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Abstract:A new derivation of completely nonlinear weakly-dispersive shallowwater equations is given with-
out assumption of �ow potentiality. Boussinesq type equations are derived for weakly nonlinear waves above
a moving bottom. It is established that the total energy balance condition holds for all nonlinear dispersion
models obtained here.
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Themost commonway to obtain long-wave approximations of hydrodynamic equations for an incompressible
�uid is the expansion of basic hydrodynamic parameters over powers of the vertical coordinate, or over pow-
ers of the long-wave parameter determined by the ratio of the average depth of water area to the typical wave-
length. These methods are very formal. The systems of nonlinear-dispersive (NLD) equations constructed
with the use of those methods were justi�ed in particular cases (e.g. theorems on convergence, correctness,
and stability [2, 14, 15]). However, a wide class of NLD models is widely used for solving applied problems
on propagation and interaction of long surface waves. This contributes to the growth of computing power of
modern computer systems. At the same time, the requirements to the accuracy and robustness of numerical
solutions also increasewhich, in this turn, creates new demands to the quality of approximate hydrodynamic
models and the corresponding numerical algorithms.

In the last decade, many papers were focused on improvement of NLD models, their justi�cation, exten-
sion to more general cases [2–5, 7, 10, 11, 13]. Nevertheless, there are still many problems to be solved in this
area for today.

An important characteristic of a systemof equations describing the�uiddynamics is the energy conserva-
tion law [1, 7, 9, 18, 19]. It is not an independent equation in the case of an ideal homogeneous incompressible
�uid, but is obtained as an algebraic corollary of equations of continuity andmotion. Passing to approximate
models, wemay loss important properties of the original hydrodynamic system (such as the invariance of the
main group of transformations, or the validity of conservation laws).

The notion of ‘energy’ was used for approximate hydrodynamic models in many papers [2, 18] focused
on justi�cation of those models because with the use of a positive function being an analogue of the physical
energy one can introduce an appropriate norm in the spaces where the convergence and correctness issues
of the Cauchy problem for the corresponding equations are considered.

In this paper, we study the problem of energy variation laws for approximate models of long-wave hydro-
dynamics taking into account amovable bottom and their relationshipwith the total energy conservation law
of the original 3D model. Since, based on problems of numerical modelling, the form of the energy balance
equation for an NLD model has an independent importance relative to the necessity to control the accuracy
of numerical algorithms, it is su�cient to apply only the method of equivalent transformation to obtain it
from the equation of the existing NLD model. Expanding the range of problems, in particular, related to mo-
di�cation of a completely nonlinear NLD model in order to simplify it, a variational formulation presents an
expedient approach [4, 9]. The direct approach to simplify the model by applying the Boussinesq condition
well-known in the theory of long waves leads to models not satisfying an analogue of conservation law even
in the case of an even bottom (for example, this applies to the well-known Peregrine model [16]).
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Themain result of the paper is the derivation of a balance relation for themomentum and total energy for
a completely nonlinear NLDmodel and for models of Boussinesq type. The form of this relation has the same
meaning as in the three-dimensional �uid dynamics. This is a positive feature of approximate models, which
provides the richness of content for those models and can be used in estimation of the accuracy of numerical
algorithms.

The paper has the following structure. In Section 1, we present the formulation of energy conservation
law in the 3D hydrodynamic model. In Section 2, we write the law of energy variation for the Green–Naghdi
model. Section 3 contains an asymptotic derivation of the NLDmodel whose determining equations formally
coincide with the equations of the Green–Naghdi model after equivalent transformations, but the derivation
conditions are less restrictive in this case. Themomentum and energy conservation laws are obtained for this
model in the form close to that of gas dynamics. Based on obtained equations, in Sections 4 and 5, we derive
NLD models with simpli�ed dispersion terms keeping also the important features of original models such as
the invariance with respect to the Galilean transformation and the presence of adequate laws of momentum
and energy variation.

