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Abstract Meta-level abduction is a method to abduce missing rules in explaining observa-
tions. By representing rule structures of a problem in a form of causal networks, meta-level
abduction infers missing links and unknown nodes from incomplete networks to complete
paths for observations. We examine applicability of meta-level abduction on networks con-
taining both positive and negative causal effects. Such networks appear in many domains
including biology, in which inhibitory effects are important in several biological pathways.
Reasoning in networks with inhibition involves nonmonotonic inference, which can be re-
alized by making default assumptions in abduction. We show that meta-level abduction can
consistently produce both positive and negative causal relations as well as invented nodes.
Case studies of meta-level abduction are presented in p53 signaling networks, in which
causal relations are abduced to suppress a tumor with a new protein and to stop DNA synthe-
sis when damage has occurred. Effects of our method are also analyzed through experiments
of completing networks randomly generated with both positive and negative links.
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1 Introduction

Abduction and induction are both ampliative reasoning, and play essential roles in knowl-
edge discovery and development in science and technology. Integration of abduction and
induction has been discussed in such diverse aspects as implementation of inductive logic
programming (ILP) systems using abductive methods [67,14,52,54,27, 3] and “closing the
loop” methodologies in scientific discovery [10,28,55]. The use of priobaxckground
knowledgein scientific applications has directed our attentiortheory completiorf40]

rather than classical learning tasks such as concept learning and classificationabhere,
ductionis mainly used to complete proofs of observations frimwompletebackground
knowledge, whilénductionrefers to generalization of abduced cases.

In scientific domains, background knowledge is often structured in a formeteforks
In biology, a sequence of signalings or biochemical reactions constitutes a network called a
pathway which specifies a mechanism to explain how genes or cells carry out their func-
tions. However, information of biological networks in public-domain databases is generally
incomplete in that some details of reactions, intermediary genes/proteins or kinetic informa-
tion are either omitted or undiscovered. To deal with incompleteness of pathways, we need
to predict the status of relations which is consistent with the status of nodes [63,68,51,21,
55], or insert missing arcs between nodes to explain observations [69, 28,65, 1]. These goals
are characterized by abduction as theory completion, in which status of nodes or missing
arcs are added to account for observations.

If a network is represented in a logical theory, inference on the network can be real-
ized on a language in which each network element such as a node and a link is itself an
entity of the language. Such a theory (or program) refers a language of the network, and
is hence regarded asmaeta-theory(or meta-program, while a theory (or program) rep-
resenting networks is referred to as @lpjective theoryor objective prograrh Then, to
perform abduction on networks, we need abduction on meta-theories, which is referred to
asmeta-level abductiarNote thatmeta-reasoningas been intensively investigated in logic
programming, e.g., [29,12,4], yet main inference considered there has been deduction.

Meta-level abduction was introduced in [18] as a method to discover unknown relations
from incomplete networks. Given a network representing causal relations, caikadsal
network missing links and nodes are abduced in the network to account for observations.
The main objective in [18] is to provide a logical foundation and knowledge representation
for abducing ruleswhich is an important abductive problem in ILP. It is notable that other
abductive methods [49, 3] need a predetermined set of candidate rules @adledible
rules or abducible¥ and then select consistent combinations of abducibles to form expla-
nations. In contrast, meta-level abduction does not need any such abducibles in advance.
Meta-level abduction is implemented in SOLAR [44,45], an automated deduction system
for consequence finding, using a first-order representation for algebraic properties of causal-
ity and a full-clausal form of network information and constraints. Meta-level abduction by
SOLAR is powerful enough to infer missing rules, missing facts, and unknown causes in-
volving predicate inventiof41] in the form of existentially quantified hypotheses. Note that
predicate invention had been intensively investigated in the initial stage of ILP research and
has recently been revisited [42], since it should play an important role in discovery.

Meta-level abduction has been applied to discover physical skills in terrhgldén
rulesto explain giverempirical rulesin cello playing examples in [18], and a thorough ex-
perimental analysis with a variety of problem instances has been presented in [45]. However,
all those examples of meta-level abduction in [18,45] contain only one kind of causal effects,
which are positive, and it was left open how to deal vitith positive and negative effects



Then, we shall examine applicability of meta-level abduction to deal with networks express-
ing both positive and negative causal effects. Such networks are often used in biology, where
inhibitory effectsare essential in gene regulatory, signaling and metabolic networks.

In this paper, we present axioms for meta-level abduction to produce both positive and
negative causal relations as well as newly invented nodes. We show two axiomatizations
for such meta-level abduction. One is a seabérnating axiomavhich define relations of
positive and negative causal effects in a double inductive manner. This axiom set reduces to
the axioms for ordinary meta-level abduction defined in [18] when there is no negative causal
link. The other axiomatization is a variant of the alternating axioms, but prefers negative
links to positive ones if both are connected to the same node. In this case, reasoning in
causal networks becomasnmonotonicand involves default assumptions in abduction.

Then, applications to p53 signal networks [50, 36] are presented as case studies of our
framework, in which meta-level abduction reproduces theories explaining how tumor sup-
pressors work [65] and how DNA synthesis stops [62]. Analysis of such abstract signaling
networks, although simple, provides one of the most fundamental inference problems in
computer-aided scientific research including Systems Biol@gyen an incomplete causal
network, infer possible connections and functions of network entities to reach the target
entities from the sourcebleta-level abduction in this paper is crucial in this task for the fol-
lowing reasons. First, suggestion of possible additions in prior networks enables scientists to
conduct hypothesis-driven experiments with those focused cases. If a suggested hypothesis
is justified through a through set of experiments, the corresponding new links and/or nodes
are considered to be discovered. In network completion, however, the larger the network
becomes, the more abductive inference steps are required to get a hypothesis and the more
candidate hypotheses are inferred. Then, it is hard for human scientists to consider all possi-
bilities without losing any important ones. Therefore, automation of hypothesis enumeration
is very important. Second, abduction in such network domains often involgealaather
than anobservationA hypothesis is inferred to achieve the goal that has not been observed
yet. For example, in drug design and pharmacology as well as therapeutic research, the ef-
fect of introduction of new entities and links to a known network is goal-oriented and the
same hypotheses cannot be applied to other goals in general. This feature of goal-oriented
abduction also exists in completing causal networks for improvement of physical techniques
in musical performance [18], in which specific skills are required for requested tasks.

Finally, scalability of meta-level abduction is analyzed through experiments of com-
pleting networks randomly generated with both positive and negative links. By varying the
average degree of nodes to edges, from sparse to dense networks are generated with several
sizes. We will see that it is not easy to generate a large and dense network by keeping the
consistency, since there are more chances to become inconsistent in such networks. Then
the growth rate of hypotheses in the size of networks rather decreases in dense networks.

This is an extended version of the paper [17], and contains several technical details such
as an abductive procedure based on consequence finding, theoretical correctness for the pro-
posed formalization and their proofs, detailed analysis of experiments on p53 pathways, and
scalability issues. The rest of this paper is organized as follows. Section 2 offers the essen-
tial of meta-level abduction and its use for rule abduction. Section 3 then extends meta-level
abduction to allow for two types of causal effects, in which positive and negative rules are
calledtriggers andinhibitors, respectively, and investigate properties of two axiomatiza-
tions. Section 4 presents two case studies of meta-level abduction applied to completion
of sub-networks in p53 signal networks. Section 5 shows experiments on causal networks,
and analyzes scalability of our method in completing networks. Section 6 discusses related
work, and Section 7 gives a summary and future work.



2 Meta-level Abduction

This section revisits the framework foreta-level abductiofiL8], and provides the correct-
ness of rule abduction.

2.1 Causal Networks

We suppose a background theory represented in a network structure cesladad graph

or acausal networkA causal graph is a directed graph representing causal relations, which
consists of a set afodesand a set ofdirected) arcgor links).! Each node in a causal graph
represents some event, fact or propositiowlivkct causal relatiorcorresponds to a directed

arc, and aausal chains represented by the reachability between two nodes. The interpre-
tation of a “cause” here is kept rather informal, and just represents the connectivity, which
may refer to a mathematical, physical, chemical, conceptual, epidemiological, structural, or
statistical dependency [48]. Similarly, a “direct cause” here simply represents the adjacent
connectivity, while its effect is direct only relative to a certain level of abstraction.

We then consider a first-order language to express causal networks. Each node is rep-
resented as propositionor a (ground) atom in the language. When there is a direct causal
relation from a node to a nodeg, we define thatonnected(g, s) is true as in (1). Note
thatconnected(g, s) only shows tha is one of possible causes @fand thus the existence
of anotherconnected(g,t) (s # t) means thas andt¢ are alternative causes fgr Here,
expression of causal relations is done atrtieta levelsing themeta-predicateonnected,
while the object levelrefers to nodes in a causal network. An atesnnected(s,t) at the
meta level corresponds to a ryle+ ¢) at the object level. The fact that a direct causal link
cannot exist frons to g is represented in afintegrity) constraintof the form (2).

connected(g, s) 1)
—connected(g, s) )

A direct causal relation froma which hasnondeterministic effectg andh, written as(g v

h « s) at the object level, is represented in a disjunction of the form (3) at the meta level.
On the other hand, the relation thatis jointly caused by andt”, written as(g < s A t)

at the object level, is expressed in a disjunction of the form (4) at the meta level, viz.,
(g sNnt)=(g« s)V(g+t).

@
OR TO+—5) connected(g, s) V connected(h, s) 3)
@
®
(@ (O%) AND connected(g, s) V connected(g,t)
® (4)

There can be more than two atoms in a disjunction of the form (3) or (4). For example,
(g + s At Au) atthe object level can be expresse@d@snected(yg, s) V connected(g, t) V
connected(g, w). A complex relation of the fornig vV h < sA¢) that has more than one node

in both the left-hand and right-hand sides of the rule can be decomposed into two relations,

1 Precisely speaking, our causal networks bring us more information than directed graphs, since negation,
disjunctive effects and joint causes are all represented in a network.



(s-t + s At)and(g V h + s-t), wheres-t represents the intermediate complex. Then, any
direct causal relation in a causal network can be represented by at most two disjunctions of
atoms of the forms (3) and (4) at the meta level, using intermediate complexes.

In the above expression, (i) each atom at the object level is representeéerasad the
meta level, and (ii) each rule at the object level is representeda ar a disjunction of
facts at the meta level. The point (ii) can not only hold for rules given in the axioms, but can
also be applied to expres¥erred rulesat the meta level. Now, to express inferred rules, we
introduce another meta-predicateused. For object-level propositiong ands, we define
thatcaused(g, s) is true if there is acausal chainfrom s to g. Then, the causal chains are
generally defined transitively in terms @fnnected as the axioms with variables:

caused(X,Y) + connected(X,Y). 5)
caused(X,Y) < connected(X, Z) A caused(Z,Y). (6)

Here, thecaused/2 relation is recursively defined with thennected/2 facts. The first-

order expression with variables is thus used to represent that these axioms hold for all
instances of them. Other algebraic properties as well as some particular constraints (e.g.,
—caused(a, b)) can also be defined if necessary. Variables in object-level expressions like
g(T) and s(T') can be allowed in the meta-level expression likenected(g(T), s(T)),

where the predicateg ands are treated as function symbols in the same way that Prolog
can allow higher-order expressions. Here, an expresgidi can represent a set of nodes
with the same property with different values of the argumefitsuch as time.

2.2 Rule Abduction

Reasoning about causal networks is realized by deduction and abduction from the meta-level
expression of causal networks together with the axioms for causal relations including (5)
and (6). Inrule deductionwe will later prove in Proposition 1 that, if a meta-level expression

of the formcaused(g, s) for some factg ands can be derived, it means that the r(de« s)

can be derived at the object level.

Similarly, we can realizeule abductionin the meta-level representation as follows.
Suppose that a fagtis somehow caused by a fagtwhich can also be regarded asiaput-
output relationthat an outpuy is obtained given an input Here,g ands are called aoal
(fact) (or atarget (fact) and asource (fact) respectively. Setting aobservationO as the
causal chairaused(g, s), we want to explain why or how is caused. At the object level,

O corresponds to the rulg < s), which can be given as either a real observation (called
anempirical rulg or avirtual goalto be achieved. An abductive task is then to fimdden
rulesthat establish a connection from the sousde the goaly by filling the gaps in causal
networks. As we will later see in Theorem 1, such an empirical rule can have more than one
antecedent. For example, an object-level observdaioa- s A t) can be expressed as the
meta-level formuldcaused(g, s) V caused(g, t)) in the same way as (4).

