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We predict the possibility of observing integer and fractional self-imaging (Talbot) phenomena on the

discrete angular spectrum of periodic diffraction gratings illuminated by a suitable spherical wave front.

Our predictions are experimentally validated, reporting what we believe to be the first observation of

self-imaging effects in the far-field diffraction regime.
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The Talbot effect, also referred to as self-imaging, is a

concept with a distinguished pedigree [1–4]. The Talbot

effect was first discovered and explained in the context of

classical diffraction optics [1–3]. Moreover, the concept

can be easily transferred to a wide variety of problems [4],

which can be described using equivalent laws to those of

the physics of diffraction of periodic wave fields [5], [6].

Manifestations of the effect have been observed and applied

across many fundamental and applied areas, including

waveguide devices [7], x-ray diffraction and imaging [8],

electronmicroscopy [9], plasmonics [10], nonlinear dynam-

ics [11], matter-wave interactions [12], laser physics [13],

quantum mechanics [14,15], etc. Self-imaging of periodic

temporal waveforms has been also reported in dispersive

media [16]. Referring to its original optics description [1–3],

Talbot phenomena can be observed when a coherent beam

of monochromatic light is transmitted through a one-

dimensional (1D) or two-dimensional (2D) periodic object,

namely, a grating. Planewave-front illumination is generally

assumed. Following free-space diffraction, exact images

of the original object are formed at specific distances

from the object (integer Talbot). At other positions along

the diffraction direction, the periodic pattern reappears but

with a periodicity that is reduced by an integer number with

respect to the input one (fractional Talbot). Similar self-

imaging phenomena can be also observed using illumination

with a Gaussian-like wave front [3,4]; in this case, the

diffraction-induced “self-images” are transversally magni-

fied or compressed versions of the original ones.

Regardless of their specific manifestation, Talbot phe-

nomena are intrinsically near-field diffraction effects; i.e.,

they are the result of wave interference in the near-field

diffraction region or equivalent regime [1–16]. Thus, it is

generally accepted that these phenomena cannot be pro-

duced or observed under far-field or Fraunhofer diffraction

conditions. In this Letter, we show, otherwise, that self-

imaging can be induced on the angular spectrum of periodic

gratings, i.e., on their far-field diffraction patterns. The key

is to use illumination with a suitable parabolic wave front,

e.g., a spherical wave front (point source) under the Fresnel

approximation. We refer to this new class of self-imaging

effects as “angular Talbot phenomena.” We anticipate that

both integer and fractional self-images of the original

angular spectrum can be induced by properly fixing the

curvature of the illumination beam, e.g., the distance

between the source focal point and grating location. Our

theoretical predictions are experimentally confirmed.

Figure 1 shows a scheme of the problem under analysis,

illustrating the predicted angular Talbot effect. We assume a

1D grating illuminated by a coherent monochromatic beam

of wavelength λ and associated wave number k ¼ 2π=λ.

FIG. 1 (color). Schematic representation of angular Talbot

phenomena observed by spherical wave-front illumination of a

periodic diffraction grating. The detailed condition for d0 depend-
ing on the integer parameters s and m is given in Eq. (6). The

figure represents the cases of a direct, integer angular Talbot

effect (s ¼ 2; m ¼ 1), whose diffraction is identical to the one

found under plane wave-front illumination, and a direct, frac-

tional angular Talbot effect (s ¼ 2; m ¼ 3), for which the same

beams are diffracted with one-third of the separation angle Δϕ.
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The grating extends along the direction x, perpendicular
to the light propagation direction z, with complex trans-

mission amplitude defined by

tðxÞ ¼
X

þ∞

p¼−∞

tpgðx − pΛÞ ¼gðxÞ∘½tenvðxÞ
X

þ∞

p¼−∞

δðx − pΛÞ�;