1 Euler equations and energy conservation law
Let us consider the �ow of an ideal incompressible �uid in a layer bounded from below by a movable bot-
tom given by some function z = −h(x, y, t) and from above by a free boundary described by a function
z = η(x, y, t), where t is the time, x, y, z are the coordinates of a point in the Cartesian coordinate system
Oxyz, the axis Oz is directed vertically upward, the coordinate plane Oxy coincides with the unperturbed
free surface. We assume that the acceleration of gravity g and the density ρ of the �uid are constant in the
whole layer. In the three-dimensional formulation, we have to calculate the velocity vector U = (u, v, w), the
pressure p, and the function η satisfying the following Euler system of equations:

∇ · u + wz = 0 (1.1)
ut + (u ·∇)u + wuz +∇p = 0 (1.2)
wt + u ·∇w + wwz + pz = − g (1.3)

and the boundary conditions on the bottom and free surface

(ηt + u ·∇η − w)
∣∣
z=η = 0, p

∣∣
z=η = 0, (ht + u ·∇h + w)

∣∣
z=−h = 0 (1.4)

where∇ =
(
∂/∂x, ∂/∂y

)
, u = (u, v) is the vector of horizontal velocity component, w is the vertical velocity

component,∇·u = ux+vy. In order to simplify the notations in equations (1.1)–(1.3) and in all further formulas
including those of transformation to dimensionless variables, we omit the symbol ρ of water density (ρ ≡ 1).

We write the energy equation corresponding to Euler equations (1.1)–(1.3). Multiplying equations (1.2),
(1.3) by the velocity components u, v, and w and summing the obtained expressions, we get the following
equation for the kinetic energy K = (u2 + v2 + w2)/2:

Kt + u ·∇(K + p) + w(K + p)z + gw = 0. (1.5)

Adding (1.5) to the equation for the potential energy Π = gz:

Πt + u ·∇Π + wΠz − gw = 0

we derive the following equation for the total energy E = K + Π:

Et + u ·∇(E + p) + w(E + p)z = 0.

If we add continuity equation (1.1) multiplied by E + p to the latter equation, we obtain the required total
energy conservation law in its conservative form:

Et +∇ ·
(
u(E + p)

)
+
(
w(E + p)

)
z = 0. (1.6)
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Equation (1.6) has been derived without taking into account the in�uence of the boundary. Integrating this
equation over the thickness of the �uid layer subject to boundary conditions (1.4), we have

∂
∂t

η∫
−h

E dz +∇ ·
η∫

−h

u(E + p) dz + p
∣∣∣
z=−h

ht = 0. (1.7)

This equation describes the variation of the total energy averaged over the �uid layer and takes the form of a
conservative conservation law only in the case of a stationary bottom surface. Below, we use it to evaluate the
approximation of total energy equations in approximate models describing the propagation of long waves.

The long-wave theory applies expansions of basic hydrodynamic parameters into series over powers of
z + h or into series over powers of the small parameter µ = h0/L, where h0 and L are the typical depth and
wavelength. Substituting such series into equation (1.7) and rejecting the terms of higher orders,we obtain the
energy equation for approximate long-wave models. However, we begin with the well-known Green–Naghdi
model [8, 12] whose energy equation directly follows from (1.7) due to special assumptions on the �ow prop-
erties.

2 Energy variation law in the Green–Naghdi model
The Green–Naghdimodel is derived under the assumption that the horizontal velocity component u does not
depend on z and the vertical component w is linear with respect to z [8, 12]. For uz = 0 formula (1.7) takes the
form

∂HE
∂t +∇ ·

(
uHE + u

η∫
−h

p dz
)
+ p
∣∣∣
z=−h

ht = 0 (2.1)

where H = η + h is the total depth and E denotes the mean energy over depth:

E = 1
H

η∫
−h

E dz.