Logically speaking, @ackground theonB consists of the meta-level expression of a
causal networkv and the axioms for causal relations at the meta level containing (5) and (6).
WhenB is incompletethere may be no path betwegands in B, that is,caused(g, s) can-
not be derived fronB. Then, abduction infers axplanation(or hypothesis H consisting of
missing relations (links) and missing facts (nodes). This is realized by settiadpthueibles
I, the set of candidate literals to be assumed, as the atoms with the predicateted:

I' = {connected(_,_)}. It is sometimes declared that there cannot exist any direct causal
relation between the source and the goal, eonnected(y, s).



Formally, given a sep of formulas, a setd of instances of elements d@f is an @b-
ductivg explanationof O (with respect toB) if B U H = O andB U H is consistent. A
set of formulas can be interpreted as the conjunction of them. An explandtiohO is
minimalif it does not imply any explanation @ that is not logically equivalent t&. Min-
imal explanations in meta-level abduction correspond to minimal additions in causal graphs,
and are reasonable according to the principle of Occam’s razor. For example, suppose the
observationD = caused(g, s) A caused(h, s), that is, the multiple causal chains between
two goal factsy, h and the source fagt Examples of minimal explanations 6fcontaining
two intermediate nodes are as follows.

5
@ &) © 3X3Y (connected(g, X) A connected(h,Y")

A connected(X, s) A connected(Y, s))
(—

e g X 3X3Y (connected(g, X) A connected(X,Y)
> \ )./ O A connected(h,Y') A connected(Y, s))

H; andH, represent different connectivities, and we may want to enumerate different types
of network structures that are missing in the original causal network. Hgreprresponds

to the four ruleg (g + x), (x + s), (h + ¥), (v < s)}, hence rule abduction, i.e., abduc-

tion of rules, is realized. Moreover, these hypotheses contain existentially quantified vari-
ables, whereg and+ are newly invented here. Those new terms can be regarded as either
some existing nodes or new unknown nodes. Since new formulas can be produced at the
object level predicate inventiofi41] is partially realized in meta-level abductién.

A hypothesis with a joint cause of the form (4) can be obtained by taking a disjunction
of explanations of the formonnected(g, -) or by obtaining alisjunctive answef53] for an
observation containing a free variabte of the formcaused(g, X). Alternatively, this can
be realized by adding a meta-level axiom:

Hy:

connected(X,Y) V connected(X, Z) < jointly_connected(X,Y, Z). @)

to the background theorg and the literals of the formiointly_connected(-, -, -) to the
abducibleg". Causes consisting of more than two joint links can be represented in a similar
way. Atoms of the formyointly_connected(_, _, ) together with axiom (7) can also be used

to represent conjunctive causes of the form (4) in a causal network. That is, to express
(g + sAt) atthe object level, the atopaintly _connected(g, s, t) can be used instead of the
formula(connected(g, s) V connected(g, t)) at the meta level.

The soundness and completeness of rule abduction in meta-level abduction can be de-
rived as follows® For any meta-level theory¥ such that the predicate of any formula ap-
pearing inN is connected only, let \(N) be the object-level theory obtained by replacing
everyconnected(t1,t2) (t1 andty are terms) appearing iV with the formula(t; « ¢2).

We first show the correctness of meta-level deduction in the next proposition.

Proposition 1 Suppose a meta-level theoly, which consists of disjunctions of facts of
the formconnected(-, -). Let the background theory e = N U {(5),(6)}. Then,B E
(caused(g,s1) V -+ -V caused(g, sp)) ifand only if A\(N) = (g < s1 A -+ A sn).

2 Predicate invention in this form can also be regarded as a realizativddsn object inventiodiscussed
by Muggleton in [7].

3 The properties presented here are generalizations of preliminary results in [18, Section 3.3], which
proved the correctness when the observation is a fact, i.e., a single atom, of thexfored(g, s).



Proof We prove the proposition by induction on the depth of proof tfees.

Induction basislt holds by the meaning of causal networks thatsed(g, s) is de-
rived in a proof having depth 1 ifonnected(g, s) € B (by (5)) iff (g + s) € A(N). Then,
(caused(g, s1)V- - -Vcaused(g, sn)) is derived in a proof having depth 1 {ffonnected(g, s1)Vv
-+ V connected(g, sn)) € N iff ((g < si) V-V (g « sn)) € AN) iff A(N) | (g +
ST A+ ASp).

Induction hypothesiSuppose that the proposition holds for any formataused(g, s1)V
-+ V caused(g, sn)) derived fromB in a proof tree having deptfisuch thatl < k.

Induction stepA formula (caused(g, s1) V- - -V caused(g, sn)) is derived in a proof tree
having depth: 4 1 iff B |= ((connected(g, s1)V 3s} (connected(g, s1) A caused(s}, 1)) v
-+ V (connected(g, sn) V 3sy, (connected(g, sy,) A caused(sy,, sn)))) (by (5) and (6)) such
that caused(s’;, s;) is derived in a proof tree having depthfor j = 1,...,n iff A(N) |=
(((g 4 51)V3st (g + sDA(sh = s0)) V-V ((g 4 50)VIsn((g 4 ) A(shy + 51)))
(by the induction hypothesis) iff(N) &= ((g < s1) V- V (g « sn)) iff A\(N) = (g +
S1 A+ ASn). O

Note in Proposition 1 that we do not need theounterparts of axioms (5) and (6) in
the object level. This logic reflects the assumption that transitivity of cause hglds for
a chain in a causal network. Now we have the correctness of meta-level abduction.

Theorem 1 Let N and B be the same theories as in Proposition 1. Suppose the observation
O = (caused(g,s1) V -+ V caused(g, sn)), and letI" = {connected(_,-)}. Then,H is

an abductive explanation efiused(g, s) with respect taB and I" if and only if \(H) is a
hypothesis satisfying that

AMN)UMNH) E (g« s1A---Asn), and (8)
A(IN) U A(H) is consistent. 9)

Proof The equivalence between the relation taty H = O and the abductive deriva-
tion (8) holds by Proposition 1. The equivalence between the consisteri®ydf and the
consistency (9) is obvious3 U H is consistent because it contains no integrity constraint,
and so is\(N) U \(H). O

2.3 Abduction of Rules and Facts

Besides the use in rule abduction, meta-level abduction can also be apgaetabduction
[18], which has been focused on almost exclusively in research of abductior’iAduc-

tion of facts at the object level can be formalizedjasry answeringt the meta level. Given

a goal of the fornraused(g, X), abduction of causes is computed by answer substitutions
to the variableX. To this end, each abducible literaht the object level is associated with
the factcaused(a, a) at the meta level. That is, an abducible can hold by assuming itself.
Equivalently, the axiom for abducibles is expressed using the meta-predidas:

caused(X, X) + abd(X).

4 For example, SOL tableaux [44,45] (Section 2.4) can be used as proof trees in deducing target conse-
quences. Since SOL(AR) is complete for consequence-finding [13,45], for any minimal ¢ladsgved
from a consistent axiom set, there is an SOL tableau producingth a certain depth.

5 In a philosophical work [60], fact abduction and rule abduction are classifiéatasal abductiorand
law-abductionrespectively. Our meta-level abduction also gives a realizati@ndfrder existential abduc-
tion, which is most important to produce new theories with new concepts [60].



Then, each abducible at the object level should be declareds@g(a). Answer extraction
for the query+ caused(g, X') can be realized by giving the meta-level formula of the form:

ans(X) + caused(g, X) A abd(X). (20)

Here,ans is theanswer predicat§23], and the variabl& is used to collect only abducibles
which causeg. An integrity constraintthat two factg andq cannot hold at the same time
(< p A q) can be represented as:

« caused(p, X) A caused(q,Y) A abd(X) A abd(Y).

This makes any combination of abducibles that caysaad ¢ incompatible. Such a set
of incompatible abducibles is calledreogood Finally, by combining rule abduction and
fact abduction in the form afonditional query answerinf23], which extracts answers in a
query with additional abduced conditions, meta-level abduction enablesalsit@e both
rules and fact$18].

2.4 Computation by Consequence Finding

All types of meta-level inferences in this section, including generation of existentially quan-
tified hypotheses in meta-level abduction as well as conditional query answering to abduce
rules and facts, can be realized by SOLAR [44,45]. SOLARdsr@sequence-findirgystem
based on SOL resolution [13] and the connection tableaux.

In SOLAR, the notion of production fields [13] is used to represent language biases for
hypotheses. Alauseis a disjunction of literals. Aoroduction fieldP is a pair(L, Cond),
whereL is a set of literals and’ond is a certain condition. 1€ond is true (empty),P is
denoted agL ). A clauseC belongs toP = (L, Cond) if every literal inC' is an instance
of a literal inL andC satisfiesCond. Let X be a clausal theory. The set of consequences
of X belonging toP is denoted ag'hp(X). Thecharacteristic clausesf X with respect to
P are defined a€'arc(X,P) = unThp(X), wherepT denotes the set of clausesinthat
are minimal with respect to subsumption. Trireav characteristic claused a clause” with
respect to” andP are defined a®’ewcarc(X,C,P) = u[Thp (X U{C}) \ Thp(X)].

Let B be a clausal theory (background theory) ana set of literals (observations).
Then, a sefd of literals is obtained as an abductive explanatio®ddy inverse entailment
[13]:

BU{-0} E —-H, (11)
where both-O = \/; ., —~L and—-H = \/; .y —L are clauses (becauseand H are sets
of literals and are interpreted as conjunctions of them). Similarly, the conditiorbthat!
is consistent is equivalent t8 -~ —H. Hence, for any hypothesi#, its negated form
—H is deductively obtained as a “new” consequencesaf {—~O} which is not an “old”
consequence adb alone. Given the abduciblds any literal in—H is an instance of a literal
inT" = {-L | L € I'}. Hence, the set of minimal explanations@fvith respect taB andI”
is characterized a§H | ~H € Newcarc(B, -0, (I')) }, while the set of minimal nogoods
with respect taB andI"is { H | ~H € Carc(B, (') }.

SOLAR is complete for finding (new) characteristic clauses with respect to a given
production field. SOLAR can thus be used to implemenbmpleteabductive system for
finding and enumerating minimal explanations fréuli clausal theoriescontaining non-
Horn clauses. A simple way to compudécwcarc(X, C,P) in SOLAR is: (1) enumerate
Carc(X,P), and then (2) enumerate tBOL tableau deductiorfeom X' U {C} with the top
clauseC [45] by removing each produced clause subsumed by some clagge i, P).



3 Reasoning about Positive and Negative Causal Effects

So far, meta-level abduction has been defined for causal networks without explicitly argu-
ing the meaning of causes. Indeed, links in a causal network have been of one kind, and
connected(g, s) at the meta level, i.e(g + s) at the object level, just represents tlgat
directly depends om somehow. However, mixing different types of causalities in one type

of links often makes analysis of actual causes complicated [48]. For example, suppose that
increase of the amount pfdecreases the amountgénd that increase gfcauses increase

of r. In this case, we cannot say that increase chuses increase efbecause cannot
mediate betweep andr. For this problem, it is not appropriate to represent the causali-
ties as(p — ¢ — r) because transitivity does not hold. Inste&ahc(p) — dec(q)) and
(inc(q) — inc(r)) would be more precise but we need more entities and relations between
inc(-) anddec(-). In this section, we consider one of the most important problems of this
kind: networks with two types of causalities, i.pgsitiveandnegativecausal effects. With

this regard, from now on we can understand that each arc of the detnected(g, s) in
Section 2 only represents positive effects.

We extend applicability of meta-level abduction to deal with networks expressing both
positive and negative causal effects. Such networks are seen in biological domains, where
inhibition effects negatively in gene regulatory, signaling and metabolic pathways. Now we
consider two types of direct causal relationsygered andinhibited. For two nodeg and
t, the relationtriggered (g, t) represents a positive cause such thatatrigger of g, written
asg «— t in a causal network. On the other hand, the relatignbited (g, s) represents a
negative cause such thais aninhibitor of g, written asy — s in a causal networR The
meaning of these links will be given in two ways in Sections 3.1 and 3.2.