(1)

where p ¼ 0;�1; � 2;…, ∘ denotes a convolution inte-

gral, Λ is the grating period, gðxÞ is the complex-

amplitude shape of the individual grating aperture, δðxÞ
is the Dirac delta, and tp ¼ tenvðpΛÞ is a complex

parameter that accounts for amplitude and phase varia-

tions among consecutive apertures and the truncation

associated to the finite grating length, i.e., the grating

complex envelope tenvðxÞ.
We recall first the well-known case of illumination with

a plane wave front [17], which is assumed to propagate

along z. In this case, the field complex amplitude e1ðxÞ at
the grating location (z ¼ 0) is proportional to the grating

amplitude transmission in Eq. (1), and the corresponding

angular spectrum can then be written as

E1ðkxÞ ¼ FTfe1ðxÞg

∝ GðkxÞ
X

þ∞

q¼−∞

Tenvðkx − qK0Þ

¼
X

þ∞

q¼−∞

GqTenvðkx − qK0Þ; (2)

where the symbol ∝ expresses proportionality, FT holds

for Fourier transform, q ¼ 0;�1;�2;…, K0 ¼ 2π=Λ,
Gq ¼ GðqK0Þ, with GðkxÞ ¼ FTfgðxÞg and TenvðkxÞ ¼
FTftenvðxÞg. Equation (2) has been derived by applying

well-known FT rules on Eq. (1), including the convolution-

multiplication theorem and the periodic comb pair

FTf
Pþ∞

p¼−∞
δðx − pΛÞg ∝

Pþ∞

q¼−∞
δðkx − qK0Þ (see

Ref. [17], Chap. 2). Additionally, the transversal width of

gðxÞ is assumed to be sufficiently short so that GðkxÞ is

approximately constant along a frequency resolution given

by the angular extension (bandwidth) of TenvðkxÞ. Notice
that the bandwidth of Tenv scales as the inverse of the total

grating length.

Equation (2) can be interpreted as a collection of

monochromatic beams, each beam associated with a differ-

ent diffraction order q and propagating with an angle ϕq

with respect to the axis z, sinϕq ¼ qK0=k ¼ qðλ=ΛÞ.
Moreover, all individual beams exhibit the same angular

spectrum determined by the FT of the grating complex

envelope tenvðxÞ, i.e., TenvðkxÞ.
Our interest here focuses on the case of illumination of

the same physical grating with a parabolic (quadratic-

phase) wave front. We assume that the complex amplitude

of the parabolic wave at the grating location (z ¼ 0) is

proportional to expðjαx2Þ, where j ¼
ffiffiffiffiffiffi

−1
p

is the imagi-

nary unit, and α defines the curvature of the quadratic phase

profile. Under the Fresnel approximation (see Ref. [17],

Chap. 4), this wave variation can be practically induced

by illumination with a spherical wave front, ideally

generated from a single radiation point on the propagation

axis (x¼ 0, z¼−d0), see Fig. 1. In this specific case,

α ¼ π=λd0.
Under parabolic wave-front illumination, the wave

complex amplitude e01ðxÞ at the grating location (z ¼ 0)

is now given by

e01ðxÞ ∝ expðjαx2Þ
X

þ∞

p¼−∞

tpgðx − pΛÞ

≈

X

þ∞

p¼−∞

expðjp2αΛ2Þtpgðx − pΛÞ (3)

The latest approximation in Eq. (3) is valid if the

transversal extension of the individual aperture gðxÞ is

sufficiently short [18]. Equation (3) resembles the equation

that is obtained for the angular spectrum E2ðkxÞ of a grating
illuminated by a plane wave front after free-space near-field

diffraction, Eq. (4) below. In the classical grating diffrac-

tion case, the angularly equispaced diffracted beams (each

approaching a plane wave and characterized by a different

order q) are phase shifted with respect to each other

following a parabolic phase-shift distribution (∝ q2), as
directly induced by the near-field (NF) diffraction process

[3–6], [17]. Mathematically, the wave angular spectrum

after diffraction through a distance dNF is

E2ðkxÞ ∝
X

þ∞

q¼−∞

expðjq2K2
0dNF=2kÞGqTenvðkx − qK0Þ:

(4)

Equivalently, in the problem under consideration, the

periodically spaced apertures of the diffraction grating

behave as consecutive spherical-like wave-front beam

sources (each characterized by a different p). Equation (3)

implies that these beams are also phase shifted with respect

to each other following a similar parabolic phase-shift

distribution (∝ p2). The mathematical equivalence between

Eqs. (3) and (4) establishes a duality between the angular

spectrum domain (kx) in the conventional problem of

diffraction of a periodic wave field, Eq. (4), and the trans-

versal spatial domain (x) of a periodic gratingunder parabolic
wave-front illumination, Eq. (3), and vice versa. This duality

is central to our predictions on angular Talbot phenomena, as

detailed in what follows.