The conditions used in the derivation of the Green–Naghdi model imply that the vertical velocity compo-
nent and the pressure satisfy formulas [8, 10]:

w(z) = −D h − (z + h)∇ · u (2.2)

p(z) = g
(
H − (z + h)

)
−
(
H − (z + h)

)
R2 −

(
H2

2 − (z + h)2
2

)
R1

where
R1 = D (∇ · u) − (∇ · u)2 , R2 = D2h, D = ∂

∂t + u ·∇. (2.3)

By P we denote the pressure averaged over depth of the �uid layer:

P = 1
H

η∫
−h

p dz = g H2 − H
2

3 R1 −
H
2 R2 . (2.4)

In this case, formula (2.1) can be rewritten in the following form:

∂HE
∂t +∇ · [uH (E + P)] + p

∣∣∣
z=−h

ht = 0 . (2.5)

Taking into account (2.2), the total energy takes the form

E = u · u
2 +

(
D h + (z + h)∇ · u

)2
2 + gz (2.6)
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and for the mean energy E over depth we have the formula

E = u · u
2 + H

2

6 (∇ · u)2 + H2 (∇ · u)Dh + (Dh)2
2 + g(H − 2h)

2 . (2.7)

In the case of classic (dispersion-free) shallow water model, the variation of energy has form (2.5) too.
However the formulas for the pressure and energy have a simpler form compared to (2.4) and (2.7):

P = gH2 , E = u · u
2 + g(H − 2h)

2 . (2.8)

It is well-known that the energy conservation law plays a fundamental role in justi�cation of the theory of
shallow water equations of �rst approximation [18].

3 Derivation of the NLD model under a weak restriction on the
velocity

The system of completely nonlinear weakly-dispersive shallow water equations for approximate description
of surface waves can be derived under weaker restrictions on the three-dimensional �uid �ow velocity than
it was done in [8]. Belowwe present such derivation. It is important to note that the derivation does not use the
assumption on the potential �ow property, i.e., the �ow is assumed to be vortical as was considered in [8, 12].

3.1 Basic assumptions and auxiliary relations

In order to derive shallow water equations, we introduce typical scales and pass to dimensionless variables.
If L is the typical horizontal size, h0, a0 are the typical depth andwave amplitude, then we can de�ne dimen-
sionless variables in the following way:

x = x
L , y = y

L , z = z
h0

, t = t
√
gh0
L , h = h

h0
, η = η

a0
(3.1)

u = u√
gh0

, w = Lw
h0
√
gh0

, p = p
gh0

, E = E
gh0

. (3.2)

Formulas (3.2) of dimensionless velocity vector components directly follow from relations (3.1) for the inde-
pendent variables x, y, z, t.

In these new variables, problem (1.1)–(1.4) takes the following form (to simplify the notations, hereafter,
we omit the bar over dimensionless variables):

∇ · u + wz = 0 (3.3)
ut + (u ·∇)u + wuz +∇p = 0 (3.4)

µ2 (wt + u ·∇w + wwz) + pz + 1 = 0 (3.5)

(αηt + αu ·∇η − w)
∣∣
z=αη = 0 (3.6)

p
∣∣
z=αη = 0 (3.7)

(ht + u ·∇h + w)
∣∣
z=−h = 0 (3.8)

where α = a0/h0 is the parameter of nonlinearity, µ = h0/L is the parameter of dispersion. Below, if not
otherwise stated, only dimensionless variables will be used.

The velocity vector in the approximate model is taken as the horizontal velocity component u averaged
over depth. Applying to it the transformation to dimensionless form by formulas (3.1), (3.2), we get

c = (c1, c2) =
1
H

αη∫
−h

u dz (3.9)
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where H = αη + h. Note, that if the velocity vector u does not depend on the vertical coordinate z as in the
Green–Naghdi model, then c coincides with u.

