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Polymorphism of 2-adamantanone

The polymorphism of 2-adamantanone (C 10 H 14 O) has been investigated by means of X-ray diffraction and high-pressure thermal analysis. The intricate behavior of the low-temperature crystalline phases has been disentangled. The stable phase has been found to be orthorhombic (Cmc2 1 , Z=4), fully ordered, with lattice parameters a=6.8884(18) Å, b= 10.830(3) Å, c=10.658(3) Å, V/Z=198.8(1) Å 3 . The metastable phase was determined to be monoclinic (P2 1 /c, Z=4) with lattice parameters a=6.5920(17) Å, b= 11.118(3) Å, c=12.589(3) Å, = 118.869(11) o , V/Z=202.0(1) Å 3 . The pressure-temperature phase diagram irrefutably shows the stability relation between both phases and, accordingly, the long-time unknown polymorphic behavior is now revealed and gives coherent physical explanation of the literature published so far.

Introduction

In the general context of chemical engineering diamondoid molecules is an attractive class of hydrocarbons fully sp 3 -hybridized formed by three or more rigidly interlocked cyclohexane rings. They have recently received great interest due to their unique structures and their chemical and physical properties making them promising candidates for building blocks for selfassembled processes in a huge number of applications. [1][2][3][4][5][6] The main interest is to build up organic crystals with large and dimensionally fixed and tuned cavities giving rise to porous materials with the desired chemical and physical needs.

The pristine and thus the smallest diamondoid molecule is the adamantane, a rigid molecule with point group symmetry T d formed by 10 carbon atoms arranged as a single diamond cage surrounded by 16 hydrogen atoms. 7 Despite the rigid molecular skeleton adamantane exhibits a series of thermally induced solid-solid phase transitions before melting that are known to be the consequence of the ability to gain rotational degrees of freedom in the crystalline state (orientationally disordered, OD, phases) mainly due to the little hindrance for reorientational processes associated to its globular shape. 8,9 The OD phase is characterized by long-range positional order, commonly of high symmetry as cubic or hexagonal, whereas the reorientations of molecules take place among a set of distinguishable number of equilibrium orientations. Such a disorder gives rise to high-vapor pressure and low entropy of fusion, in general less than 2.5R, R the universal gas constant, which is known as Timmermans' criterium. 10,11 A set of adamantane derivatives can be obtained substituting one or two hydrogen atoms by an atom (Cl, Br, O,…) or a group of atoms (CN, OH, CH 3 , CH 2 OH, NH 2 ,…) into a tertiary or secondary carbon, given rise to the 1-X-or 2-X-adamantane compounds, respectively. The former give rise to molecules with C 3v point group symmetry and both polymorphic behavior as well as dynamic properties have been extensively studied. [12][13][14][15][16][17][18] As for the latter, with C 2v symmetry, the literature studies are scarce and, concerning the polymorphic behavior as a function of temperature and pressure, there are some hints but sometimes contradictory. [19][20][START_REF] Hara | High Temp-High Press[END_REF][START_REF] Hara | [END_REF][23][24][25][26][27][28][29][30][31] Among the 2-X-adamantane derivatives, 2-O-adamantane (2-adamantanone, C 10 H 14 O, hereinafter called 2O-A) has probably been the most studied in the OD phase. The polymorphic behavior of this compound has been described as follows. The OD room temperature phase melts at 529 K and exhibits a facecentered cubic structure (space group Fm 3 m). 16,19,27 On cooling the OD phase it transforms at around 178 K to an "ordered" low-temperature phase, which comes back to the OD phase on heating at ca. 205 K. 19,20,30,31 A large number of works has been published concerning the orientational disorder of the OD phase, whereas the low-temperature phase was found to be perfectly ordered through NMR studies. [19][20][START_REF] Hara | High Temp-High Press[END_REF][START_REF] Hara | [END_REF][23][24][25][26][27][28][29][30][31] Nevertheless, recent dielectric spectroscopy analyses and X-ray diffraction have shown that a statistical intrinsic disorder concerning the site occupancy of the oxygen atom along different sites giving rise to large-angle molecular rotations associated to time-average fluctuations of the molecular dipole exist. 24 As a consequence of such a disorder the dielectric spectra showed the universal features of glass-like materials in which αand β-relaxation processes appear. Butler et al. 19 submitted the 2O-A to a thermal cycling at normal pressure between 150 and 250 K, i.e., around the low-temperature to OD phase transition. As a result, the transition temperature from the low-temperature to the OD phases shifted from 205 till 221 K (see Table 1), which in fact means that a new low-temperature (stable) phase appeared at the expense of the low-temperature (metastable) phase. The authors discarded the usual explanation related to the increase of crystal defects when thermal cycling and proposed the possibility of appearance of new both low-and high-temperature phases. The difficulty of the conversion from the OD FCC phase to the low-temperature stable phase was highlighted by Bazyleva et al. 20 The transition between the low-temperature and OD phase has been also revealed by application of pressure at room temperature. Hara et al. [START_REF] Hara | [END_REF] found that the OD FCC phase reversibly transforms to a tetragonal ordered structure (a=7.15 Å, c=7.82 Å, V= 399.8 Å 3 ) at 8.0 0.5 kbar at 301 K. It should be noticed that the adscription of the new high-pressure phase to the tetragonal system was performed by assuming the similarities with the high-pressure phase of adamantane 32 due to the reduced number (only 3) of Bragg peaks and, according to the lattice volume the tetragonal cell should contain 2 molecules.