As in Section 2.1, negation, disjunctive effects and conjunctive causes can be defined for
triggered andinhibited, cf., (2), (3) and (4), and complex causal relations can be represented
using those combinations and intermediate complexes. For instgisgejntly triggered by
t; andto can be expressed asggered(g, t1) V triggered (g, t2).

The notion of causal chains is also divided into two types: the positive one (written
promoted) and the negative one (writtemppressed), respectively corresponding teiggered
andinhibited. Now our task is to design the axioms for these two meta-predicates.

3.1 Alternating Axioms for Causality

Suppose first that there is no inhibitor in a causal network, that is, all links are positive. In
this case, the axioms fgrromoted should coincide with (5) and (6):

promoted(X,Y) + triggered(X,Y). (12)
promoted(X,Y) + triggered(X, Z) A promoted(Z,Y). (13)
Next, let us interpret the meaning of an inhibitor as a toggle switch of signals flowed in the
inhibitor, just as an inverter in a logic circuit [62]. Then, in the presence of inhibitors, we
need one more axiom (14), which blocks an adjacent inhibitoXfam order to promoteX':

promoted(X,Y) < inhibited(X, Z) A suppressed(Z,Y). (14)

6 Atrigger and an inhibitor are often called antivatorand arepressor respectively.
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As for the axioms of the negative causal chaippressed, we can consider the following
axioms (15), (16) and (17), which are the counterpart of positive ones (12), (13) and (14):

suppressed(X,Y) < inhibited(X,Y). (15)
suppressed(X,Y) < inhibited(X, Z) N\ promoted(Z,Y). (16)
suppressed(X,Y) + triggered(X, Z) A suppressed(Z,Y). a7)

That is, a negative causal chainXocan be established if negative influence is propagated
to X either directly by an adjacent inhibitor of an active (15) or promoted (16) item or
indirectly by a trigger of suppressed (17). By this way, we can establish the connection
betweenX andY by mixing both positive and negative links.

One nice property with the axiomatization by (12—17) is that all possible paths from a
source to a goal, which is either positive or negative, can be obtained by meta-level abduc-
tion. We here prove this property step by stdfirstly, the correctness of the axiomatization
by (12—17) with respect to deduction is shown as follows. Suppose a meta-level theory
which represents a causal network with triggers and inhibitors, and a clause at the meta-
level O = promoted(g, s) (resp.O~ = suppressed(g, s)), whereg ands are nodes inv.
WhenO™ (resp.0™) can be proved froniv U {(12-17)}, aproof IT of OT (resp.0™) is
a sub-network ofV such thatiT consists of triggers and inhibitors that connect paths from
510 g. A proof IT of O (resp.0™) is also called gositive(resp.negativg causal chain
from s to g in N. Then, each proof ab™* or O~ is a sequence of linkd,1, L, . . ., Lim,
wherem is the length of the chain and eagh is either a trigger or an inhibitor iV such
that the endpoint of.; is g, the start point ofL,, is s, and the start point of ; is the same
as the endpointof;; forj=1,...,m —1.

Lemmal Let N be a causal network, andand g be nodes inV, which respectively rep-
resent a source and a goal. There exists a positive (resp. negative) causal chaintérgm
in NV if and only if there exists a path frosto g in IV such that there are an even (resp. odd)
number of occurrences of inhibitors.

Proof We here prove the only-if direction of the lemma, but the if direction can be proved
in a similar way. Let/I™ (resp./1 ) be a positive (resp. negative) causal chain frota g

in N. We prove the only-if direction of the lemma by a double induction on the numbér
occurrences of inhibitors ifv+ or I7~.

Firstly, consider the case &f= 0. In this case/I" consists of atoms with the predicate
triggered only, each of which appears in either (12) or (13). Constructio/of is in-
deed possible by Proposition 1 when we replaégyered with connected and axioms (12)
and (13) with (5) and (6), respectively. On the other hand[if exists, it must contain at
least one atom withinhibited by (15) or (16). Hence there is i@~ in this case.

Secondly, consider the casejof= 1. If IIT exists, then it must contain an inhibitor
wmhibited(x, 1) for someyx and in N from a rule of the form (14) after some chain of
triggers via (13). Theruppressed (v, s) must be derived, buf+ cannot contain any other
inhibitor by the assumption. By the casekof 0, it is impossible to deriveuppressed (v, s)
without using any inhibitor. Hence, there is fB" in this case. On the other hand;” must
contain either an inhibitoimhibited (x, s) for some node in NV from a rule of the form (15)
or an inhibitorinhibited(x, 1) for somey and+ in N from a rule of the form (16) after

7 A preliminary version of the completeness property presented in [17, Proposition 3.1] presupposes that
the observation is a unit clause of the formppressed(g, s) or promoted(g, s), and does not properly
distinguish inhibitors contained in the axiom set and inhibitors abduced in an explanation.
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some chain of triggers via (17). In the latter cas@ymoted(v, s) must be proved with no
inhibitor, which is possible by the caselof 0. In either casell ™ exists in this case.

Next, in the case ok = m > 1, suppose the two propositions: (I) for any positive
causal chaidl ™, the numbern of occurrences of inhibitors ilv T is even; and (11) for any
negative causal chaiff —, the numbern of occurrences of inhibitors i ~ is odd.

Now, consider the case & = m + 1. Then,II"™ contains either a trigger from (13)
or an inhibitor from (14). In the former case, the predicate of the other subgoal of (13)
is promoted, but after some sequence of triggers, an inhibitor must be containgdin
from (14). That is, at least one inhibitor is contained and the predicate of the rest of subgoals
is suppressed, whose proof containg inhibitors. In either case, by the induction hypothesis
(), m is odd sok is even. On the other hand,~ contains either an inhibitor from (16) or a
trigger from (17). In the latter case, the predicate of the other subgoal of (:7)igessed,
but after some sequence of triggers, an inhibitor must be containgd ifrom (16). That
is, an inhibitor is encountered and the predicate of the other subggatsnisted, whose
proof containsn inhibitors. In either case, by the induction hypothesis:l)is even, sd
is odd. O

In axiomatization (12-17), the logical interpretationgyof— s andg |— s in causal
networks are defined as follows. A triggetggered(g, s) at the meta level is interpreted as
(g + s)A(—g + —s) atthe object level, which is now abbreviated as- s), then the truth
value ofs is preserved in the truth value gfwvith this trigger. On the other hand, an inhibitor
wmhibited (g, s) at the meta level can be interpreted(ag < s) A (g < —s) at the object
level, which is now abbreviated &sg < s), and the truth value of is reversed in the truth
value of g with this inhibitor. For any meta-level clausal theakysuch that the predicate
of each clause appearing i is eitheririggered or inhibited, let \(IV) be the object-level
theory obtained by replacing (i) evetyiggered(t1,t2) (¢1 andte are terms) appearing iN
with the formula(t; <> ¢2) and (ii) everyinhibited(t1,t2) appearing inV with the formula
(—t1 > t2).

Proposition 2 Suppose a meta-level theoly, which consists of disjunctions of literals
of the formiriggered(_, ) and disjunctions of literals of the fornnhibited(_, ). Let the
background theory b&3 = N U {(12-17)}. Then,(1) B = (promoted(g,s1) V --- V
promoted(g, sn)) ifand only ifA(N) = (g < s1A---Asp); and(2) B = (suppressed(g, s1)V
-+ V suppressed(g, sn)) if and only if A\(N) = (=g < s1 A -+ A sn).

Proof Extending the proof of Proposition 1, we can prove that any (partial) pfobf
promoted(g;,s;) Of suppressed(g;,s;) (g; # s;) from B containsm occurrences of in-
hibitors from N iff A(N) = (=(=(---=(gi))) « s;).2 By the result and the proof of
N——
Lemma 1, such a proof afromoted(g;, s;) (resp.suppressed(g;, s;)) (g; # s;) from B
contains an even (resp. odd) number of occurrences of inhibitors foffhen, (1)B =
promoted(g;, s;) Iff M(N) &= (=(=(--=(g;))) + s;) iff A(N) E (g; < s;). On the other
N———r

m:even

hand, (2B | suppressed(gi, s) it ACN) = (<(=(--(g:))) < s:) iff A(N) | (-gs

m:odd
s;). The proposition follows by applying these results to disjuncts of goal clauses. O

8 To see this, if there is no inhibitor ifY;, (gi <> si) holds. If there is one inhibitor ifiZ;, only one change
of negation is introduced in a chain frog, which is then propagated g, i.e.,(—g; <> s;). Similarly, an
additional introduction of an inhibitor 7, adds one more negation gt
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Proposition 2 states that the axiomatization by (12—17) is sound and complete for enu-
merating positive and negative causal chains. Extending deductive inference to abductive
inference, meta-level abduction on causal networks with positive and negative links can
now be defined by letting the abduciblésbe those atoms with the predicatesggered
and/orinhibited: I' = {triggered(-, -), inhibited(-, -)}, and observations or goals are given
as (disjunctions of) literals either of the fopromoted (g, s) or of the formsuppressed(g, s).

Hence, given positive and negative observations, we can abduce both positive and negative
causes, and new nodes are produced whenever necessary.

Theorem 2 Let N and B be the same theories as in Proposition 2. Let the abducibles
be I' = {triggered(_,.), inhibited(_, )}. Then,H™ is an abductive explanation @ =
(promoted (g, s1) V - - - V promoted(g, sn)) with respect taB and I" if and only if \(H ") is

a hypothesis satisfying that

AMNYUMNHD) E (g s1 A+ Asn) (18)

and A\(N) U A(H™) is consistent. On the other han#,~ is an abductive explanation of
O~ = (suppressed(g,s1) V - -+ V suppressed(g, sn)) With respect taB and I" if and only if
A(H ™) is a hypothesis satisfying that

AN)UXH ) E (mg+ s1 A+ Asp) (29)
andA(N) U X(H ™) is consistent.

Proof The equivalence between the meta-level abductive entailBerit ~ = O and the
object-level abductive entailment (18) holds by Proposition 2 (1). Similarly, the equivalence
between the relatio3 U H~ | O~ and relation (19) holds by Proposition 2 (2). The
equivalence between the consistencyBot) HT (resp.B U H™) and the consistency of
ANYUMHT) (respA(N)UA(H ™)) also holds: SincUH™ (resp.BUH ™) is consistent,
SOISA(N)UNHT) (respA(N)UAHT)). 0

Theorem 2 shows the soundness and completeness of axiomatization (12—17) for meta-
level abduction of positive and negative causal effects. Moreover, the consistency of the
background theoryg = NU{(12-17)} in Theorem 2 also holds. However, bgttomoted(g, s)
and suppressed(g, s) can be explained from thi8 for someN at the same time. This “se-
mantic inconsistency” is, however, inevitable in this monotonic representation, since we can
answer to any virtual query supposing a sowead a goal. Then, to prevent derivations
of promotion and suppression simultaneously for the samed g, the following integrity
constraint can be placed at the meta level.

+ promoted(X,Y) N\ suppressed(X,Y). (20)

The role of (20) is to derive (minimal) nogoods, i.e., a (minimal) set of incompatible in-
stances of abducibles. Any abductive explanation must not include any nogood. For exam-
ple, given the network

Ny = {triggered(g,t)},

the minimal nogoods containing at most 2 abducibles are the following 13 clauses.

9 This enumeration is verified by SOLAR. Recall (Section 2.4) that a minimal nogood can be constructed
as the negation of a characteristic clause of the background ti&omhich is now the union of the causal
network N at the meta-level and axioms (12—17) with constraint (20). Note that the number of (minimal)
nogoods becomes infinite if we do not restrict the number of abducibles appearing in each nogood.