Integrating continuity equation (3.3) over the thickness of the �uid layer and taking into account bound-
ary conditions (3.6), (3.8) and using formula (3.9), we obtain the following continuity equation for the NLD
model [10]:

Ht +∇ · (Hc) = 0. (3.10)

In order to derive motion equations for the NLD model, we use the following expansion of the velocity
vector into a series over powers of the parameter µ2:

u = u0 + µ2u1 + O(µ4) , w = w0 + µ2w1 + O(µ4). (3.11)

Since the variation of functions in the direction of the axis Oz is small in the long-wave approximation in
comparison with variations in the horizontal plane, we assume that the principal term u0 of the horizontal
component u in expansion (3.11) does not depend on the vertical coordinate z:

(u0)z = 0. (3.12)

This assumption seems natural for the long-wave hydrodynamic approximation. In particular, onemethod to
obtain the classic dispersion-free shallowwatermodel taking into account only the �rst term u0 in expansion
(3.11) (formally, µ = 0) is based on assumption (3.12).

If we consider well-known derivations of complete NLD models not requiring the potential property of
the �ow [1, 12], then we see the assumption that the horizontal velocity vector u does not depend on z at all.
Therefore, restriction (3.12) assumed in this paper without a similar condition on u1 is weaker.

Let us stress that, in contrast with well-known papers (e.g., [16]) using expansion (3.11) for derivation of
NLD models, in this paper we do not use the potential property of the �ow.

Before we derive the motion equations for the velocity c, express the functions u and w through c based
on expansion (3.11). First, we reveal the relations between w0 and u0. Substituting the functions u and w of
form (3.11) into continuity equation (3.3), we get the relation ∇ · u0 + (w0)z = 0. Integrating this equality in
the vertical coordinate and taking into account that u0 does not depend on z, we get

(z + h)∇ · u0 + w0(z) − w0(z)
∣∣
z=−h = 0. (3.13)

Further we use condition (3.8). Taking into account expansion (3.11), it implies

w0
∣∣
z=−h = −D0h, D0 =

∂
∂t + u0 ·∇.

In its turn, this relation and (3.13) imply that the componentw0 of the vertical velocity component is expressed
through u0 linearly with respect to z:

w0(z) = −D0h − (z + h)∇ · u0. (3.14)

Further,we establish the relations between the velocities c and u. Substituting the expansionof the vector
u into formula (3.9), we have

c = 1
H

αη∫
−h

(
u0 + µ2u1 + O(µ4)

)
dz = u0 + µ2

1
H

αη∫
−h

u1 dz + O(µ4). (3.15)

The �rst formula of (3.11) can be rewritten in the form

u = c + µ2V + O(µ4) (3.16)

where

V = u1 −
1
H

αη∫
−h

u1 dz (3.17)
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and the following equality holds:
αη∫

−h

V dz = 0. (3.18)

Concerning the vertical velocity component, since (3.5) contains the factor µ2 before parentheses, it is su�-
cient to obtain its representation up to terms of order O(µ2) only. Taking into account representation (3.11),
formula (3.14), and the formula u0 = c + O(µ2) following from (3.15), we get

w(z) = −D h − (z + h)∇ · c + O(µ2) (3.19)

where, in contrast with (2.3), we have
D = ∂

∂t + c ·∇. (3.20)

Expressions (3.16), (3.19) are used below to obtain the formula for the pressure and for derivation of NLD
motion equations.

3.2 Derivation of NLD motion equations

We derive the formula expressing the pressure through the variables of the NLD model. To do that, integrate
equation (3.5) over the vertical coordinate from z to αη (−h 6 z 6 αη) subject to conditions (3.7) and, applying
the formula u = c + O(µ2) following from (3.16), write down the result in the form of the relation

p(z) = µ2
αη∫
z

(
Dw + wwζ + O(µ2)

)
dζ − z + αη. (3.21)

Let us transform the integrand using formula (3.19):

Dw + wwz = −D2h − (z + h)D (∇ · c) + (z + h) (∇ · c)2 + O(µ2) − R2 − (z + h)R1 + O(µ2).

