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Abstract

The biomechanical data considered in this paper are obtained from a study carried out to
understand the coordination patterns of finger forces produced from different tasks. This data
cannot be considered independent because of within-individual repeated measurements, and
because of simultaneous finger measurements. To fit these data, we propose a methodology
focused on linear mixed models. Different random effects structures and complex variance-
covariance matrices of the error are considered. We highlight how to use the ❧♠❡ R function
to deal with such a modelling. The paper is accessible to an audience experienced with linear
models. Some familiarity with the R software is also helpful.

Keywords : Linear mixed model, Repeated measures, Heteroscedasticity, Correlation, lme R
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1. Introduction

In experimental sciences (agronomy, biology,
experimental psychology, ...), analysis of vari-
ance (ANOVA) is often used to explain one con-
tinuous response with respect to different ex-
perimental conditions, assuming homoscedas-
tic errors. In studies where individuals con-
tribute more than one observation, such as lon-
gitudinal or repeated-measures studies, classi-
cal ANOVA is no longer convenient since the
assumption of data independence is not valid.
The linear mixed model (Laird and Ware, 1982)
then provides then a better framework to take
correlation between these observations into ac-
count. By introducing random effects, mixed
models allow to take into account the variabil-
ity of the response among the different individ-
uals and the possible within-individual corre-
lation. Published case studies using a mixed
model approach (Baayen et al., 2008; Onyango,
2009) often assume a classical homoscedastic
error term, i.e. normally distributed with mean
zero and constant variance. In this paper, we
consider a case study in which this assumption
is relaxed by allowing heteroscedastic and cor-
related within-group errors. This work high-
lights, in an educationnal way, the different
steps of such a modelling.

The data considered in this paper have been ob-
tained from a biomechanical study described
in detail in Quaine et al. (2012). Experiments
have been carried out to better understand the
coordination patterns of finger forces produced
from different tasks corresponding to different
experimental conditions. One of the objectives
is to compare each finger force intensity be-
tween the various tasks and, for each task, to
compare nearby fingers force intensity. Sub-
jects are required to press ledges maximally
with four fingers simultaneaously in different
experimental conditions. Experiments have
been repeated three times per experimental
condition. In Quaine et al. (2012), data have
been analyzed first using a two-factor ANOVA
model by considering the force measurement
as response and fingers and experimental con-
ditions as factors to be tested. Nevertheless, as

pointed out by the authors, in this particular
context, the ANOVA model is not convenient
since it does not take into account nor the de-
pendency between the fingers due to simulta-
neous measurements, nor the within-subject
dependency due to repeated measurements.

There are several facilities in R (R Development
Core Team (2008)) and S-PLUS (S-P (1992)) for
fitting mixed models to data. Among them are
the ♥❧♠❡ (Pinheiro et al., 2014) and ❧♠❡✹ (Bates
et al., 2013) libraries. All analyses in the present
paper have been performed using the ❧♠❡ func-
tion in the ♥❧♠❡ library, described in detail in
Pinheiro and Bates (2000). The ❧♠❡r function
in the ❧♠❡✹ library has been developed more
recently. This function provides an improve-
ment over the ❧♠❡ function, in particular by
implementing crossed random effects in a way
that is both easier for the user and much faster.
However, this function does not offer the same
flexibility as the ❧♠❡ function for composing
complex variance-covariance structures. In this
paper, all analyses have been performed with
the ✻✹✲❜✐t ❘ ✈❡rs✐♦♥ ✸✳✶✳✵ ✭✷✵✶✹✲✵✹✲✶✵✮.

The paper is organized as follows. Section 2
presents the data set. Section 3 exposes a pre-
liminary study including the basic ANOVA
and its limits. Mixed model specification is
presented in Section 4, with details on the mod-
eling steps. We present and discuss the results
in Section 5 and we end with conclusions in
Section 6.

2. The data

The data considered in this paper have
been first described in Quaine et al. (2012).
Biomechanical researchers propose experi-
ments where subjects are submitted to various
tasks with the four long fingers (without the
thumb). In this study, 15 subjects were required
to press ledges maximally with the four fin-
gers simultaneously in flexion and extension.
First in extension, two force locations at the
first (ExtP1) and at the third (ExtP3) phalanx
were tested and then in flexion, only the third
phalanx location (FlexP3) was tested. From
now on, we call ❧♦❝❛t✐♦♥ the three experimen-