Shortly after Hara et al. [START_REF] Hara | [END_REF] measured the relative volume as a function of pressure for 2O-A. It is well-known that increasing pressure (or decreasing temperature) gives rise to large hysteresis (4 kbar for the adamantanone according to the authors) and thus transition pressure must be assigned when pressure is slowly decreased in order to attain the equilibrium conditions, the authors assigned the transition pressure to the average of the increasing/decreasing experiments. Nevertheless, by reading directly in the V/V vs. P recorded experimental lines of the published work, a pressure of 4.3 kbar at 273 K can be determined. In addition, the authors gave the volume variation along the coexistence curve for a number of states, displaying that such a variation decreases with increasing pressure. A high-pressure Raman study 23 suggested that normal pressure low-temperature phase at 150 K and high-pressure (higher than 6.9 kbar) room temperature are one and the same.

The published work emphasized that, as a result of the Raman spectroscopic analysis, the high-pressure lattice should contain at least 4 molecules (and not 2 as inferred from the crystallographic study of Hara et al. [START_REF] Hara | [END_REF] ).

In the present paper, the crystal structures of stable and metastable phases of 2O-A are presented, together with the equilibrium pressure-temperature line for the coexistence between the stable low-temperature and the OD FCC phases to verify the stability of the involved phases.

Experimental Section

2.1. Materials. 2-O-adamantane was purchased from Aldrich with purity of 99+% and was used without further purification.

Differential Thermal

Calorimetry at normal pressure. Calorimetric measurements at normal pressure were conducted by means of a Q100 thermal analyzer from TA Instruments. Heating and cooling rates of 2 K min -1 and sample masses around 15 mg gathered in Perkin-Elmer high-pressure stainless steel pans were used to avoid spurious signals as a consequence of the deformation of the pans due to the high vapor pressure of material.

2.3.

High-Pressure Differential Thermal Analysis. High-pressure calorimetric measurements were performed at a heating rate of 2 K min -1 using an in-house built high-pressure differential thermal rflinger's apparatus 33 working in the temperature range from 150 K to 473 K and 0 and 300 MPa. To ascertain that in-pan volumes were free from residual air, specimens were mixed with an inert perfluorinated liquid (Galden, from Bioblock Scientifics, Illkirch, France) as a pressure-transmitting medium, and the mixtures were sealed into cylindrical tin pans. Perfluorinated liquid was chemically inactive for 2O-A as demonstrated by DSC measurements carried out on a Galden+2O-A mixture with the TA Instruments Q100 under ordinary conditions. mode with a 3 kV primary electron beam acceleration voltage.