Here, in contrast with (2.3), we have

R1 = D (∇ · c) − (∇ · c)2 , R2 = D2h. (3.22)

Substituting the obtained relation into expression (3.21), we derive the following formula of pressure distri-
bution over the coordinate z (−h 6 z 6 αη):

p = H − (z + h) − µ2
[(
H − (z + h)

)
R2 +

(
H2

2 − (z + h)2
2

)
R1
]
+ O(µ4). (3.23)

Using relations (3.16), (3.19), and (3.23), derive the motion equations of the NLD model. To do that, integrate
equation (3.4) over the water layer thickness and apply condition (3.7). This gives the relation

αη∫
−h

(
ut + (u ·∇)u + wuz

)
dz +∇

αη∫
−h

p dz − p
∣∣
z=−h∇h = 0. (3.24)

Transform it using the representations of u, w, and p through the variables c, H. In order to calculate the
terms with the pressure, we use formula (3.23):

∇

αη∫
−h

p dz − p
∣∣
z=−h∇h = αH∇η − µ

2
[
∇
(H3

3 R1 +
H2

2 R2
)
− H∇h

(H
2 R1 + R2

)]
+ O(µ4). (3.25)

Further, applying formulas (3.16), (3.19), we calculate the termswith the vertical velocity component.We have
αη∫

−h

wuz dz = −µ2
αη∫

−h

[
D h + (z + h)(∇ · c)

]
Vz dz + O(µ4) = −µ2 DhV

∣∣∣z=αη
z=−h

− µ2(∇ · c)
αη∫

−h

(z + h)Vz dz + O(µ4).
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The integral in the right-hand side of the obtained relation is calculated by parts, which, due to equality (3.18),
gives the formula

αη∫
−h

(z + h)Vz dz = HV
∣∣
z=αη .

Taking into account the latter formula, we get
αη∫

−h

wuz dz = µ2DhV
∣∣
z=−h − µ

2
(
Dh + H(∇ · c)

)
V
∣∣
z=αη + O(µ

4). (3.26)

The group of terms of equation (3.24) containing horizontal velocity components is transformed by similar
technique including the substitution of expression (3.16), carrying out the di�erentiation from the integral
sign, and application of equality (3.18):

αη∫
−h

[ut + (u ·∇)u] dz =
αη∫

−h

[ct + (c ·∇) c] dz + µ2
αη∫

−h

[
Vt + (c ·∇)V + (V ·∇) c

]
dz + O(µ4)

=Hct + H (c ·∇) c + µ2
[
− αηtV

∣∣
z=αη − htV

∣∣
z=−h − α(c ·∇η)V

∣∣
z=αη − (c ·∇h)V

∣∣
z=−h

]
+ O(µ4) .

We combine the obtained expression with the right-hand side of (3.26) and transform the terms in O(µ2)
using continuity equation (3.10) in the form

DH + H(∇ · c) = 0 (3.27)

and also the equality ht + c ·∇h − Dh = 0. As the result, we get the following approximation with the order
O(µ4) of the acceleration averaged over depth:

αη∫
−h

[
ut + (u ·∇)u + wuz

]
dz = Hct + H (c ·∇) c + O(µ4). (3.28)

Returning to equation (3.24) and performing the corresponding substitutions according to the applied trans-
formations and rejecting the terms of order O(µ4), we obtain the required motion equation of the NLDmodel

ct + (c ·∇)c + α∇η = µ2
[
1
H∇

(
H3

3 R1 +
H2

2 R2
)
−∇h

(
H
2 R1 + R2

)]
. (3.29)

Equations (3.10), (3.29) describe the propagation of longwaveswith dispersion on a �xed bottom, these equa-
tions coincide in formwith those derived in [10]. In the case of a �xed bottom, these equations can be reduced
to equations from [17, 20]. Note that in the derivation of NLD equations in [10, 17, 20] the �owwas not assumed
potential and the derivation was performed with the use of the velocity potential.

The analysis of derivation of the NLD model proposed above shows that the use of the potentiality con-
dition allows us to obtain an explicit expression for the coe�cient u1 in the expansion of the velocity u by
formula (3.11) and hence to calculate V by formula (3.17). As shown in this paper, such explicit formulas are
not needed for the derivation of motion equations in an NLDmodel, it is only su�cient to have relation (3.18).