13

{inhibited(g,t)}, {inhibited(t, g)}, {inhibited(x, x)}",

{triggered(g, x), inhibited(x, t)}, {inhibited (g, x), triggered(x,t), },
{triggered(t, x), inhibited (g, x) }, {triggered(x, 1), inhibited (¢, x)}*,
{triggered(g, x), inhibited (¢, x)}, {triggered(t, x), inhibited(x, g)},
{triggered(x, g), inhibited(x, t) }, {triggered(x, ), inhibited (x, )} ",
{inhibited(x, g), triggered(x, t), }, {triggered(x, g), inhibited(x,t)},

wherey andy are existentially quantified variables. A set with the symbdldoes not refer
constantg, ¢, and is also a minimal nogood of the empty netwoik = (. This implies

that any causal network including an instance of such a set witbécomes inconsistent.
Hence, introduction of (20) into axiom set (12—17) can make a causal network inconsistent,
that is,the empty set can become a nogoo&or example, given the network

t
t

Ny = {triggered(g,t), inhibited(g, s), triggered (s, t)}, (22)

Ny U {(12-17)} is consistent. HoweverVs U {(12-17), (20)} is inconsistent, since both
promoted(g,t) (by (12)) andsuppressed(g,t) (by (16) and (12)) hold. Also, the p53 net-
work (47), which will be given later in Section 4.1, becomes inconsistent if it is combined
with this axiomatizatior{ (12—17), (20)}. The (in)consistency of a theory with axioms (12—
17) together with constraint (20) is characterized as follows.

Proposition 3 Let N be the same as in Proposition 2. Let the background theori ke
N U {(12-17),(20)}. Then,B is consistent if and only if there exist no nodeand s in N
such that there are causal chaifs™ and 7~ from s to g in N such that there are an even
(resp. odd) number of occurrences of inhibitorgif (resp.117).

Proof If the condition is satisfied[I™ is a proof ofpromoted(g, s) andII~ is a proof of
suppressed(g, s). Then B becomes inconsistent by (20). ConverselyBiis inconsistent,
both promoted(g, s) and suppressed(g, s) can be proved fronB for some nodeg and s
in N by (20). LetII™ be a proof ofpromoted(g, s), andII~ a proof of suppressed(g, s).
Then,II" (resp.II ™) contains an even (resp. odd) number of inhibitors by Lemma 1

We next show a modification of this monotonic axiomatization to reduce such semantic
inconsistencies using default assumptions.

3.2 Axiomatization with Default Assumptions

Suppose two antagonistic direct causal relations appear simultaneously for the same node
as follows. /@
triggered(g,t)

O, .

\@ inhibited (g, s) (22)
Our intuition on diagram (22) is as follows. (1) If the triggeis present and the inhibiter
is not present, then is triggered byt (and is not inhibited); (II) Else if is present and is
not present, then is inhibited bys (and is not triggered). These two cases are rather clear,
but what happens forif both ¢ ands are somehow caused? Is it triggered or inhibited? The
last axiomatization in Section 3.1 concludes thas both promoted and suppressedsyy
which leads to inconsistency under the existence of the integrity constraint of the form (20).
However, often it is indicated that: (lll) If bothands are present, theqis inhibited bys
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(and is not triggered). Namelgn inhibitor is preferred to a trigget® This preference rule
is often used in applications, particularly in the biological literafire.

The last inference isonmonotonica trigger ofg worksif there is no inhibitor forg, but
if an inhibitor is added then the trigger stops working. We now show another axiomatization
which reflects this principle of inhibitor preference. Depart from the monotonic axiomati-
zation of causal chains (12-17), reasoning about networks is now made nonmonotonic and
involvesdefault reasoningln the following new definitions opromoted and suppressed,
we will associate an extra condition for each trigger to work.

promoted(X,Y) < triggered(X,Y") A no_inhibitor(X). (23)
promoted(X,Y) < triggered(X, Z) A no_inhibitor(X) A promoted(Z,Y). (29)
promoted(X,Y) < inhibited(X, Z) A suppressed(Z,Y). (25)
suppressed(X,Y) + inhibited(X,Y). (26)
suppressed(X,Y) + inhibited(X, Z) A promoted(Z,Y). (27)
suppressed(X,Y) « triggered(X, Z) A no_inhibitor(X) A suppressed(Z,Y).  (28)
« promoted(X,Y) A suppressed(X,Y). (29)

The new axiom set for positive and negative causal chains (23—-28) are the same as the
monotonic version (12-17), except that each triggeXtdiriggered(X,_)) must not be
inhibited (no_inhibitor(X)) to give the positive effect t& in (23), (24) and (28}2 Here,
inclusion of no_inhibitor(x) in association withtriggered (x, v) makes those three axioms
default rules[57,49]. The literal of the formo_inhibitor(_) is thus treated as default

which can be assumed during inference unless contradiction occurs, and constraints can also
be added to reject inconsistent cases with these assumptions. Then, astriggeed (g, s)

at the meta level is now interpreted @s_inhibitor(g) — (g +> s)) at the object level,

that is, (g <> s) is true if the defaultno_inhibitor(g) is consistent with the union of the
background theoryB and a constructing hypothesig. On the other hand, an inhibitor
inhibited (g, s) at the meta level can be interpreted(ag <> s) at the object level, hence

the effect of an inhibitor does not need addition of a default. Finally, the integrity constraint
of the form (29) is the same as (20) and prohibits the presence of both positive and negative
causes between any pair of nodésandY'.

Meta-level abduction under axiomatization (23-28) and the integrity constraint of the
form (29) is defined in the same way as in Section 3.1. Abductigoinf triggersandjoint
inhibitors can also be realized in the same wayj@tly_connected in (7) by adding the
meta-level axioms

triggered(X,Y) V triggered(X, Z) < jointly_triggered(X,Y, Z). (30)
inhibited (X, Y) V inhibited (X, Z) «+ jointly_inhibited(X,Y, Z). (31)

10 |n some formalization of inhibitors [32,9], an inhibitor is modeled to work against a trigger/inhibitor
edge between nodes by blocking its activation/inhibition function. This results in the same effect as prefer-
ring inhibitors to triggers when an inhibitor works against activation of a trigger. Blocking inhibition by an
inhibitor has the same effect as double inhibition in our formalization (see Remark 2).

11 In some applications, it is possible to consider the preference for a trigger over an inhibitor. All theories
explored in this section can be easily adapted in accordance with this reverse preference by just exchanging
the roles of positive and negative causal relations.

12 |nstead of (26)(suppressed(X,Y) < inhibited(X,Y) A no_inhibitor(Y)) was used in an earlier
version of this paperittp://ilp2010.dsi.unifi.it/pdf/ilp2010_submission 43 .pdf).

This axiom was only applied at an inhibitor £ to which no_inhibitor(Y') is assumed. Although this is a
possible formalization, it introduced an inelegant asymmetry between positive and negative influences.
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to the background theor® and the literals of the formointly_triggered(_, -, -) and of the

form jointly _inhibited (-, -, -)) to the abducibleg™. Note that one of definitions (30,31) of
these meta-predicates can be omitted by simulating one by the other. For example, ab-
duction of jointly _inhibited (g, s,t) can be simulated by abduction @fhibited (g, s-t) A
jointly_triggered(s-t, s, t), wheres-t is an intermediate complex.

Remark 1 Unlike axiom (7) ofjointly_connected in Section 2.2, we can propagate negative
effects from sources to goals through joint triggers and joint inhibitors by the axioms:

suppressed(G, X) « jointly _triggered(G, A, B) N suppressed(A, X). (32)
suppressed (G, X) <+ jointly_triggered (G, A, B) A suppressed(B, X). (33)
promoted(G, X) « jointly_inhibited(G, A, B) A suppressed(A, X). (34)
promoted(G, X) « jointly_inhibited(G, A, B) A suppressed(B, X). (35)

Axioms (32) and (33) show that suppression of one of the joint triggers causes suppression
of the goal, while axioms (34) and (35) show that suppression of one of the joint inhibitors
causes promotion of the goal. All these inverse effects can be caused by the suppression of
one of the joint links regardless of the status of the other link.

As for default assumptions of the foraw_inhibitor(-), default reasoningan be imple-
mented by assuming those literals whenever necessary during inference, and the consistency
of such assumptions is checked each time they are added to the current set of abduced lit-
erals. This is a simple yet powerful method for default reasoning in the case of so-called
normal defaults (without prerequisitey7,49]. Hence, the abduciblgsnow also contain
the literals of the formno_inhibitor(-) along with triggered(-, -) and inhibited(-, -). For
example, the abducibles allowing joint triggers can be defined as

I' = { triggered(-, -), inhibited (-, -), jointly _triggered(_, _, ), no_inhibitor(_) }.

Note that addition of default literals through the abduciles_inhibitor(-)} is necessary
not only for abduction with defaults but for deduction involving defaults.

The soundness and completeness of meta-level abduction with the new axiomatization
is guaranteed as in Theorem 2. L@tbe a meta-level clausal theory such that the predicate
of any literal appearing i/ is eithertriggered, inhibited, or no_inhibitor. Now AT (M) is
defined as the object-level theory obtained by replacing (i) ewgpyered(t1,t2) (t1 and
to are terms) appearing it with the formula((t1 <> t2) A t]) (¢ is a new term uniquely
associated witly ), (i) every inhibited (1, t2) appearing im\/ with the formula(—t; «+ ¢2),
and (i) everyno_inhibitor(t) appearing inV/ with ¢*. Note thatt* represents thatis not
inhibited by default.

Theorem 3 Suppose a meta-level theoly, which consists of disjunctions of literals of
the formtriggered(-, -) and disjunctions of literals of the formhibited(_, -). Let the back-
ground theory beB = N U {(23-28)}. Let the abducibles be

I' = {triggered (-, -), inhibited (-, -), no_inhibitor(_)}.

Then,H ™ is an abductive explanation 6f" = (promoted(g, s1) V - - - V promoted(g, sn))
with respect taB and I" if and only if AT (H 1) is a hypothesis satisfying that

ANV UN(HY) E (g« s1 A Asn) (36)
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andAf(IV) U AT(H ™) is consistent. On the other hand, is an abductive explanation of
O~ = (suppressed(g,s1) V -+ V suppressed(g, sn)) With respect taB and I" if and only if
M (H™) is a hypothesis satisfying that

MWV UMN(HT) | (ng < s1 A Asn) (37)
andAT(V) U AT(H ™) is consistent.

Proof Each explanatioi/ obtained with the monotonic axioms (12—17) in Theorem 2 can
also be obtained by incorporating defaults of the farminhibitor(t) in the correspond-
ing explanationt* with axioms (23—-28), which are translated to atoms of the fétrim

M (H*). Then,H satisfies (18) (resp. (19)) iff* satisfies (36) (resp. (37)). O

A background theorB can also include several knowledge about defaults, and here are
some examples. First, when we are sure that there is no inhibitor for asnwéecan include
the factno_inhibitor(s) in the background theorf. For instanceno_inhibitor(s) can be
declared to be true iB if s is aterminal source node

no_inhibitor(X) + source(X), (38)

where each sourceis declared asource(s) in B too. Such a terminal source node has
the same effect as an abducible fat#(s) in Section 2.3. We will see an example to use
source(-) and constraint (38) in Section 4.1. Second, a meta-level constraint:

« no_inhibitor(X) A inhibited(X,Y). (39)

blocks to assume a defaulb_inhibitor(g) for any nodeg to which an inhibitor is con-
nected. This constraint is natural in many cases, but is only optional begéusged (g, k)

and no_inhibitor(g) may coexist when, for example, there are multiple supports through
derivations ofpromoted(g, h1), ..., promoted(g, hn) (n > 2) that shareno_inhibitor(g),

yet only oneinhibited(g, k) exists!®

Remark 2Introduction of (39) prunes a hypothesis containinggered(g, -) whenever an
inhibitor inhibited (g, -) exists. For example, for the causal network

N3 = {triggered(g,t), inhibited(g, s)},

and the observatio®2 = promoted(g,t), the setll = {no_inhibitor(g)} can be obtained

by (23) to explairO, but is not consistent with (39), so is not an explanatio®efinstead,

F = {inhibited(s,t)} is an explanation oDy obtained by (25) and (26), i.e;,}— s |—¢.

Here, we can again see that an inhibitor is preferred to a trigger; for activatignirof

the presence of an inhibitor @f, introduction of a new trigger of is not enough, but
suppression of the existing inhibitor is really effectidis is an example of howouble
inhibitionsworks as a promoter, which is actually seen in many biological systems, e.g., the
p53 network (47) given in Section 4.1.