Scanning Electron

High-resolution X-ray powder diffraction measurements

High-resolution X-ray diffraction patterns were recorded using a horizontally mounted INEL cylindrical position-sensitive detector (CPS120) 34 using Debye-Scherrer geometry (angular step ca. 0.029 o -2θ over a 2θ-range from 2 to120 o ).

The system is equipped with a liquid nitrogen 600 series Cryostream Cooler from Oxford Cryosystems with a temperature accuracy of 0.1 K and similar for fluctuations. X-ray profiles were acquired isothermically (no less than 60 min) upon cooling first then heating back so that the temperature range was scanned at intervals of ca. 20 K and less when the transition was approached.

Monochromatic Cu K 1 (λ =1.5406 Å) radiation powered with 1.0 kW(40 kV and 25 mA) was selected. External calibration using the Na 2 Ca 2 Al 2 F 14 cubic phase mixed with Silver Behenate was performed by means of cubic spline fittings.

To prevent patterns from possible effects of preferred orientations, samples were introduced into 0.3-mm diameter Lindemann capillaries which were rotated perpendicular to the X-ray beam direction.

Crystal structures have been resolved by using the modules Powder Indexing for cell searching, the Powder Refinement for full profile determination after pseudo-Voigt fittings 35 and the module Powder Solve 36 of the Materials Studio application. [START_REF]MS Modeling (Materials Studio[END_REF] Finally, to optimize the crystal structure with the lowest R wp , Rietveld refinement was used.

Experimental Results and Discussion

A capillary with the as-received sample was cooled down to 90 K and X-ray powder diffraction measurements were conducted from 90 to 400 K. Patterns were collected every 20 K until 190 K and every 5 K around the lowtemperature to the OD FCC phase transition, which appeared at 205 K as it is demonstrated by the coexistence of both phases at such temperature (Figure 1).

The lattice of the low-temperature phase (at T lower than 205 K) was determined by means of X-Cell software, available in the module Powder Indexing of Materials Studio.

Systematic absences enable to determine the space group, which was compatible with P2 1 /c space group. According to a reasonable density, Z=4 was assigned. A rigid body molecule was built up by using the cage body obtained for similar adamantane derivatives. 12 Pawley refinement was carried out using the initial unit-cell parameters in space group P2 1 /c. The unit-cell parameters, zero-point shift, background, peak profile (pseudo-Voigt) and peak asymmetry parameters were refined (see Table 2). The constructed molecule was then placed in a general position within the unit cell and the module Powder Solve was used to solve the structure. Multiple refinements were performed with oxygen atoms occupying possible positions according to the molecular structure. Those with low values of the refined occupancy factor were successively discarded and, finally the occupancy factors of the three remaining sites gave rise to values close to 25%, 25% and 50%, these being fixed for the next refinements.