Formula (3.23) implies the following formula for calculation of the pressure in the NLD model:

p̃ = H − (z + h) − µ2
[(
H − (z + h)

)
R2 +

(
H2

2 − (z + h)2
2

)
R1
]
. (3.30)

Thus, in this case, in contrast with the �rst approximation of the shallow water theory, we have a quadratic
dependence of p̃ on the vertical coordinate. If we pass to dimensionless variables in formula (3.30), then it
coincides with the formula for the pressure in the Green–Naghdi model.

If we denote mean pressure over layer thickness (3.30) by P:

P = 1
H

αη∫
−h

p̃ dz = H2 − µ2
(
H2

3 R1 +
H
2 R2

)
(3.31)
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thenmotion equation (3.29) can be written similar to the momentum variation equation in the gas dynamics:

ct + (c ·∇)c +
∇(PH)
H = q∇h (3.32)

in this case,
q = 1

H p̃
∣∣∣
z=−h

= 1 − µ2
(
H
2 R1 + R2

)
. (3.33)

Multiplying equation (3.10) by c and (3.32) by H and summing up the results, we come to the following nota-
tion of the NLD motion equation with a divergent left-hand side:

(Hc)t +∇ · (Hc ⊗ c) +∇(HP) = qH∇h, (3.34)

where c ⊗ c is the tensor product of the vector c by itself. In the case of an even bottom this equation takes a
conservative form.

3.3 Energy balance equation

Let us analyze three-dimensional equations of hydrodynamics (3.3)–(3.5) in dimensionless variables. It is not
di�cult to check that the total energy equation corresponding to them coincides in form with equation (1.6),
where E = K + Π, but, in this case, we have K = (u2 + v2 + µ2w2)/2 and Π = z.

We consider the total energy averaged over the layer thickness. Substituting expansions (3.16), (3.19) into
the expression for E instead of the velocity components, we get

1
H

αη∫
−h

E dz = 1
2H

αη∫
−h

[
c · c + 2µ2c · V + µ2

(
D h + (z + h)∇ · c

)2
+ z
]
dz + O(µ4).

Performing the integration over z, we have

1
H

αη∫
−h

E dz = E + O(µ4) (3.35)

where
E = c · c

2 + µ2
(
H2

6 (∇ · c)2 + H2 (∇ · c)Dh + (Dh)2
2

)
+ H − 2h

2 . (3.36)

Taking into account relation (3.35) between the averaged total energy of the three-dimensional �ow and the
function E, the latter can be naturally identi�ed with the total �ow energy described with in the NLD model.

We derive the equation for the total energy E. To do that, multiply vector equation (3.32) by c and take
into account the equality c · (c ·∇)c = c ·∇(c · c)/2. As the result, we get

D
( c · c

2

)
+ 1
H∇ · (cHP) − P∇ · c − qDh = −qht . (3.37)

Using notations (3.22) and formulas (3.27), (3.31), (3.33), we come to the following chain of equalities:

P∇ · c + qDh = H2∇ · c + Dh − µ2
[(H2

3 R1 +
H
2 R2

)
∇ · c + Dh

(H
2 R1 + R2

)]
= − DH2 + Dh − µ2

[
H
3 (∇ · c)2DH + H

2

3 D (∇ · c)2
2 + H2 (∇ · c)D2h + H2 D(∇ · c)Dh

+ Dh2 (∇ · c)DH + DhD2h
]

= − D
(H − 2h

2

)
− µ2

[
D
(H2

6 (∇ · c)2
)
+ D
(H
2 (∇ · c)Dh

)
+ D
( (Dh)2

2

)]
= −D

(
E − c · c

2

)
.
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Taking into account the latter equality, we can rewrite equation (3.37) in the form

∂E
∂t + c ·∇E + 1

H∇ · (cHP) = −qht . (3.38)

If we multiply this equation by H, continuity equation (3.10) by E, and sum the results, we obtain the total
energy equation in the NLD model having a divergent form of the left-hand side:

∂HE
∂t +∇ ·

(
Hc
(
E + P

))
= −qHht . (3.39)