13 This is a matter of majority when there are more triggers than inhibitors for the same node. In such a
case, we could still prefer an inhibitor by introducing constraint (39), but alternatively might want to allow
promotion by omitting this constraint. See also the discussion in Section 6.5.
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3.3 Consistency of Nonmonotonic Axiomatization

When constraint (29) is incorporated into the background th&ocgntaining a causal net-
work N and new axioms (23-28), the consistencyfofs “more” guaranteed than in the
case of Section 3.1. This is because, unlike axioms (12—-17), the new axioms contain ad-
ditional defaults of the formuo_inhibitor(-). For example, the causal netwaNe (21) is
inconsistent with the previous axiom sgti2—17), (20)}, but By = Na U {(23-28), (29)}
is now consistent. Still, bothromoted(g,t) and suppressed(g,t) can be explained from
By and !, but their explanations are not the sarfigo_inhibitor(g)} explains the former,
while {no_inhibitor(s)} explains the latter. Again, the role of (29) is to identify each no-
good to prune any incompatible combination of defaults and abducibles. That is, abducing
literals with the predicategiggered andinhibited involves default assumptions of the form
no_inhibitor(-), and any inconsistent set of abducibles can be detected by subsumption
checking with nogoods. IV, {no_inhibitor(g), no_inhibitor(s)} becomes a nogood.
However, there are some networks that can still be proved inconsistent under the new
axiom set. Suppose the network

@)\@ { : ) Ny = {inhibited(g, s), inhibited(g,t), inhibited(t, s)},
(40)

where the first inhibitorinhibited (g, s) is a suppressor fog (by (26)) and the latter two
consecutive inhibitors work as a promoter fpby (25) and (26). Since there is no trigger
in N4, no default is involved for provingromoted(g, s) and suppressed(g, s), and neither
goal can be preferred to the other. Hentg,is proved inconsistent by (29).

The necessary and sufficient condition for the consistency of a meta-level background
theory can be characterized by networks with multiple “inhibitor-only paths” as follows.

Proposition 4 Suppose a meta-level theay, which is the same as in Theorem 3. Let the
background theory b& = N U {(23-28), (29)}. Then,B is consistent if and only if there
are no nodeg ands in N such that there exist a prodf ™ of promoted(g, s) and a proof
IT~ of suppressed(g, s) satisfying tha(i) both /7% and 17~ have no triggers(ii) there are

an even number of occurrences of inhibitorsZin; and (iii) there are an odd number of
occurrences of inhibitors il ~.

Proof Suppose a proafl* of promoted(g, s) and a proofll ~ of suppressed(g, s) satisfy-

ing the conditions (i), (ii) and (iii). Then, by (29)3 becomes inconsistent. Conversely, if
B is inconsistent, bothromoted(g, s) andsuppressed(g, s) can be proved fronB by (29).
However, those proof& ™, 11~ do not use axioms (23), (24) and (28), since the literal of
the formno_inhibitor(_) cannot be proved. Hence, no trigger appears in eitheror 17,
and (i) holds. By Lemma 1, (ii) and (iii) hold. O

It is easy to see that the causal netwadvk (40) is inconsistent witH (23—28), (29)}
by Proposition 4. Actually)N4 is a minimal inconsistent network under axioms (23-28)
and (29), sinceinhibited(y, 1), inhibited (v, T), inhibited(, )} is a minimal nogood of
Ny = 0 with those axioms. Note that the smallest inconsistent network is

N5 = {inhibited(g,g)}. (41)

In N5, a self-loop ory suppresseg if it passes the inhibitor an odd number of times, while
it promotesyg if it counts the inhibitor an even number of times. Remark 3 below suggests
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a minimal modification of the axiom set to guarantee the consistency, and Section 6.5 will
discuss how to resolve such inconsistencies in general.

Since inhibitors are preferred to triggers, abduction of promotion is blocked by abduc-
tion of suppression if the explanation of the former is subsumed by that of the latter.

Proposition 5 Let N, B, andg, s be the same as in Proposition 4. Suppose the abducibles
I = {triggered(_, .), inhibited (_, ), no_inhibitor(_)} and the observation8* = promoted(g, s)
andO~ = suppressed(g, s). If ET is an explanation o™ with respect taB and I, then
there is no explanatiodz™ of O~ with respect taB and I" such that(i) all defaults of the
form no_inhibitor(_) in E~ are included inE™ and i) all inhibitors in £~ are included
inET.

Proof Suppose thak™ is an explanation of™. Assume further that an explanatiai of

O~ satisfying the conditions of the theorem exists. Si@deandO~ violate constraint (29),

ET U E™ is anogood. The condition (i) implies that the triggersiin are also included in

ET because abduction of a trigger always involves a default by axioms (23), (24) and (28).
By this and the condition (i)~ C E™ holds. Theng* U E~ = E™ holds, and thug™

is a nogood. This contradicts with the supposition thatis an explanation of) ™. O

Proposition 5 implies that, whenever bgtfomoted(g, s) and suppressed(g, s) are ex-
plained, their explanations must contain different triggers and inhibitors, and the union of
the two explanations is a nogood. For example, for the network

Ng = {triggered(g, s), inhibited(g, s)}. (42)

{no_inhibitor(g)} cannot be an explanation pfomoted(g, s) because it is a supersetf
an explanation ofuppressed(g, s), SO that{ no_inhibitor(g)} becomes a nogood. This is a
typical effect of preferring inhibitors.

Remark 3Proposition 4 captures the nature of inconsistent networks under axioms (23-28)
and constraint (29), which minimizes the inconsistent cases only in the existence of two
nodes connected by multiple inhibitor chains with odd and even numbers of occurrences of
inhibitors. If we would further like to resolve inconsistencies in such cases, we could attach
another default to axiom (25) as

promoted(X,Y) < inhibited(X, Z) A suppressed(Z,Y) Aunsuppressdd),  (43)

and replace (25) by (43). Here, a literal of the fourmsuppressed) can be assumed when-
ever (43) is applied by putting it into the abduciblEs Then, any even number of occur-
rences of inhibitors must contain defaults of the farmsuppressegd), but an odd number

of inhibitor occurrences may not need such a default. Hence, no network can be inconsis-
tent under axioms (23,24), (43), (26—28) and constraint (29). For example, in networks (40)
and (41), the minimal nogood is obtained fassuppressegd)}, which implies that only
suppression is achieved gnin both cases, resulting in preferring inhibitors again.

However, this inconsistency resolution is not always welcome in real applications. A
negative feedback lodjke (41) is known to cause periodic oscillation between positive and
negative states, and then it is harmful to completely ignore the possibility of promotion in
such a case. This problem can only be solved by introducing time in the axioms, and will be
discussed in Section 6.5. So far, we have a choice between (25) and (43), depending on our
strategy to allow or disallow minimal inconsistencies in inhibitor-only paths.
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Table 1 Correspondence between object-level inference and meta-level consequence finding

object-level inference top clause in SOLAR production field
rule verification «— caused(g, s). (0)
fact abduction ans(X) « caused(g, X). | ({ans(0)})
fact prediction ans(X) + caused(X,s). | ({ans(0)})
rule prediction unspecified ({promoted(-, ), suppressed(-,-)})
rule abduction <« caused(g, s). ({—triggered(-, -), ~inhibited(-, -)})
. ({—triggered(., -), ~inhibited(_, ),
abducing rules and facts ans(X) + caused(g, X). ans()})
fact prediction + rule abductior] ans(X) < caused(X, s). “ﬁmézlg;;fd)g’)’ -), inhibited(-, -),
rule prediction + rule abductior unspecified <E;§Zﬁi;?j3 :)s’u;g}elif;ig’:)’}?;

3.4 Various Inferences on Causal Networks

As in Section 2.3, axiomatization in Sections 3.1 and 3.2 can be further combined with fact
abduction to allow mixed forms of inferences. For example, to abduce a source node which
promotes (resp. suppresses) some goal godtause (10) can be rewritten to clause (44)
(resp. (45)):

ans(X) + promoted(g, X) A source(X). (44)
ans(X) < suppressed(g, X) N source(X). (45)

Here, a source node representedibgorresponds to an abducible with the predicait ),
and both the predicatesomoted(_,-) and suppressed(-,-) correspond to the predicate
caused(-, -) in (10). Then a source node at the object level is obtained as a ground term
of X by answer extraction with these formulas. Combination of rule abduction and fact
abduction can also be realized using consequence-finding techniques as in Section 2.3.

On the other hand, those nodes that can be promoted or suppressed by some source node
s can be obtained by answer extraction for variable the query of the formpromoted (Y, s)
or suppressed(Y, s). This last inference is callegredictionrather than abduction, and can
be realized by consequence finding too. Table 1 summarizes the correspondence between
object-level and meta-level inferences. All types of meta-level inferences, possibly involv-
ing generation of existentially quantified hypotheses, can be realized by SOLAR. Recall
that, in the context of inverse entailment (11), the negation of a goal is sebasctause
and the negation of each abducible is given in a production field in SOLAR. In Table 1,
“ + caused(_, )" in a “top clause” column is instantiated by eithex* promoted(-, -)" or
“ « suppressed(_, )", and “ans(-)” is an answer predicate to collect answer substitutions.
In abducing object-level facts, a top clause can be further conditioned with the abducible lit-
eral “abd(X)” after caused(g, X) if the list of abducibles is given in the background theory.
Like (44) and (45), abducibles are often represented as literals of thestarme(_).

In Table 1, “Rule verification” verifies if a given causal chain can be derived or not.
“Fact prediction” computesamificationof a sources, i.e., to derive facts that can be caused
by s. “Rule prediction” enumerates possible causal chains derivable from the given causal
network, so a top clause is not provided in this case and characteristic clauses with respect
to ({promoted(_, ), suppressed(-, -)}) are just computed. The last three are mixed forms of
inference with the conditional format; rules and facts are abduced or predicted under some
completed rules by rule abduction. A complex example of abducing rules and facts will
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be shown in Section 4.1. The soundness and completeness of those meta-level inferences
by SOLAR with respect to object-level inferences listed in Table 1 are guaranteed due to
completeness of consequence finding in SOLAR [13,45] and completeness of (conditional)
answer extraction [23,20].

Abduction with default assumptions is also implemented in SOLAR [20]. Membership
of a clauseF in anextensiorof a default theory [57,49t is guaranteed for each obtained
consequence

F <« no_inhibitor(t1) A - - - A no_inhibitor (tm) (46)

if {no_inhibitor(t1), ..., no_inhibitor(tm)} is not a nogood [20, Theorem 4.5]. In our
meta-level abductionf is a clause consisting of literals of such forms-asiggered(_, ),
—inhibited (-, -) andans(-). Given a top claus€ and a production fiel®>, SOLAR outputs
the new characteristic claus@&wcarc(B, C, P), and hence each new produced clause is
always checked if it is not subsumed by any nogooddmc(B, P) (see Section 2.4). Hence,
each clausé’ in a consequence of the form (46) belongs to some extension.

4 Case Study: p53 Signal Networks

In this section, we will see that meta-level abduction can be well applied to completion of
signaling networksThe importance of network completion in signaling networks has been
recognized, since it is hard to observe activity levels and quantities of proteins in living
organisms [1}> Moreover, reporter proteins/genes are usually employed in signaling path-
ways, but designing and introducing reporter proteins are hard tasks. This is contrasted to the
case of genetic networks, in which expression levels of most genes can be observed using
DNA microarray/chip technologies.

As case studies of meta-level abduction, we consider two signaling networks containing
the p53 protein[50], but use it for different purposes. Although these networks are rather
simple, they illustrate one of the most fundamental inference problems in Systems Biol-
ogy: Given an incomplete biological networ¥, infer possible connections to promote or
suppress the function associated with a nod& inNVe consider two target functions: sup-
pression of tumors in cancer [65] (Section 4.1) and switching DNA synthesis on and off [62]
(Section 4.2). Both problems are examplegoél-oriented abductiarin which additional
links and nodes are abduced to realize given goals rather than to explain observed data.

4.1 Enumerating Tumor Suppressors

This subsection examines the p53 signal network presented in [65] by meta-level abduction.
The p53 protein plays a central role as a tumor suppressor and is subjected to tight control
through a complex mechanism involving several proteins [36].