In the final Rietveld refinement, the position and orientation of the molecule was refined with the rigid-body constraint, and with a single overall isotropic displacement parameter. All of the profile parameters referred to above were also refined, and preferred orientation was fitted using the Rietveld-Toraya function. [START_REF] Toraya | [END_REF]39 An example of the experimental and refined patterns is shown in The same experimental protocol was repeated with a sample into a capillary for X-ray diffraction. After ca. 10 cycles, the low-temperature monoclinic phase did not appear and a new pattern emerged (Figure 2, right panel). The procedure to determine the structure was similar to that used for the monoclinic form. Nevertheless, in this case, taking into account Z'=0.5, the molecule was placed on the mirror perpendicular to the X-axis reducing the parameters to be found and so final Rietveld refinement was combined with minimization of the lattice energy. Final results are gathered in Table 2. The so-obtained lattice parameters and unit cell volume were fitted by a standard least-squares method as a function of temperature and the polynomials describing such a temperature variation are compiled in Table 3. The volume values at each temperature, depicted in Figure 4, were used to calculate the volume change at the M m and O s to OD FCC transitions, 6.54 and 3.86 cm 3 mol -1 , respectively (Table 1). The last figure shows up that volume changes as a function of pressure previously determined from Hara et al. [START_REF] Hara | [END_REF] perfectly match the value for the O s to OD FCC transition at normal pressure determined in this work, which means that the low-temperature phase obtained by increasing the pressure must correspond to the stable orthorhombic phase. In addition, volume changes as a function of pressure the ordered to OD transition follows the typical variation for such kind of transitions. [40][41][42][43] To check once again the stability of the orthorhombic phase, high-pressure thermal analyses were performed as a function of pressure. Figure 5a shows the obtained pressure-temperature phase diagram for the low-temperature to OD FCC phase transition. The diagram evidences that application of pressure stabilizes the orthorhombic phase because the extrapolation at normal pressure gives the value of 217 K which nicely agrees with the value obtained by adiabatic calorimetry 20 and that obtained by Butler et al. 19 after temperature cycling. Moreover, the high-pressure value of Hara et al. [START_REF] Hara | [END_REF] perfectly matches the equilibrium line determined in this work. Pressure transition at room temperature obtained by Harvey et al. 23 by means of Raman spectroscopy (6.9 0.2) kbar for a decompression measurement is certainly far away from our results. This transition point cannot be associated to the M m to OD FCC phase transition because of two reasons: (i) the same authors established that the high-pressure obtained phase is the same than that obtained at normal pressure and low-temperature and, (ii) because the equilibrium coexistence line for the M m to OD FCC transition is less steeper (0.171 K MPa -1 ) than that of O s to OD FCC (0.184 K MPa -1 ), as it can be calculated by Clausius-Clapeyron with the experimental enthalpy and volume changes for the M m to OD FCC transition (see Table 1). This fact implies that equilibrium coexistence M+FCC and O+FCC lines cross at low-temperature and low-pressure (Figure 5b) and, according to Bakhuis Roozeboom, 44 the M m phase behaves monotropically for the whole temperature and pressure space. Several examples of overall monotropy can be found in the literature. [START_REF] Perrin | [END_REF][46][47][48][49] As far as the tetragonal lattice found by Hara et al. [START_REF] Hara | High Temp-High Press[END_REF] at 10 kbar throughout indexing 3 Bragg peaks, the pattern of the orthorhombic phase (Figure 1b)

clearly shows that those peaks match the most intense peaks of the O s phase.

Another irrefutable experimental proof of the stabilization effect of pressure is obtained by compression and decompression of the monoclinic metastable phase at temperatures lower than 200 K and heating up at normal pressure.

Following this detour the temperature of the phase transition is found at 217 K, From the lattice parameters as a function of temperature the intermolecular interactions can be enhanced throughout the isobaric thermal-expansion tensor. 43,50,51 It is a symmetrical second-rank tensor, dU ij = ij dT, with non-zero eigenvalues on the diagonal. A small value of a tensor eigenvalue is commonly referred to as a "hard" direction, because it shows up small deformation dU against temperature variation, dT, whereas a large value is referred to as "soft" direction because it indicates a large deformation. For a monoclinic lattice the tensor is completely defined by the principal coefficients, 1 , 2 , and 3 , and As for the overall volume expansivity, (not shown), the metastable monoclinic M m phase expands more than the stable orthorhombic O s stable phase (27.8•10 -5 K -1 and 24.3•10 -5 K -1 at 190 K, respectively) as a consequence of the statistical disorder, a fact which is coherent with the highest packing (lower density) of the most stable phase (see Table 2). 

which

Conclusions

The intricate polymorphism of 2-adamantanone has been studied from 90 K to the liquid state as well as a function of pressure (until 300 MPa). The long time unknown phase relations and the low-temperature phases of 2-adamantanone have been determined. The ordered phase has been characterized as orthorhombic (Cmc2 1 ) with Z=4 (Z'=0.5), whereas the metastable monoclinic The high-pressure behavior supports, in addition, that pressure easily stabilizes the orthorhombic phase. The volume change for the orthorhombic to OD cubic phase transition at normal pressure matches those obtained previously at highpressure and, together with the pressure behavior, enables to explain the tangled results of the literature. Through the analysis of the thermal-expansion tensor, the role played by the occupational oxygen disorder seems to explain the intermolecular interactions as well as the packing differences between both low-temperature crystalline phases.

