_REF]A New Dynamic Accumulator for Batch Updates[END_REF] and later improved in [START_REF] Wang | Improvement of a Dynamic Accumulator at ICICS 07 and Its Application in Multi-user Keyword-Based Retrieval on Encrypted Data[END_REF]. The scheme is based on Paillier cryptosystem [START_REF] Paillier | Public-Key cryptosystem based on composite degree residuosity classes[END_REF] and was proved to be secure under a new assumption called extended strong RSA assumption, which is a variant of strong RSA assumption (Definition 5) with modulus N 2 . However, contrary to the claim, Camacho et al. in [START_REF] Camacho | On the Impossibility of Batch Update for Cryptographic Accumulators[END_REF] exhibit an attack and further prove that the time to update a witness must be at least Ω(m) in the worst case. Hence this provides an impossibility result on batch-update capable accumulators.

The previous works only generate membership witnesses, however in certain scenarios non-membership witnesses might be inevitable. In [START_REF] Li | Universal Accumulators with Efficient Nonmembership Proofs[END_REF] authors provide a dynamic accumulator which supports short witnesses for both membership and non-membership, which they call universal accumulators. The initial value of the accumulator has to be public to be able to verify the non-membership witnesses. The construction is based on RSA-function and hence only prime values are permitted to be accumulated.

Karlof et al. in [START_REF] Karlof | Distillation Codes and Applications to DoS Resistant Multicast Authentication[END_REF] use elliptic curve to build an accumulator. To accumulate the values(scalars) they are multiplied with the public-key (i.e. a scalar times the base point of the curve). Witness generation follows the same algorithm but excludes the corresponding value. Verification is simple and involves checking for equality if the multiplication of the witness and the value equals the accumulated value.

Symmetric Accumulators

A symmetric cryptographic accumulator is a trapdoor-less construction, which does not require a witness for verification. The existing constructions are secure in the random oracle model. Symmetric accumulators [START_REF] Nyberg | Fast Accumulated Hashing[END_REF][START_REF] Yum | Generalized Combinatoric Accumulator[END_REF] fundamentally consists of a one-way function f : Y → X and a vector x ∈ X of length ℓ, which is initialized to 0. The set of values {y 1 , y 2 , . . . , y n } is accumulated to a vector z as:

z = x ∨ f (y 1) ∨ f (y 2) ∨ . . . ∨ f (y n)
where ∨ is the bitwise inclusive or. Given the accumulated vector z and a value y i , authenticating membership in the accumulated vector consists in computing v = f (y i) and verifying that ∀k ∈ 0, ℓ -1 , v k = 1 implies z i = 1. Authentication is simpler in case of symmetric accumulators for it does not require computing a witness. However they suffer from long-output of the accumulator. In fact, the length of the accumulator depends on the number of values added to the accumulator and not only on the security parameter.

Nyberg in [START_REF] Nyberg | Fast Accumulated Hashing[END_REF] proposes a symmetric accumulator. The idea is to use a hash function to generate a hashcode for values to be accumulated. Each hashcode h is considered to be composed of r blocks h 1 , h 2 . . . , h r each of size d bits. Such a code is then mapped to an r bit string, by mapping each block to a bit. A block is mapped to 0 if it is a sequence of r 0s, else it is mapped to 1. The accumulated value z is computed as the co-ordinate-wise bit-product of the strings corresponding to the values to be accumulated. To verify the membership of a value y, one computes the corresponding bit string y ′ of length r and checks that, for all 1 ≤ i ≤ r, whenever y ′ i = 0, then z i = 0. Bloom filters [START_REF] Bloom | Space/time trade-offs in hash coding with allowable errors[END_REF] by construction can be used as an accumulator. Furthermore, Yum et al. in [START_REF] Yum | Generalized Combinatoric Accumulator[END_REF] prove that they excel over other symmetric accumulators. Secure Bloom filter consists of k hash functions {f i : Y → X}. The functions in fact belong to a hash family. Each hash function uniformly returns a vector index. To add a value to the accumulator, it is fed to each of the hash functions to obtain k indices. The bits of x at these indices are set to 1. To verify if a given value was accumulated, the k hash functions are again applied to obtain the vector indices. If any of the bits of the accumulated vector at these indices is 0, the value was certainly not accumulated. If all the bits at these indices are 1, then we might obtain a false positive response. Another variant of Bloom filter has been studied in the past, where hash functions are replaced by Hash-based Message Authentication Code (HMAC).