The phase modulation induced by parabolic illumina-

tion, Eq. (3), generally alters the wave angular spectrum

as compared with that obtained under plane wave-front

illumination, Eq. (2). In line with the equivalence outlined
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above, the distortions induced on the wave angular spec-

trum should follow a similar evolution to those observed

for the transversal diffraction patterns in the standard

periodic grating diffraction problem. Indeed, the central

finding in our work is that the angular spectrum is modified

in peculiar and distinctive ways when the following

condition is satisfied on the discrete phase-modulation

shifts in Eq. (3):

αΛ2 ¼ π
s

m
; (5)

where sð¼ 1; 2; 3;…Þ and mð¼ 1; 2; 3;…Þ are any two

coprime integers. Equation (5) is derived as the counterpart

of the general Talbot condition in the classical diffraction

problem of periodic wave fields [6]. As such, Eq. (5) will be

referred to as the angular Talbot condition. In the spherical

wave-front implementation depicted in Fig. 1, Eq. (5)

implies a condition on the location (z ¼ −d0) of the focal
point of the spherical beam,

d0ðs;mÞ ¼ m

s

Λ2

λ
¼ m

s
zT ; (6)

where zT ¼ Λ2=λ will be referred to as the fundamental

Talbot length.

Similar to its spatial counterpart [6], direct (inverted) and

integer (fractional) Talbot phenomena can be observed on

the angular spectrum of the wave amplitude, or the propor-

tional far-field diffraction pattern, depending on the com-

bination of values of the parameters s and m in Eq. (5). In

particular, similar derivations to those previously reported

for the spatial Talbot problem [3,6] allow us to predict that

when condition (5) or the equivalent Eq. (6) is satisfied,

then the angular spectrum of the diffracted wave can be

written as follows:

E0
1ðkxÞ ∝

X

þ∞

q¼−∞

GqTenv

�

kx − q
K0

m
− h

K0

2m

�

; (7)

where h ¼ 1 if the product sm is an odd number and h ¼ 0

if the product sm is an even number. According to Eq. (7),

the following phenomena are possible.

(1) The casem ¼ 1 corresponds to integer angular Talbot

phenomena. The easiest case to interpret occurs when

m ¼ 1 and s is an even number (s ¼ 2; 4; 6;…). In this

case, the condition in Eq. (5) implies that the phase-

modulation shifts in Eq. (3) p2αΛ2, are proportional to

2π for all values of p. As a result, the phase modulation

induced by the parabolic illumination does not have any

effect on the wave amplitude, and, consequently, the wave

angular spectrum is similarly given by Eq. (2). This implies

that the wave is diffracted exactly as in the case of

illumination by a parallel plane wave front, as described

above. This effect can be interpreted as the angular

FIG. 2 (color). Theoretical angular Talbot carpet for a grating

with N ¼ 40 apertures. The carpet shows the evolution of the

angular spectrum magnitude of the diffracted wave (versus the

diffraction angle) as a function of the source focal point location

with respect to the grating, normalized as d0=zT . Angular Talbot
phenomena are observed when d0=zT ¼ m=s, withm and s being
coprime integers. The vertical dotted lines represent the directions

of the diffracted beams when the grating is shined with a plane

wave front. FIG. 3 (color). Sketch of the experimental setup.
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equivalent of a direct integer Talbot effect [1–4,6]. In

contrast, for s odd (sm is odd), the beams are diffracted

with the same periodic angular spacing but with an

additional overall angular shift ϕ0 defined by sinϕ0 ¼
Ko=2k ¼ λ=2Λ, namely, half the grating nominal diffrac-

tion angle. This latter case will be referred to as the inverted

integer angular Talbot effect.

(2) When m > 1 (m ¼ 2; 3; 4;…), fractional angular

Talbot phenomena are observed. The wave is again

diffracted into a set of angularly dispersed beams, each

with an individual angular spectrum that is identical to that

obtained under plane wave-front illumination, but with an

angular separation that is divided by a factorm with respect

to the plane wave-front case. In particular, when the product

(sm) is even, the diffraction angle for the beam of order q
is now defined by sinϕq ¼ qK0=mk ¼ qðλ=mΛÞ (direct

fractional angular Talbot effect). When the product (sm) is

an odd number, one would observe an additional overall

angular shift by ϕ0, with sinϕ0 ¼ K0=2mk ¼ λ=2mΛ,

namely, half the reduced diffraction angle (inverted frac-

tional angular Talbot effect).