  Microscopy. Morphology of grains was followed by means of SEM. A cylindrical sample 5 mm-diameter and 12 mm-length was prepared from raw material (grain size was in range 50 200 m) by press. Morphology was examined before and after first cooling down to 77 K and then heating by FE-SEM by using a FEI Nova NanoSEM 230 microscope at room temperature. SEM images were acquired in the low vacuum mode (60 Pa H 2 O) using LVD (low vacuum detector) working in SE (secondary electrons)
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 11 Figure 1.

Figure 2 .

 2 Figure 2. SEM photographs of 2-adamantanone powdered sample before temperature cycling (left panel, magnification of 500), after one cycle between 77 K (central panel, magnification of 500) and room temperature and after five cycles (right panel, magnification of 2500) showing that grain sizes diminish with temperature cycling.

3 .

 3 After the determination of low-temperature structures, M m and O s , lattice parameters were measured as a function of temperature for thermal-expansion and volume change at the transition purposes. The site occupancy of the oxygen atoms remains constant for the whole temperature range. The results are plotted in Figure Pattern matching refinement was applied to the patterns collected for the OD FCC phase.

Figure 3 .

 3 Figure 3. Lattice parameters of the low-temperature phases, stable O s (left axes, filled symbols) and metastable M m (right axes, empty symbols) as a function of temperature

Figure 4 .

 4 Figure 4. Molar volume for the orthorhombic stable O s (filled circles), monoclinic metastable M m (empty circles) and OD face-centered cubic phases as a function of temperature from X-ray measurements. Upper inset shows the volume variation as a function of pressure (half-filled circles) from ref. Hara et al. 22 and the volume change at normal pressure (filled circle) obtained in this work. Empty square represents the value for the OD FCC phase from ref. 27.

Figure 5 .

 5 Figure 5. (a) Experimental Pressure-Temperature phase diagram for lowtemperature orthorhombic (filled circles) to FCC phase transition. Empty circle at normal pressure corresponds to the monoclinic M m to FCC phase transition (the equilibrium line is shown in grey). The start at high-pressure corresponds to the value read from the volume change as a function of pressure (figure 2 in ref. 22) for the decompression measurement. (b) Topological Temperature-Pressure phase diagram with triple points 1 (O+FCC+vapor), 2 (M+O+ vapor),3 (M+FCC+ vapor) and 4 (M+O+FCC) according to Bakhuis Roozeboom.44 

  an angle between the direction of one of the principal directions ( 3 , in the present case) and the crystallographic axis a, the 2 eigenvector being coincident with the 2-fold axis b of the crystal. For orthorhombic systems, eigenvectors are parallel to the mutually perpendicular crystal axes.

Figure 6 .

 6 Figure 6. Figures (a) and (b) show the thermal-expansion tensors for orthorhombic and monoclinic phases, respectively, at 190 K. (c) The eigenvalues i as a function of temperature for the orthorhombic (full symbols) and monoclinic (empty symbols) and the OD FCC (empty diamonds) phases.

Figure 6

 6 Figure6shows the variation of the eigenvalues as a function of temperature for all the phases involved in 2O-A. The 1 direction in the M m phase, close to the [100] direction, is the soft direction, while the 3 direction is the hard direction. These eigenvectors 1 and 3 lie on the (0k0) monoclinic crystallographic plane (see Figure7). From Figure7ait can also see that the O atoms are related by a rotation of the molecule around a perpendicular axis to a, being such an axis close to the 3 direction (30.3 o ), the hardest direction.