We note that the size ℓ in case of symmetric accumulators increases with the number of elements in the filter or if the false positive rate is set lower.

Experiments

Our aim is to evaluate the performances of existing cryptographic accumulators in order to compare them. For this, we have implemented the original RSA-based accumulator [START_REF] Bari | Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees[END_REF][START_REF] Benaloh | One-Way Accumulators: A Decentralized Alternative to Digital Sinatures[END_REF], ECC-based accumulator described in [START_REF] Karlof | Distillation Codes and Applications to DoS Resistant Multicast Authentication[END_REF], secure Bloom filter using cryptographic hash functions [START_REF] Nyberg | Fast Accumulated Hashing[END_REF][START_REF] Yum | Generalized Combinatoric Accumulator[END_REF] and HMAC-SHA-1 based accumulator mentioned in [START_REF] Goh | Secure Indexes[END_REF]. This work only considers static accumulators as they capture the essential notion of membership testing. Furthermore, dynamic variants differ from static accumulators only in the case when witnesses are required to be updated in case of deletion/addition of a value from/to an accumulator. For symmetric accumulators, we only consider Bloom filter for our evaluation as they perform better (see [START_REF] Yum | Generalized Combinatoric Accumulator[END_REF]) over accumulator proposed by Nyberg [START_REF] Nyberg | Fast Accumulated Hashing[END_REF].

As discussed earlier, several pairing-based accumulators have been proposed in the past. However, due to continuous and recent attacks [START_REF] Hayashi | Breaking pairing-based cryptosystems using t pairing over gf(397)[END_REF] on existing pairing friendly curves, no officially recommended curves have been proposed until now. We hence exclude pairing-based accumulators from our evaluation. However, interested readers may refer to [START_REF] Lapon | Performance analysis of accumulator-based revocation mechanisms[END_REF][START_REF] Papamanthou | Authenticated hash tables[END_REF] where older curves have been considered for benchmarking.

In the rest of this section, we give the scenario used for our benchmarks, the chosen cryptographic parameters, the setting of our evaluations and preliminary analysis on the memory and communication costs of accumulators we have considered.

Scenario and Cryptographic Parameters

To benchmark the different cryptographic accumulators, we used different size S for the accumulated values. The size S varies from 128 to 2048 bytes. The smallest representing the acceptable RSA public-key of 1024 bits, and in general these sizes are representative of X.509 certificates. The number n of values in an accumulator is arbitrarily fixed to 1000.

In case of Bloom filter, if ǫ is the probability of false positive, then the number of hash functions used is k = -log ǫ.

The respective parameters of each accumulator and the list of curves used in our experiments (integrated in OpenSSL) are given in Table 1. To ensure strong one-wayness and collision resistance required for accumulators [START_REF] Benaloh | One-Way Accumulators: A Decentralized Alternative to Digital Sinatures[END_REF], we use SHA-1, HMAC-SHA-1, SHA-256 and SHA-3 [START_REF] Bertoni | The Keccak reference[END_REF]. The values to be accumulated are hashed using one of these functions before adding it to the accumulator. The OpenSSL implementation of SHA-1, HMAC-SHA-1 and SHA-256 has been used. The optimized code of Keccak available in the version 3.24 for SHA-3 as well as a naive implementation have been used.

Our target platform is a 64-bit processor desktop computer powered by an Intel i7 3520M processor at 2.90 GHz with 4 MB cache and running 3.8.0-35 Ubuntu Linux. We have used GCC 4.3.3 with -O3 optimization flag.

Memory and Communication Cost

In applications, memory and communication costs are critical. The size of the accumulator is an inevitable memory cost. The size ℓ of a secure Bloom filter is given by ℓ = -n log 2 (ǫ) ln 2 with ǫ the false positive probability, see [START_REF] Broder | Survey: Network Applications of Bloom Filters: A Survey[END_REF]. For ǫ = 2 -128 and n = 1000, a secure Bloom filter (184,664 bits) is 180 times bigger than a 1024bit RSA accumulator and 1154 times bigger than a 160-bit ECC accumulator. The key size for RSA and ECC determines the size of the accumulator. Therefore, ECC-based accumulators outperform RSA-based ones.

In Fig. 1, we show the evolution of ℓ (size of the accumulator) for different accumulators as a function of n. For n ≥ 12, even 2048-bit RSA accumulators are smaller than secure Bloom filter. The 160-bit ECC accumulator is obviously less expensive than RSA based accumulator and hence it is often the best solution in terms of memory.