The p53 protein has the transactivator domain, which bounds to the promoters of target
genes, then leads to protect the cell from cancer. The level and activity of p53 in the cell is

14 Simply, a(normal) default theorys a pair(B, D), where B and D are sets of first-order formulas
representing a background theory and a set of defaults, respectivedytémsiorof a default theory B, D)
is the set of all consequences®iJ .S, whereS is a maximal subset dp such thatB U S is consistent. Then,
aformulaF is considered as a rational consequenc@®fD) if F' belongs to some extension @8, D).

15 This feature of non-observability also exists in completing causal networks with respect to physical skills
for cello playing [18], in which internal causation in human bodies cannot be observed directly.
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influenced by its interactions with other proteins. Tumor suppression is enabled if the inter-
acting partners of p53 do not inhibit the functionality of the transactivator domain. Mdm2
binds to the transactivator domain of p53, thus inhibiting the p53 from tumor suppression.
UV (ultraviolet light) causes stress, which may induce the upregulation of p53. However,
stress can also influence the growth of tumors.

These relations can be represented in solid lines of the causal network in Fig. 1. The
corresponding formulas at the meta level can be simply represented by the clauses:

triggered(cancer,uv), triggered(p53,uv),
inhibited(cancer,a), triggered(a,p53), 47
inhibited(a,b), jointly_triggered(b, p53, mdm2),

wherea (“A’ in Fig. 1) is the inhibitory domain of p53, and (“B” in Fig. 1) is the com-
plexp53-mdm2. The unit clausgointly _triggered (b, p53, mdm2) can be replaced by the clause
(triggered (b, p53) V triggered (b, mdm2)).

As in the setting of [65], we consider a tumor suppressor gene X (e.g., MdmX) such that
mutants of X are highly susceptible to cancer. Suppose in some experiments that exposure
of the cell to high level UV does not lead to cancer, given that the initial concentration of
Mdmz2 is high. Those initial conditions are represented as two facts,

source(uv), source(mdm2), (48)

that is, both UV and Mdm2 can be abduced whenever nece$sahe meta-predicate
source thus behaves like the abducible predicaté. Some other meta-level axioms can
be introduced, e.g(no_inhibitor(S) <« source(S)) (38). Supposing further that a high
level of gene expression of the X protein is also observed, our objective in this experiment
is to hypothesize about the various possible influences of X on the p53 pathway, thereby
explaining how the cell can avoid cancer.

Our goal is now expressed &S (suppressed(cancer, S) A source(S)). Like (45) in
Section 3.4, the top clause is then given in SOLAR as:

ans(S) < suppressed(cancer, S) A source(S). (49)

The background theory is now defined as the set consisting of the above causal net-
work (47,48), the top clause (49), the meta-axioms (23-28), the integrity constraint (29),

16 Each source is depicted with the symbgt in the figure of a causal network.
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the axioms for joint triggers (30,32,33), constraints for defaults (38,39), two facts for de-
faults: no_inhibitor (p53) andno_inhibitor(x), and domain constraints for pruning such as
—inhibited (uv, Z) and—inhibited (mdm2, 7). Let the abducibles be

I'x = {triggered(_,_), inhibited(_, ), jointly _triggered(_, _, x)},

expecting that a mutant of X bound to soies produced in suppressing the cancer from
some source. Then the production figlds set as:

P = (Ix U{ans(.), ~no_inhibitor()}, Cond),

whereCond is the length conditions such that each produced clauseust satisfy|C' N
{—triggered (-, ) }| < 1,|CN{—inhibited(_, )} < 1 and|CN{—jointly_triggered(-, ,x)}| <
1. Then, SOLAR produces the 26 new characteristic clauses in 10 seconds using a PC with
Core 2 Duo 3.06GHz and 4GB RAM.

In these 26 consequences of SOLAR, the following two clauses are included:

ans(uv) < triggered(x,uv) A jointly_triggered (Y, p53, x)

A inhibited(b,Y') A no_inhibitor(Y") (50)
ans(uv) V ans(mdm2) < triggered(x,uv) A jointly _triggered (Y, mdm2, x)
A inhibited (b, Y') A no_inhibitor(Y) (51)

Both (50) and (51) give conditional answers. Consequence (50) represhaiisige answer
indicating that the p53-X complex has the unique source UV since both p53 and X are
caused by the same source UV. On the other hand, (51) represdisjsractive answerx

is activated by UV but Mdmz2 itself is assumed to be a source, hence the Mdm2-X complex
has two sources. In fact, it takes more time to find consequence (51) than to find (50) in
SOLAR. Those two formulas respectively correspond to the following hypotheses:

(I) triggered(x,uv) A 3Y (jointly_triggered (Y, p53, x) A inhibited(b,Y")),
(IT) triggered(x,uv) A 3Y (jointly_triggered (Y, mdm2, x) A inhibited(b,Y")).

The variableY in (1) or (Il) represents a new complex synthesized from X and either p53 or
Mdmz2, respectively. That is, meta-level abduction generates a new muta@t in Fig. 1)

by combining X and either p53 or Mdm2, which then inhibits the existing comipl&hose

two hypotheses are actually suggested in [65]: (1) X directly influences p53 protein stability:
UV causes stress then induces high expression of X, which then binds to p53, so p53 is
stabilized and formation of Mdm2-p53 complex is prevented; (Il) X is a negative regulator
of Mdm2: UV causes stress then induces high expression of X, which then binds to Mdm2,
which competes against inhibiting the Mdm2-p53 interaction (depicted in dashed lines in
Fig. 1). In both cases, p53 (or “A”) can be functional as a tumor suppressor. In the biological
viewpoint, however, the hypothesis (I) seems preferred because p53 has more chances to be
bound to other proteins.

We again stress that all abduced links in hypotheses (1) and (Il) are newly generated by
meta-level abduction and that the new nadis automatically invented during inference. In
contrast, Tran and Baral [65] consider an action theory for this p53 network, and prepare all
possible ground candidate nodes and links as abducibles in advance. Hence, no new node is
invented in the framework of [65].

Concerning other 24 explanations obtained by SOLAR, 14 solutions prommen-
hibiting b, and 10 inhibit cancer directly. Although direct inhibition of cancer in the latter
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case is feasible, we consider that revival of p53 as a tumor suppressor by promdging
more important, since it relies aouble inhibitionof a through inhibition ofb, which is
biologically more admissible. Then, in such 14 explanations, 6 solutions have the definite
answerans(uv), 6 have the definite answefns(mdm2), and 2 have the disjunctive answer
ans(uv)Vans(mdm2). In these solutions, there are simple ones that never produce complexes
with X, e.g.,

ans(uv) < inhibited(b, x) A triggered(x,uv),

but they are not very useful, singehibition is usually achieved by a mutant of some protein
combined with another protein biological systems. One of the disjunctive answers has the
same abducibles as in (50) except that X is triggered by Mdmz2 instead of UV:

ans(uv) V ans(mdm2) < triggered(x,mdm2) A jointly_triggered (Y, p53, x)
A inhibited(b,Y') A no_inhibitor(Y).

One of other interesting solutions is
ans(uv) < jointly_triggered(b, Z, x) N inhibited (Z, p53),

which represents that suppressiorba$ realized by a complex of X and a new protein
that is inhibited by p53. In this explanation, the additional axiom (32) works well.

The p53 regulatory network includes a complex array of upstream regulators and down-
stream effectors. There are versatile functions of p53 in the suppression of tumors; deriving
the cell to apoptosis and ensuring the normal cell growth as a guardian of life. The stabiliza-
tion of p53 seems to be the result of inhibition by Mdm?2 and Mdm4, while activators such as
HIPK2 and DYRK2 increase the p53 response. This complex system of activation/inhibition
shows that p53 is a bottleneck of many regulatory mechanisms. The results obtained in this
section are important in the sense that the activation/inhibition mechanism of p53 is linked
to some proteins that might not have been found out yet. Meta-level abduction is thus crucial
for this discovery task, and inferred hypotheses can suggest to scientists necessary experi-
ments with gene knockout mice as minimally as possible.

4.2 Recovering Links in CDK Networks

The next case study is completion in the switch networkyafin-dependent kinaséSDKSs)

[62]. CDKs are kinase enzymes that modify other proteins by chemically adding phosphate
groups to them (phosphorylation), and are involved in the regulation of the cell cycle. A
CDK is activated by association with a cyclin, forming a cyclin-CDK complex (Fig. 2).

The cdk2/cyclin E complex inactivates the retinoblastoma (Rb) protein, which then re-
leases cells into the synthesis phase. Cdk2/cyclin E is regulated by both the positive switch
called CAK (cdk activating kinase) and the negative switch p21/WAF1. p21/WAF1 is acti-
vated by p53, but p53 can also inhibit cyclin H, which is a source of the positive regulator
of cdk2/cyclin E. The negative regulation from p53 works as a defensive system in the cells:
when DNA damage occurs, it triggers p53, which then turns on the negative regulation to
stop DNA synthesis, so that the damage should be repaired before DNA replication to pre-
vent passing damaged genetic materials onto the next generation.

For the CDK network represented in Fig. 2 withurce(dna_damage), several experi-
mental problems are designed by removing some links from Fig. 2. Then, meta-level ab-
duction is applied to verify how those removed links can be recovered and whether other
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interesting links and unknown missing links can be inferred in explaining the observation
suppressed(dna_synthesis, dna_damage).

The objective of this experiment is to show how meta-level abduction can be well applied to
complete incomplete networks. Recovery of removed links is a good testbed for this purpose
because the existing natural system can be considered as an ideal solution. Yet, looking at
other hypotheses, we understand that the same functions can be realized in different ways.
Table 2 shows a part of experimental results. All experiments are done in the environ-
ment of Mac mini with Core 2 Duo 1.83GHz and 2GB RAM. The maximum search depth
of SOLAR is set to 5 for computing the characteristic clauses and 10 for computing the
new characteristic clauses. The table shows 6 problems, each of which is given as a network
obtained by removing the links shown in the table. In the table, the production field for each
problem is defined as follows:

P = ({—triggered(_, -), ~inhibited (-, -), ~no_inhibitor(-)}, LCond A Occ-Cond ),

whereLCond is a condition on the maximum lengtén of each consequence (described in
the table) an®cc- Cond = |CN{—no_inhibitor(_)}| < 1, thatis, the number of occurrences
of (the negation of) defaults in each consequefticeat most 1. The “#H” column shows the
number of new characteristic clauses (minimal explanations) obtained by SOLAR. “Time”
is computation time to obtain all minimal hypotheses and to check their consistencies.

The results of recovering removed links are shown in the table. The symbol “+” means
the defaultno_inhibitor(cdk2), and link (7) isinhibited(cyclin_e,p53). Two nodes are
declared to have no inhibitors in the axioms so that they do not need to be included in
each explanationzo_inhibitor(p53) and no_inhibitor(p21_WAF1). Here, among the num-
ber #H of explanations, we pick up three important groups of solutions depending on sup-
pression paths fromina_damage t0 dna_synthesis. The first solution group goes through
the right path via p21/WAF1, i.e., (5)-(4)-(3)-(2)-(1). The second one uses two cyclin-cdk
joint triggers via inhibition (6) of cyclin H by p53. The third one generates the new link (7)
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Table 2 Results of recovering links in the CDK pathway

Removed links| I.Cond #H Time Minimal recovered links

[sec] | p21-mediated cdk?2 activate cyclin E inhibit
1) len <1 4 10.7 (1) — —
1), (2 len <2 9 18.8 (19), (29) — —
1), (3 len <2 17 | 185 1), 3) 1), + 1), (7
(2), (4 len <2 24 | 203 2), 4) 2), + 2), (7)
(4), (6) len < 2 22 22.3 (4) (6), + 7
D2 | ien <5 | 392 | 138.4| 19 CNCI | (1g), (2g), (5),+| (10), (20), ). ()
4, (5 ), (5)

which inhibits cyclin E by p53. For instance, when linkg), (3)} are removed, there exists
the explanation in the first group that contains exactly the same links as the removed ones
among the 17 hypotheses. For a link (N) tor= 1,2, 3, the recovered link () means
that a more general hypothesis than (N) is obtained. For example, fher(2)}, i.e.,
inhibited (dna_synthesis, rb) A inhibited(rb, cyclin_e/cdk2) is removed,{(1g), (2g)},
which is3X (inhibited (dna_synthesis, X) A inhibited (X, cyclin_e/cdk2)), is recovered.
Under axiomatization (23—-28), explanations in the second group always contain the de-
fault no_inhibitor(cdk2) (+). By this reason, when link§(1)} or {(1), (2)} are removed,
no minimal explanation via the second path is obtained because any explanation is always
subsumed by an explanation in the first group without the default. We can observe that two
consecutive links are replaced by general ones with existentially quantified variables at re-
covery, e.g.{(1), (2)}, but links that are not connected are recovered as they are in the first
group, e.g.{(1), (3)}. Notice that only either (4) or (6) is recovered at the first or second
group, respectively, when linkg4), (6)} are removed. Actually, the negative regulation by
p53 has the two paths to suppress cdk2/cyclin E via (4) and (6), which correspond to the first
and second paths, respectively. This shows that the biological network in Figouist
and the system can still work well even if one of the two paths is cut. In other words, if these
two are cut simultaneously, only one recovery is logically sufficient to realize this function,
and SOLAR outputs such minimally sufficient hypotheses in this case. Interestingly, we can
also find other recoveries by connecting nodes that have not been originally connected. The
third solution group realizes such a case by newly imposing inhibitor (7) (Fig. 3).