Figure 7 .

 7 Figure 7. Projection of the monoclinic structure on the (0k0) crystallographic plane together with the eigenvectors 1 and 3 (a) and on the (0kl) plane (b). Dotted lines links the O3•••O3 (a) and the O1••O1 and O2••O2 atoms (b).

Figure 8 .

 8 Figure 8. (0k0) crystallographic planes for the monoclinic (a) and orthorhombic (b) structures.

  1 /c) with Z=4 (Z'=1) has been found to display a statistical intrinsic disorder concerning the site occupancy of the oxygen atom along three different sites (with fractional occupancies of 25%, 25% and 50%). The stability of the orthorhombic phase in relation to the monoclinic phase has also been proved by means of the temperature-pressure phase diagram involving the orthorhombic and the orientationally disordered high-temperature cubic phase.

Table 1 .

 1 through adiabatic calorimetry. After long time annealing, transition temperature on heating was determined to be 216.4 K, close to that obtained by Butler et al. after temperature cycling around the transition. Thermodynamic properties of the transitions between stable (s) and

metastable (m) phases for 2-adamantanone.

Table 2 .

 2 Results from the Rietveld refinement of the metastable monoclinic (M m ) and stable orthorhombic (O s ) low-temperature phases of 2adamantanone.

	Chemical Formula	C 10 H 14 O
	M / g•mol -1	150.2176
	Phase	M m	O s
	2 -Angular Range	10 -55 o	15 -80 o
	Space group	P2 1 /c	Cmc2 1
	a /Å	6.5920 ± 0.0017	6.8884 ± 0.0018
	b / Å	11.118 ± 0.003	10.830± 0.003
	c / Å	12.589 ± 0.003	10.658± 0.003
	/ o	90	90
	/ o	118.869 ± 0.011	90
	/ o	90	90
	V/Z / Å 3	202.0±0.1	198.8±0.1
	Z (Z')	4 (1)	4(0.5)
	Temperature	190 K	190 K
	D x / g•cm -3	1.235±0.001	1.255±0.001
	Radiation type:	=1.5406 Å	=1.5406 Å
	X-Ray,		
	2 -shift (zero	-0.0030 ± 0.0013	0.0529 ± 0.0029
	correction)		
	Profile Parameters		
	Na	0.513 ± 0.008	0.233 ± 0.010
	Reliability		
	Parameters		
	R wp	3.70%	4.22%
	R p	2.75%	3.07%
	Peak width		
	parameters		

Table 3 .

 3 Polynomial Equations P = p o + p 1 T + p 2 T 2 (T in K and p in Å or in deg for parameter) to which the lattice parameters of the monolcinic (M m ), orthorhombic (O s ) and OD FCC phases were fitted as a function of temperature; R is the Reliability Factor.

	Phase Temperature	Parameter	p o	p 1 •10 3	p 2 •10 5	R•10 8
		Range (K)					
	M m	90-205	a /Å	6.527(2)	-0.04(3) 0.20(1)	4.5
			b /Å	11.006(19) 0.23(3)	0.19(1)	0.4
			c /Å	12.456(12) 0.11(1)	0.31(6)	1.7
			/ o	118.73(8) -0.50(1) 0.65(4)	0.3
	O s	90-215	a /Å	6.810(1) 0.355(8)	-	15
			b /Å	10.690(23) 0.30(3)	0.17(9)	5.6
			c /Å	10.537(10) 0.23(1)	0.16(4)	1.3
	FCC	205-400	a /Å	9.228(7)	0.80(5)	0.06(8)	0.4
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The stable and metastable lowtemperature phases of 2-adamantanone have been determined by X-ray powder diffraction as monoclinic (P2 1 /c) and orthorhombic (Cmc2 1 ), respectively. For the former, a statistical disorder concerning the site occupancy of the oxygen atom has been demonstrated.