If secure Bloom filters are costly in memory, they are inexpensive in communication: they do not require witnesses as in ECC and RSA. The drawback of asymmetric accumulators is the need to generate and communicate the witnesses. In the next section, we investigate the speed of accumulators.

Results

For all accumulators, we measure the time needed to verify if a value belongs to an accumulator. The results presented in the paper are the average values for 100000 repetitions of the same experiment. We first give individual results on each accumulator and then make an overall comparison. We note that the subfigures in this section are plotted in the same scale as the one used in the leading plot of the figure.

Individual Results

RSA-based

We use the following RSA key sizes {1024, 2048, 3072}. In Fig. 2, we first observe that the key length has (obviously!) a big influence on the performance. If we consider SHA-1 as deprecated, the choice of the hash function (SHA-256 or SHA-3) has little influence. Moreover, the message size S also has no influence on the verification time. The cost of hashing is subdued by the cost of exponentiation. We note that this accumulator only provides strong one-wayness as the values are only hashed before adding them to the accumulator. As discussed by Barić and Pfitzmann [START_REF] Bari | Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees[END_REF] a stronger notion of security called collision-freeness is achieved when the values added to an accumulator are primes or prime representatives of non-prime values. We also measure the cost incurred by collision-free RSA accumulators using prime representation of input values. The method of computing prime representatives follows the description by Barić and Pfitzmann [START_REF] Bari | Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees[END_REF]. The prime representative p(y) for a value y is generated by computing the digest h(y) as in the previous technique and then by finding a t-bit number d which when appended to h(y) as p(y) = 2 t h(y) + d makes p(y) prime. The authors suggest to use t = ⌈log 2 (2 × size of RSA modulus)⌉. The integer d then can be found with high probability by testing for primality of p(y) for each odd integer d satisfying 1 ≤ d < 2 t . Table 2 presents the significant overhead incurred if one wishes to achieve collision freeness instead of strong one-wayness according to the used hash function.

SHA-1 SHA-256 SHA-3 Overhead ×23 ×85 ×78

ECC-based

We observe from Fig. 3 and Fig. 4 that for almost the same security level binary elliptic curve of degree 163 performs better than elliptic curve over 160 bit prime field. The former takes around 2 µs for verifying the witness of a value of size 128 bytes while the later takes 10 µs in case of SHA-1.

Hence an overhead of 8 µs, if one wishes to use prime fields. We further remark that unlike in RSA accumulator where hash function has no impact, in case of elliptic curve, the impact of hash functions (SHA-1 and SHA-256) appears visible for larger size of the values. This phenomenon appears because for large values cost of hashing is comparable to the cost of point multiplication on elliptic curve. Unlike other hash functions, SHA-3 does not influence the verification time as we use the optimized version of Keccak. If k is the number of calls to the cryptographic hash function. We have k = -log 2 (ǫ) (see [START_REF] Broder | Survey: Network Applications of Bloom Filters: A Survey[END_REF]). Any effect or artifact on the performance of the hash function is amplified k times on the verification using a secure Bloom filter. It explains why the verification time grows linearly for SHA-1, HMAC-SHA-1, SHA-256 and the naive implementation of SHA-3. For the optimized implementation of SHA-3, we observe a step-wise progression. The size of the step is 1000 bytes.

Overall Comparison

In Figure 6, we compare all accumulators for a security level of 128 bits and a value of 128 bytes using SHA-1 and SHA-3. Each time, ECC-based accumulators are the most efficient and hence the best of all, then we have Bloom filter and at the bottom the RSA-based accumulators. We note that building a RSA-based accumulator with n elements would cost n-times the cost of a verification. This is due to the fact that building an accumulator would involve n modular exponentiations. The same holds for ECCbased accumulator, where the point multiplication is computed n times. Bloom filter too behaves in the same manner, where hash would be computed for all the n values. However, as Bloom filter is witness free, cost of adding a new value would be the cost of computing the k hashes corresponding to the new value i.e. cost of a verification. While, in case of non-dynamic RSA and ECC-based accumulators, the cost of adding a new value would entail updating each of the previous n witnesses. A representative result for build and add time is presented in Table 3.