A well-known effect of p53 expression is a block in the cell division cycle, and induction
of p53 leads to cell growth arrest and apoptosis. Although the function of p53 to induce a G1
arrest by binding with p21 has been well defined, the control of cyclin E by p53 has not been
established yet. In our experiment, we have applied abductive inference on an incomplete
p53 network related to its activation by DNA damage, and one of the results obtained in
Fig. 3 clearly shows that p53 degrades the cyclin E protein by finding (7) and consequently
imposes cycle arrest. This is a biologically important function verified by our method. A
possible explanation here is basedamalogical reasoninguch that the inhibition of cy-
clin H from p53 in the same network can suggest a possible inhibition of cyclin E from p53.
This analogy could be regarded as a form of inductive reasoning because it strives to provide
understanding of what is likely to be true. We note that link (7) is automatically generated in
our experiment without giving such an analogical biag the literature, examples of this
function can be found in genetic analysidsiybsophilamelanogaster [34], which has shown
that disruption of the mitochondrial electron transport chain activates a G1-S checkpoint as
a result of control of cyclin E by p53, and in a recent evidence [35] that p53 modulates the

17 We can also supply such a biasiagibited (X, p53) A cyclin(X) in our framework by giving facts
cyclin(cyclinh) andcyclin(cyclin_e).
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activity of the ubiquitin-proteasome system to degrade cyclin E and thereby imposes cell
cycle arrest. Our results hence explain those results from a logical point of view.

In this subsection, we have verified that previously known solutions, either well-known
or just reported in the literature, can be generated by our abductive method. In other words,
meta-level abduction has the ability to recover or reproduce such solditionsn incom-
plete networkThe experiments show that such known solutions can be found among many
other solutions, so recovery rate would be low if our task were to recover exactly the same
removed links. From the biological viewpoint, however, this phenomenon is not surprising
and can be explained as follows. The biological mechanism is so complex that any con-
figuration of a biological network cannot be optimally organiped se Once a biological
function is lost in a network for some reason, it is not naturally recovered as it was. Actually,
there are many possibilities to realize the same function, since the inverse problem does not
have a unique solution in general. Moreover, biological systemsoarestand have much
functional redundancyand survival of individuals and species preservation are of overriding
importance for them [66]. In other words, a biological systemegslient, that is, it has the
ability to endure and successfully recover from perturbations such as genetic and environ-
mental changes. Having multiple stable states (solutions) in a biological system, transition
to a new stable state occurs in the face of changes so that they can survive and evolve. Our
results having many alternative solutions can thus be understood as a logical account for an
example of biological resilience. Nothe purpose of abduction here is not recovery of par-
ticular links but recovery of the function itsglfe., suppression of DNA synthesis. Hence,
it is essential for the abductive system to guarantee that important solutions are never lost.
Under this completeness condition, it is better to restrict the number of possible solutions as
many as possible, and we will discuss this important issue in Section 7. Finally, biologists
often decompose networks into smaller sub-networks to make biological analysis easier, and
thus even those simplified p53 networks in this section are useful for considering all possible
connectivities that are hard to find for human experts.
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5 Experiments of Network Completion

This section addresses the issue of scalability of meta-level abduction, which is important
when applications involve large networks. To this end, we show experiments of network
completion by meta-level abduction on networks randomly generated with some parameters
varied, and see scalability of the method.

For experiments, networks are generated randomly, each of which consists of the spec-
ified numbers of nodes and edges including both positive and negative links. We consider
70 combinations of the numbers of nodes and edges, whose ratios are among 3:1, 2:1, 1:1,
1:2, 1:3, 1:4 and 1.5 (7 ratios), each varies from 10 nodes to 100 nodes (10 cases). Note
that each ratio determines the averdggree(the number of adjacent nodes connected to a
node), but it does not mean that the degree is always fixed to every node. The consistency
of each network instance together with axioms (23—-28) and constraints (29, 39) is checked
when the network is generated; if a randomly generated network is proved inconsistent by
SOLAR, that is, the empty clause is produced as the unique characteristic clause, the next
network is randomly generated until a consistent one is found. By this way, 30 consistent
random network instances are generated for each test case. We set the timeout for each run
of SOLAR on one network instance to 1,800 seconds. Then, problems with ratio 1:5 and 100
nodes (500 edges) cannot be solved within the time limit. We also do not allow bidirectional
links between any pair of nodes likeiggered (a, b) A inhibited(b, a), SO that there is at most
one link, which is either a trigger or an inhibitor, is allowed between two nodes. Then, there
areoCy = 45 edges for any complete graph with 10 nodes, and we cannot generate any
network for problems with ratio 1:5 and 10 nodes (50 edges). Hence, wexast—2 = 68
cases, ands8 x 30 = 2,040 network instances are generated.

The observation for each network instance is gives@agressed(n — 1,0) wheren is
the number of nodes in the network, supposing thit the source node and— 1 is the
goal node. We limit the maximum length of hypotheses to 3, which is considered reasonable
in many real applications. The maximum search depth of SOLAR in running each network
instance is set to 5 for computing the characteristic clauses and 8 for computing the new
characteristic clauses. Running environment is Core 2 Duo 1.83GHz with 2GB RAM. Fig. 4
is the graph of results with all 7 nodes-edges ratios on the average computation time to
compute all explanations for each test case with 30 network instances. Each time includes
computation of generating all possible hypotheses and their consistency checking. Fig. 5 is
the graph of results on the average number of explanations generated by network completion
for each test case. The ratioafnodes ton edges is denoted ag:': n” in these graphs.

From Figs. 4 and 5, it is observed that, as the number of nodes (and edges) increases,
both the CPU time and the number of hypotheses grow in all cases of ratios. As the de-
gree of a network increases, completion of intermediate nodes in the network occurs more
frequently and then time and hypotheses also increase. In particular, when new nodes are
created, possible new connections between the source and the goal become larger. However,
as the ratio of nodes to edges becomes smaller, e.g., 1:4 and 1:5, #sathie,average de-
gree of a network increases, the growth rates of hypotheses decrease and tend to converge
This is a remarkable result in this experiment, and this dynamics is explained as follows.
Under the limit of inference depth and maximum length of consequences, there is no room
for further addition of new edges into such a “dense” network by keeping the consistency,
so the number of hypotheses does not increase too much.

It has been recognized that the complexitgntimeration problemsay not be defined
in terms of functions of the size of the input because the number of solutions can be expo-
nential in the input size [64]. For example, [24] defines that an enumeration problem can be
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solved in polynomial total time if an algorithm exists with running time bounded by a poly-
nomial function of the combined size of the input and the output. With this regard, Fig. 6
shows the graph of average time to generate one hypothesis, which is total running time
divided by the number of generated hypotheses. The figure indicates that time to compute
each hypothesis in enumeration does not grow exponentially with increase of input network
sizes for all cases of networks. In Fig. 6, when there are fewer nodes, e.g., 10-30, the running
time is short and then there are some overheads of file read and start-up of Java Virtual Ma-
chine. On the other hand, when many nodes exist (90-100), time for subsumption checking
(consistency checking) increases due to a large number of hypotheses and then average time
to compute one hypothesis also increases, but this happens only when the ratio of nodes to
edges becomes smaller (1:3—-1:5). Hence, it is possible to argue that enumeration scalability
can be observed in this experiment of network completion.

Finally, it should be noted that no domain-dependent knowledge other than an initial
network is incorporated in each run of this experiment. In real-world applications, however,
we expect that the number of hypotheses can be decreased in general by incorporating more
background knowledge and constraints and by specifying more restricted production fields.

6 Discussion and Related Work
6.1 Rule Abduction

The method ofule abductionby means of meta-level abduction was firstly introduced in
[18], and this paper has extended it to deal with positive and negative causal links. Although
few works on rule abduction exist previously, they focus on positive effects only unlike our
work. Moreover, the patterns abducible rulesnust be determined in advance. The frame-
work of abductive systems with such abducible rules were firstly considered in [49], which
associates a unique name with each ground instance of a rule schema that is predetermined
as possible hypotheses, and those names are treated as abducible atoms in abductive rea-
soning. This is a convenient method when we know exact patterns of rules as strong biases.
However, it is impractical or impossible to prepare all patterns of rules in advance in order
to abduce missing rules, and predicate invention is basically impossible by this method.

Meta-reasoning has been discussed intensively in logic programming [29,12,4], but rule
abduction has never been considered in the literature of meta-reasoning. While the impor-
tance of both abduction and meta-reasoning is discussed in [29], their combination has not
been discussed explicitly. Actually it is possible to embed abductive procedures into meta-
programming to perform abduction, but this is distinguished from abduction at the meta
level. Christiansen [2] computes both abduction and induction in a unified system of meta-
programming, and uses separate forms of reasoning in their actual computation followed
by the system. In [2], theemo predicate is used to generate parts of programs that are
necessary to derive the goal based on techniques of constraint logic programming.

As a predecessor of this work, applications of SOLAR to complete networks are dis-
cussed in [53], but negative causes and effects are not handled and joint (positive) causes
are not considered there. CF-induction [14] can induce explanatory rules, and its applica-
tions to completion of causal rules and abduction of network status in metabolic pathways
are shown in [68]. CF-induction can directly induce first-order full clausal theories at the
object level, but predicate invention and hypothesis enumeration at the object level are not
easier than those by meta-level abduction. This is because predicate invention is realized by
inverse resolutioid1] and the search space for hypothesis enumeration is huge in general.
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6.2 Combining Abduction and Induction

Abduction is also used to induce rules in several ILP systems other than CF-induction [14].
Earlier works are summarized in several papers in [10], see, e.g., [37,58]. Most such previ-
ous systems use abduction to compute inductive hypotheses efficiently, and such integration
is useful in theory refinement. More recently, those works [67,52,27,3] use procedures for
abductive logic programmin@ALP), which are different from SOLAR that is used for full
clausal abductive theories as in our meta-level abduction. Progol [39] is the first ILP sys-
tem based on inverse entailment, and [40] improves it to realize theory completion. ILP
systems in [67,52,27] extend Progol’s applicability to larger classes of induced logic pro-
grams, which are yet limited to a set of Horn clauses. Such extensions do not necessarily
depend on ALP, and [54] uses SOLAR instead of ALP to deal with non-Horn clauses. These
systems abduce part of hypotheses from the background theory together with the negation
of an observation. In [3], an ILP problem is fully translated into an equivalent ALP problem,
and then an ALP procedure is used to abduce a hypothesis for an observation from the back-
ground theory and an inductive bias calletbp theory Their system TAL is an extension

of TopLog [43] to allow for multiple clause hypotheses with negation-as-failure (or default
negation). To abduce rules in ALP, TAL uses the naming method as in [49], thus depends
on a strong bias to induce rules, while our meta-level abduction defines the abducibles as
meta-predicates only.