This equation can be derived directly from the total energy conservation law in the three-dimensional
model. If we transform equation (1.7) to dimensionless form, substitute expansions (3.16), (3.19) and expres-
sion for the pressure (3.23) into it, and apply appropriate calculations, then we can get the following relation:

∂
∂t

αη∫
−h

E dz +∇ ·
αη∫

−h

u(E + p) dz + p
∣∣∣
z=−h

ht =
∂HE
∂t +∇ ·

(
Hc
(
E + P

))
+ qHht + O(µ4) (3.40)

i.e., equation (3.39) approximates the total energy conservation law for the original hydrodynamic system
averaged over depth with the order O(µ4). Taking into account (3.40), equation (3.39) can be called the total
energy balance equation describing the total energy variation in the NLD model.

If we pass to dimensionless variables, then the obtained law of total energy variation in the NLD model,
aswell as the total energy formula itself, formally coincideswith those obtained for the Green–Naghdimodel.
This is to be expected because the governing equations of the Green–Naghdi model and complete NLDmodel
from this paper are equivalent (this issue was discussed in [10]).

For ht = 0, i.e., in the case of a �xed bottom, energy equation (3.39) takes a divergent form and can be
reduced to the energy conservation law from [1] by algebraic transformations.

4 Boussinesq type model with energy balance equation
Deriving NLD equations (3.10), (3.32), we do not use the assumption on the smallness of wave amplitudes.
Assuminga certain relationbetween theparameters α and µ2,we come toBoussinesq type equationsdi�ering
from the complete NLD model in a simpler form of dispersion terms.

Based on equations (3.10), (3.32), we obtain approximate NLD equations for waves of small amplitude
and show that these equations also admit an energy equation of form (3.39) as a corollary.

Using continuity equation (3.27), write the expression for R1 in the following form:

R1 =
D (H∇ · c)

H . (4.1)

In this case, relations (3.31), (3.33) imply the equalities

P = H2 − µ2
(
H
3 D (H∇ · c) + H2 D

2h
)
, q = 1 − µ2

(
1
2D (H∇ · c) + D2h

)
. (4.2)

Taking into account H = h + αη and neglecting the terms of orders O(αµ2), O(α2µ2) in expressions (4.2), we
get motion equations (3.32) of the weakly dispersive model with modi�ed functions P and q:

P = H2 − µ2
(
h
3D (h∇ · c) + h2D

2h
)
, q = 1 − µ2

(
1
2D (h∇ · c) + D2h

)
(4.3)

and the following expression for the total energy:

E = (c · c)
2 + H − 2h

2 + µ2
(
h2
6 (∇ · c)2 + h2(∇ · c)Dh + (Dh)2

2

)
. (4.4)
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The equation describing the variation of energy (4.4) is derived by the analogy with equation (3.38), i.e.,
we get equation (3.37) �rst and then calculate the last summand from its left-hand side

P∇ · c + qDh = −D
(H − 2h

2

)
− µ2

[
D
(h2
6 (∇ · c)2

)
+ D
(h
2(∇ · c)Dh

)
+ D
( (Dh)2

2

)]
= −D

(
E − (c · c)

2

)
.

By the analogy with the case considered above, we come to the form of energy equation with a divergent
left-hand side coinciding with equation (3.39) for the complete NLD model.

Thus, in equations of weakly dispersive model (3.10), (3.32) the mean pressure and relative pressure are
calculated by formulas (4.3) and total energy (4.4) satis�es equations (3.38) and (3.39). We should note an-
other important property of this model, it is invariant under a Galilean transformation, which can be easily
veri�ed by direct checking.