Related Work

The most potentially relevant work on performance of cryptographic accumulators is presented by Papamanthou et al. [START_REF] Papamanthou | Authenticated hash tables[END_REF]. The authors first use accumulators to design authenticated hash tables, where a user queries a hash table held by a server and wishes to verify the correctness of the response received. The authors then benchmark the authenticated hash table scheme using RSA accumulator and pairing based accumulator. In practice, RSA accumulator based scheme performs better than the pairing based accumulator scheme. However, RSA accumulator has a logarithmic advantage over pairing in the asymptotic case. We note that the evaluation is restricted to 1024 bits RSA modulus and Type A pairings. Furthermore, the values to be accumulated are generated using arbitrarily chosen SHA-256. In a later work, Lapon et al. credential revocation schemes. However, only pairing-based schemes are considered for performance evaluation. Another relevant work is an extensive study of the real-world performance of authenticated dictionary schemes by Crosby and Wallach [START_REF] Crosby | Authenticated dictionaries: Real-world costs and trade-offs[END_REF]. The authors use an authenticated dictionary based on RSA accumulators as one of their test systems, and conclude that the RSA accumulators introduce a significant performance overhead that makes this authenticated dictionary too slow for practical use compared to digital signatures. However, the results do not show the specific amount of time taken by RSA accumulator operations because they are formatted in terms of authenticated dictionary operations such as inserts and updates. The previous works in general only consider certain accumulators coupled with an arbitrarily chosen hash function and fixed security parameters in certain cases. In this perspective, our work fills this gap by providing a complete evaluation of different schemes using varied security levels, achieving different security notions and studying impact of other implicit parameters such as hash functions.

Conclusion

After a survey of existing cryptographic accumulators, we evaluate their merits. Our work considers rather big-size data ranging from 128 bytes (1024 bits) to 2048 bytes. These sizes are appropriate for Certificate Revocation Lists (CRL) which are widely used in PKI infrastructure. It is important to notice that CRL file size can become very large, for example CRLs issued by VeriSign5 can be a megabyte in size. In order to efficiently store such sensitive data noncryptographic Bloom filters are often used as a space efficient data structure. Our analysis demonstrates that for such application scenarios ECC can reduce the memory footprint and improve the verification at the cost of a witness.

Fig. 1 .

 1 Fig. 1. Memory cost of accumulators. The cost of Bloom filters is given for different false positive rates respectively ǫ = 2 -128 (black), ǫ = 2 -256 (blue) and ǫ = 2 -512 (red). The horizontal dashed line represents the cost of asymmetric accumulators (ECC and RSA).

Fig. 2 .

 2 Fig. 2. Verification time for RSA-based accumulators with different key size {1024, 2048, 3072} with SHA-1, SHA-256 and SHA-3.

4. 1 . 3

 13 Symmetric Accumulators In Fig.5, we analyze the verification time for different size of values for SHA-1, HMAC-SHA-1, SHA-256 and two implementations of SHA-3 (a naive one and the optimized code) with ǫ ∈ {2 -128 , 2 -256 , 2 -512 }.

Fig. 4 .

 4 Fig. 3. ECC prime

Fig. 5 .

 5 Fig. 5. Verification time for secure Bloom filter as a function of the value's size and for different false positive values ǫ ∈ {2 -128 , 2 -256 , 2 -512 }.

Fig. 6 .

 6 Fig. 6. Summary of different accumulators for 128 bytes' values.

Table 1 .

 1 Security and parameters used in our experiments.

	Accumulator Parameters size RSA 1024 2048 3072 ECC binary 163 283 571 ECC prime 160 256 521 Bloom (-log 2 ǫ) 128 256 512	Prime field Binary field secp160r1 sect163r1 secp256r1 sect283r1 secp521r1 sect571r1

Table 2 .

 2 Overhead for using a stronger security model.

	Time (ms)	Time (ms)	Time (ms)
	16 17	SHA-1	SHA-256	SHA-3
	15			
	14			
	13	3072		
	12	2048		
	11	1024		
	10			
	9			
	8			
	7			
	6			
	5			
	4			
	3			
	2			
	1			
	0 128 728 1,328	128 728 1,328	128 728 1,328
		Size (bytes)	Size (bytes)	Size (bytes)

Table 3 .

 3 Time to build accumulator (for 1000 values) and add a new value using SHA-1 for 128 bytes' values.

				Time (µs)	
	Accumulator Param. Verif. Build Add
	ECC binary	163	2	2000	2200
	ECC prime	160	10	10000 10100
	Bloom (-log 2 ǫ) 128	49	49000	49
	RSA	1024	1100 1100000 1102000

http://gmplib.org/

http://keccak.noekeon.org/files.html

http://crl.verisign.com

This This work has been partially supported by the LabEx PERSYVAL-Lab : n o ANR-11-LABX-0025.