There are other types of works on combining ALP and ILP. Dimopoulos and Kakas [6]
propose a general framework in which a new abductive logic program is learned, given a
previous abductive program as background knowledge and training examples. Their frame-
work is followed by [25,31]. On the other hand, Inoue and Haneda learn an abductive pro-
gram from a non-abductive logic program with positive and negative examples, and new
abducibles are acquired there [19]. The covering relation in [6,25,31] is defined based on
abductive entailmentvhile [19] did not change the entailment relation from the ordinary
one in extended logic programs.

6.3 Abduction and Induction in Causal Theories

Some attempts in ALP, ILP and Al have contributed to abduction and induction in causal
theories. In these works, a causal theory is formally represented in a more specialized way
as a set of individual rules between causes and their effectsevédm calculug30] is a
meta-theory for reasoning about time and action in the framework of logic programming.
Abductive event calculus an abductive extension of event calculus [8], and can thus be
regarded as a kind of meta-level abduction. Abductive event calculus has been extended for
applications to planning, e.g., [61], but has never been used for abducing causal theories.
Moyle [38] uses a theory completion technique of [40,67] to learn a causal theory in
the form of logic programs based on event calculus, given positive examples of input-output
relations. In this work, a complete initial state is required as an input and a complete set of
narrative facts is computed in advance, and thus observations handled in our work cannot
be explained. Otero [47] considers causal theories represented in logic programs in the case
of incomplete narratives. These previous works need efthere axiomsor inertia rules
in logic programs. The former causes the frame problem and the latter requires induction
in nonmonotonic logic programs. Inoe¢ al. [16] induce causal theories represented in an
action languagegiven an incomplete action description and observations, but requires an
algorithm to learn finite automata to compute hypotheses, which may search the space of
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possible permutations of actions. Unlike our meta-level abduction, all these previous works
on induction of action theories do not consider invention of new events or objects.

Tran and Baral [65] use an action language which formalizes notions sucdwaal
rules of the form “X causes Y”trigger rulesof the form “X triggers Y”, andinhibition
rules of the form “X inhibits Y” to model cell biochemistry, and apply it to hypothesize
about signaling networks presented in Section 4.1. As discussed in Section 4.1, all ground
candidate nodes and links to be added are prepared as abducible causal/trigger/inhibition
rules in advance in [65]. In contrast, all abduced causal relations as well as new nodes are
automatically generated in our meta-level abduction.

6.4 Completion of Biological Networks

There are several works on completing biological networks. Notably, work on Robot Sci-
entist [28] adopts abduction to complete biochemical pathways. The abduction mechanism
of Robot Scientist detailed in [56] suggests the use of SOLDR resolution [67], which is a
version of SOL resolution [13] restricted for Horn theories. In [S6kactionis defined as

a pair of sets of compounds representing the substrates and the products of the reaction, and
ametabolic graphis defined in such a way that each node is given as a set of compounds
available by sequences of reactions. This representation is used to deal with biochemical
networks represented as hyper-graphs and to jointly propagate causes of the parent nodes to
those of their child nodes. However, since each node does not correspond to one compound
but represents a set of compounds, the number of nodes in a metabolic graph becomes large.
In contrast, we adopt causal networks, which are simpler than metabolic graphs, and the
meta-predicatgointly _connected or a disjunction otonnected literals is used to represent

a direct multi-causal relationship by (7) or (4). Moreover, our causal network deals with
inhibition, while [56] does not take negative effects into account.

Metabolic pathwaysre updated by several reasons. As discussed in Section 1, known
metabolic pathways are often incomplete so that they should be completed [28]. New exper-
imental data often reveal that previously known pathways are incorrect so that they should
be revised as opposed to merely extended [55]. Moreover, biological systems are robust
to perturbations and can survive in critical situations like loss of some important genes or
links by finding bypasses in pathways [22] and by creating novel reactions that are not nor-
mally used [46]. In computational models, metabolic pathways are completed in [59] and
are revised in [55] usingnswer set programmin@ASP). These works do not invent new
nodes, and the work [59] does not consider inhibition. Furthermore, in revising pathways in
[55], deletion is realized through addition of at@m representing retractability of rulg,
where negation-as-failurent 6 g appears in the body of each retractable mleepresented
in ASP. This kind of deletion is only conceivable under the assumption that we can declare
retractable links that are subject to change in advance. However, real deletion of connections
between metabolites is generally impossihleivoonce they have been established. Instead
of deleting links from a network, our methaddsnew links and nodes by abduction, yet the
switch between presence (activation) and absence (inhibition) of a node can be controlled
by our method due to the nonmonotonic axiomatization (23-28). Our abductive method is
then more realistic, since we can simulate the biological effect of double inhibition by in-
hibiting inhibitors in the p53 network in Section 4.1. Abduction in metabolic pathways with
inhibition is also considered in [63], although the problem setting in [63] is to infer the state
of each reaction, which is different from network completion and no new links/nodes are
abduced there. Moreover, this kind of qualitative abstraction is a very difficult task, and in-
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deed the axiomatization in [63] can be inconsistent with some networks and observed data,
as is discussed in [51].

Forgene regulatory network&at-Viks and Shamir [11] determine a class of regulation
functions, by which regulators determine transcription, and analyze their complexity. Zupan
et al. [69] construct networks from mutant data using abduction, but use experts’ heuristic
rules for construction. These works are different from ours in that they use more specific
methods at the object level to reconstruct networks, depending on the problem domains. On
the other hand, completion sfgnaling networkss analyzed in a general way by Akutst
al. [1], in which unknown Boolean functions are guessed Boalean networf26] whose
network topology is known. This contrasts with our setting that a network is incomplete and
its topology is not fixed.

6.5 Extension of Network Representation

Besides completion of biological networks, logical inference on networks has been consid-
ered with several different formalizations in the literature. Leitgeb [32] defima@bition

netsas a special case of artificial neural networks to represent inhibitory connections be-
tween nodes and excitatory connections. Inhibition nets can represent some nonmonotonic
logics and can simulate logic programs. In other words, inhibitors can be used to realize
nonmonotonic reasoning, and can replace negation-as-failure in logic programs to some ex-
tent. On the other hand, Fayruzewal.[9] formalize inference on gene regulatory networks
using ASP by utilizing nonmonotonic behavior with negation-as-failure. In [9], each par-
ticular inference problem is translated into an equivalent computational problem in ASP
at the meta level. Inoue [15] shows that logic programs with negation-as-failure can simu-
late Boolean networks [26] and vice versa. These works support a claim that inhibition and
negation-as-failure can simulate each other, and that inference on networks with inhibitors
iS nonmonotonic.

Although we have shown two axiomatizations in Section 3, other formalizations can
be still considered for controlling inference in different ways. In fact, we have noticed that
there are at least two arguable cases using the axiomatization in this paper. The first one is
a competing case that there are multiple triggers and one or fewer inhibitors for g.node
Then, instead of preferring the unique inhibitor to all triggers as in Section 3.2, we could
use themajority functionor assigrprobabilitiesto them to determine the value @fSetting
athresholdon a node is also useful, so that a node is activated if the sum of input signals
for the node exceeds the threshold. Such a mechanism is implemented using ASP in [9].
Alternatively, guess of a Boolean function for updating the truth valuginthe framework
of Boolean networks is another interesting direction in this case, as shown in [1]. Network
N4 (40), which is inconsistent with (23—-28) and (29), can also be handled in such a way.
The use ofparaconsistent logi¢5] would also help to infer some meaningful information
from part of knowledge that are not related to inconsistency.

The second important case isegative feedback lopm which a nodey depends nega-
tively on itself. The smallest example of negative feedback loop§ is- {inhibited(g, g)}

(41), which is inconsistent by Proposition 4. Interestingly, if we interpfetas a Boolean
network, then any stable state (callegaint attractor of N5 is characterized by a model of

the Boolean equatiof-g = g) [15]. Since this is unsatisfiabl@]; has no stable state. Actu-

ally, a negative loop is the source of periodic oscillation (callegice attracto) in Boolean
networks. Hence, it is admissible to return no explanation for an observation in a network
containing negative feedback loops, as long as we are concerned with solutions in a static or
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equilibrium state. On the other hand, to represimtamic behaviors our framework, we
need to introducémefor causal axioms. For example, axiom (25) can be reexpressed as

promoted(X,Y, T + 1) < inhibited(X, Z) A suppressed(Z,Y,T).

by incorporating the time argument. Lejayal. [33] have examined such an extended ax-
iomatization in an application of meta-level abduction to treatment of hypertension, but a
formal work is needed to explore this extension.

7 Conclusion

The method of meta-level abduction [18] has been extensively explored in this paper. In par-
ticular, we have allowed representation of positive and negative effects in causal networks,
and deductive and abductive methods have been investigated for reasoning about networks.
Two axiomatizations for causal networks have been presented: one treats positive and neg-
ative effects equally and the other prefers inhibitors to triggers. The latter involves default
reasoning on triggers. With this extension, nonmonotonic reasoning in causal networks and
completion of positive and negative links are now possible by meta-level abduction.

Besides reasoning with positive and negative causal effects discussed in this paper, meta-
level abduction has several advantages in abduction. For example, multiple observations are
explained at once, full clausal theories can be allowed for background knowledge, both rules
and facts can be abduced at the object level, and predicate invention is partially realized as
existentially quantified hypotheses.

Problem solving with meta-level abducticonsists of three steps: (I) design of meta-
level axioms; (1) representation of domain knowledge at the meta level; and (l11) restriction
of the search space to treat large knowledge. This work supposes an incomplete network
for Step (ll), and hence representation of a problem is rather tractable. On the other hand,
we have made great effort on Step (1), by gradually extending the positive causal networks
(Section 2) to alternating axioms (Section 3.1) and then to nonmonotonic formalization
(Section 3.2). This formalization process was based on trial and error by running SOLAR
many times, and case studies in Section 4 were used as testbeds for this purpose. Step (Ill) is
important not only for more efficient computation of hypotheses but for making the user of
meta-level abduction to select appropriate hypotheses more easily. This goal is achieved by
introducing more constraints, and it is important to explore more useful methods for induc-
ing such constraints. In [33], a general method to generate constraints is proposed to prune
many useless solutions by assuming that given link information does not change so that a
trigger cannot become an inhibitor and vice versa. For exampleigifered (g, t) is true in
the given network, theninhibited(g, t) is assumed automatically. If we further assume non-
existence of negative feedbacks, the constrainbibited(t, g) is further added there. These
two additional constraints are, however, still weak because they can be also obtained as char-
acteristic clauses for networ¥; in Section 3.1. Then, a stronger constraimtiggered(t, g)
is introduced by assuming that the direction of a link is not changed, but is often too restric-
tive and cannot be applied in a complicated case. Domain-dependent constraints are more
powerful, and we have seen in Section 4.1 which hypotheses are more important than oth-
ers, and have shown that analogical biases are useful in Section 4.2. Incorporation of these
guides would be a promising way to focus on particular solutions. Thus, discovering a more
general and useful method for constraint generation is left as a future work.

One very important topic that we could not describe much in this paper is evaluation
of logically possible hypotheses obtained in meta-level abduction. To evaluate hypotheses,
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some statistical methods have been proposed. For example, hypotheses can be ranked ac-
cording to frequencies of literals appearing in them and corresponding paths [21], and can be
given their scores according to their fitness with observed data [11]. In general, obtained hy-
potheses can be used to explain more than given observations. For example, cross-validation
can be used to evaluate hypotheses as long as observed data can be used for both training
and testing, although case studies in Section 4 are not of this kind. Often, within a certain
maximum number of alternative solutions, providing a sedigérse solutionsather than

a few most promising solutions is rather a good idea. To this end, we need more domain-
dependent or general constraints and heuristics to restrict the search space and the number
of possible solutions, so the future work mentioned above is also important here.

This paper has shown applications of meta-level abduction to signaling pathways, but we
expect that the proposed method can also be applied to abduction in metabolic pathways with
inhibition [63,68,55] as well as transcription networks [11]. Another interesting application
is to understanding and modeling of robustness of biological systems during severe and
unexpected environments [66,22,46]. We hope that meta-level abduction could contribute
to a future breakthrough in sciences including biology and medicine by helping scientists to
discover important missing and unknown networks.
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