5 Energy balance in a Boussinesq type model for weakly
deformable bottom

Inmanypractical situations, the translation of the bottom surface in time is small compared to the local depth
of water area in a period typical for propagation of waves of tsunami type. Thus, we can assume that

h(x, y, t) = h1(x, y) + εh2(x, y, t), (5.1)

where ε is small [6]. The study of di�erent regimes of long-wave generation by a movable bottom shows that
the wave amplitudes on the water surface are proportional to the shift of bottom surface and hence for a
certain class of problems we can assume that

O(α) = O(ε) = O(µ2) (5.2)

(see, e.g. [6, 7]). In this case, we have

h = h1(x, y) + O(α) , H(x, y, t) = h1(x, y) + O(α) . (5.3)

Assumption (5.2) allows us to obtain a weakly dispersive model of surface wave propagation above a weakly
deformable bottom. This model admits an energy equation similar to (3.39). The derivation of the model is
based on the use of the original NLD equations in form (3.10), (3.32) where the expressions for P and q have
form (4.2) due to (4.1).

Using approximations (5.3) and neglecting the terms of the order O(αµ2) and higher we get motion equa-
tions (3.32) with simpli�ed functions P and q. In this case, the parentheses for µ2 contain only the stationary
part of the bottom surface

P = H2 − µ2
(
h1
3 D (h1∇ · c) + h12 D

2h1
)
, q = 1 − µ2

(
1
2D (h1∇ · c) + D2h1

)
(5.4)

and the right-hand side takes the form
∇h + (q − 1)∇h1.

Under the same conditions, we have the following expression for total energy (3.36):

E = (c · c)
2 + H − 2h

2 + µ2
(
h12

6 (∇ · c)2 + h12 (∇ · c)Dh1 +
(Dh1)2

2

)
. (5.5)

In order to derive equations describing the variation of total energy (5.5), all the calculations are per-
formed exactly without removing any terms. This allows us to consider the energy equations as an exact
corollary of the motion and continuity equations.
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Proceeding to derivation, multiply vector equation (3.32) by c and write it by the analogy with (3.37) in
the form

D
( c · c

2

)
+ 1
H∇ · (cHP) − P∇ · c − Dh − (q − 1)Dh1 = −(h − h1)t . (5.6)

Let us transform this equation. First, by the analogy with previous sections, we apply a chain of transforma-
tions which, as in the cases considered above, leads to the relation

P∇ · c + Dh + (q − 1)Dh1 = −D
(
E − (c · c)

2

)
where the energy E has form (5.5). Taking into account the obtained relations, we get the equation

∂E
∂t + c ·∇E + 1

H∇ · (cHP) = −ht . (5.7)

Multiplying this equation by H, continuity equation (3.10) by E, and summing the results, we get the total
energy equation of the NLD model for weakly dispersive �ows over a weakly deformable bottom having a
divergent form of the left-hand side:

∂HE
∂t +∇ ·

(
Hc
(
E + P

))
= −Hht . (5.8)

Note in conclusion that the term Dh1 can be replaced by c ·∇h1 in formulas (5.4), (5.5).

Conclusion
A derivation of nonlinear-dispersion shallow water equations not using the potentiality of the original three-
dimensional �ow is presented in the paper. New models of Boussinesq type are obtained for �ows above a
�xed or slowly varying uneven bottom are obtained. All obtained models have the same structure of equa-
tions, which allows one to use a uni�ed approach for construction of numerical algorithms.

Total energy variation laws are derived for complete NLD equations and for twoweakly dispersivemodels
in the case of movable bottom surface. These laws are corollaries of obtained NLD equations and have an
important value for veri�cation of numerical algorithms. The important circumstance is the consistency of
energy balance equations of the approximate and three-dimensional hydrodynamic models consisting in the
fact that each derived energy balance equation can be obtained from the energy conservation law of Euler
equations taking into account the order of approximation with which this model approximates the three-
dimensional �ow model.

We emphasize the main features of the weakly dispersive models of Boussinesq type obtained here.
These are the presence of physically meaningful laws of momentum and energy variation and the invariance
relative to Galilean transformations. We can say that these simpli�ed models keep very important physical
properties of complete NLDmodels, which, in their turn, inherit these properties from the three-dimensional
models of hydrodynamics. This fact distinguishes the models obtained in this paper from other well-known
models of Boussinesq type (see, e.g., [6, 16]).
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by the program ‘Leading scienti�c schools of the Russian Federation’ (NSh–6293.2012.9).
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