Thus, under fractional angular Talbot conditions, the

diffraction process is formally equivalent to that achieved

when a plane wave is transmitted through a “virtual”

periodic grating with a spatial period m times larger than

the period of the actual physical grating. Through the

described effect, the virtual grating period can be effec-

tively controlled (e.g., increased) by simply shifting the

point source location, according to condition (6), without

affecting the total amount of energy transmitted through the

grating.

The predicted fractional Talbot effects can be observed

as long as there is no interference between consecutive

diffracted beams. This implies that the diffraction-angle

division factor m must remain in the limit where

Tenvð�K0=2mÞ → 0. (8)

Figure 2 presents the numerically simulated angular

Talbot carpet, clearly showing the different predicted

angular Talbot phenomena.

Figure 3 shows an illustration of the used experimental

setup. A He-Ne laser beam (λ ¼ 633 nm) is sent onto

a microscope objective (×100, 0.95 numerical aperture) to

produce a pointlike light source. A grating of slits is placed

on a translation stage, which enables a fine-tuning of the

distance d0 between the light beam focus and the grating.

The grating is made of N ¼ 36 vertical parallel slits (width:

FIG. 4 (color). Experimental far-field diffraction patterns

recorded with the CCD camera, as a function of the position

of the pointlike source expressed in units of the Talbot length

zT ¼ Λ2=λ. Values of d0 given in blue (respectively, red)

correspond to inverted (respectively, direct) Talbot effects. The

broadening of the diffracted beams when d0 gets smaller than zT
is due to nonuniform illumination of the grating as the pointlike

source approaches the grating. The vertical dashed lines represent

the directions of the diffracted beams when the grating is shined

with a plane wave front.

FIG. 5 (color online). Intensity profiles of the diffracted waves

recorded by the PLA. The point source-grating distance is

adjusted to satisfy the angular Talbot condition d0ðs ¼ 1;mÞ ¼
mΛ2=λ, with m ¼ 1, 2, 3, 5, 8, and 20 from left to right and

top to bottom. The horizontal span of the PLA corresponds

to a total angle aperture of 6 mrad. The FWHM widths of

the diffraction peaks are measured to be 0.20� 0.02 mrad

(for m ¼ 1 to 8).
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7 μm, period Λ∶70 μm). The light field at the grating

output is then split by a 50∶50 beam splitter and directed

onto a CCD camera and a horizontal photodiode linear

array (PLA), respectively. Both measurement systems are

placed in the focal plane of two converging lenses,

each with a focal length (f) of 20 cm. This scheme allows

us to measure and record the angular spectrum or equiv-

alent far-field diffraction pattern of the light diffracted from

the grating, according to the well-known relationship

between the angular frequency variable kx and transversal

direction variable x in the lens focal plane, kx ¼
ðk=fÞx [17].

In our setup, the fundamental Talbot length zT from

Eq. (6) is equal to 7.8 mm. The distance d0 between the

focal point and the grating can be adjusted from zT=2 up to
20zT . Figure 4 shows the patterns measured through a CCD

camera, confirming observation of the predicted direct and

inverted, integer and fractional self-imaging effects on the

angular spectrum of the diffracted waves. Integer self-

imaging is achieved when m ¼ 1 (cases d0=zT ¼ 1=2 and

1), and the expected division in the periodic spacing of the

diffracted lines by a factor of m is clearly observed.

Moreover, an example is also shown (d0 ¼ 1.03 zT , i.e.,
m ¼ 103, s ¼ 100) to illustrate how the periodic far-field

diffraction patterns are severely distorted when the con-

dition in Eq. (8) is not satisfied.

Finally, Fig. 5 displays the intensity measured by the

PLA over 1.2 mm, for the cases when s ¼ 1 and m ¼ 1, 2,

3, 5, 8, and 20. These results confirm that the angular width

of the different diffraction orders is nearly identical for all

self-images, regardless of the induced angular-spacing

division factor m, in agreement with our theoretical

predictions. We recall that the angular width of the different

diffraction orders is inversely proportional to the total

grating length. Also, as predicted, when m is too large

so that Eq. (8) is not satisfied, the diffracted beams begin to

overlap, as illustrated in Fig. 5, bottom right.

In summary, this Letter reports the first theoretical

prediction and experimental observation of integer and

fractional self-imaging effects on the angular spectrum, or

the far-field diffraction patterns, of periodic gratings

illuminated by a suitable spherical wave front. This

discovery should open the path for observation of related

novel phenomena and new application opportunities

across the wide range of disciplines where conventional

(near-field) Talbot effects have been observed and success-

fully used.
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