-3- C. Bazzoli et al

tal conditions, ExtP3, FlexP3, ExtP1. After 20
trials at low and intermediate intensity, sub-
jects are asked to press maximally three times
per location, with a one-minute rest to avoid
muscular fatigue. Experiments in the three dif-
ferent locations were separated by five minute
rests.
The data set thus includes 540 measures of
finger force intensity (F), subject number (in-
dividual from 1 to 15), location (with values
ExtP3, FlexP3 and ExtP1), finger (with values I
for index, M for middle, R for ring and L for
little). For coding purpose, a reiteration vari-
able (tr✐❛❧ from 1 to 135) has been added with
different numbers from one subject to another
and from one location to another. In other
words, only 4 simultaneous measures of the
four fingers of one reiteration of a given indi-
vidual in a given location share the same value
of the reiteration variable. The ❤❡❛❞ command
in R helps to observe the data structure:

❃ ❤❡❛❞✭❉❛t❛✳♥❡✇✱✷✵✵✮

❋ ❧♦❝❛t✐♦♥ ❢✐♥❣❡r ✐♥❞✐✈ tr✐❛❧

✶ ✽✳✺✺✶✵✷✺ ❊①tP✸ ■ ✶ ✶

✷ ✼✳✽✸✻✾✶✹ ❊①tP✸ ■ ✶ ✷

✸ ✼✳✻✺✸✽✵✾ ❊①tP✸ ■ ✶ ✸

✹ ✼✳✺✾✽✽✼✼ ❊①tP✸ ■ ✷ ✹

✺ ✻✳✽✵✺✹✷✵ ❊①tP✸ ■ ✷ ✺

✻ ✻✳✺✵✻✸✹✽ ❊①tP✸ ■ ✷ ✻

✳✳✳

✹✻ ✼✳✺✺✵✵✹✾ ❊①tP✸ ▼ ✶ ✶

✹✼ ✻✳✽✹✽✶✹✺ ❊①tP✸ ▼ ✶ ✷

✹✽ ✻✳✾✹✺✽✵✶ ❊①tP✸ ▼ ✶ ✸

✹✾ ✹✳✹✸✶✶✺✷ ❊①tP✸ ▼ ✷ ✹

✺✵ ✹✳✺✷✽✽✵✾ ❊①tP✸ ▼ ✷ ✺

✺✶ ✹✳✻✾✾✼✵✼ ❊①tP✸ ▼ ✷ ✻

✳✳✳

✶✽✶ ✷✷✳✹✺✹✽✸✹ ❋❧❡①P✸ ■ ✶ ✹✻

✶✽✷ ✷✺✳✵✼✾✸✹✻ ❋❧❡①P✸ ■ ✶ ✹✼

✶✽✸ ✷✷✳✵✵✸✶✼✹ ❋❧❡①P✸ ■ ✶ ✹✽

✶✽✹ ✷✾✳✻✸✷✺✻✽ ❋❧❡①P✸ ■ ✷ ✹✾

✶✽✺ ✸✹✳✶✹✸✵✻✻ ❋❧❡①P✸ ■ ✷ ✺✵

✶✽✻ ✸✹✳✵✺✶✺✶✹ ❋❧❡①P✸ ■ ✷ ✺✶

✳✳✳

3. Preliminary study

3.1. Exploratory data analysis

The raw data set is shown in Figure 1. One can see

that the intensities are clearly higher in FlexP3 lo-

cation than in ExtP1 location and in ExtP3 location,

in position but also in scattering. Index measures

(blue circles) are nearly always higher than middle

measures (red triangles), themselves higher than

ring measures (green plus), themselves higher than

little measures (magenta times), except in the ExtP1

location where this order appears less often. Dif-

ferences between subjects are also to be observed.

For instance, individual 4 always has low measures

whatever the location, whereas individual 7 always

has high measures. One can also see that index

and middle measures on the one hand, and ring

and little measures on the other hand, are close.

This is confirmed by the correlation between fingers

illustrated in Figure 2.

This exploratory data analysis suggests that inten-

sity measures are different from a location to an-

other, from a finger to another, but also that a sub-

ject effect has to be taken into account. Moreover,

simultaneous finger measurements imposed by the

experimental design cannot be considered as inde-

pendent.

3.2. Two-factor ANOVA and its limits

As already done in Quaine et al. (2012), and even

though it is not convenient in this context since we

omit the subject effect and the dependence between

simultaneous finger measurements, we begin our

study with a two-factor ANOVA, namely the loca-

tion and the finger effects. In other words, the study

is done as if measurements had been done finger by

finger, and with 45 different subjects. Following R

conventions, our model is thus:

Fl f i = µ + αl + β f + γl f + ε l f i (1)

where

• Fl f i is the measurement of individ-

ual i ∈ {1, . . . , 45}, in location l ∈
{ExtP3, FlexP3, ExtP1} and finger f ∈
{I, M, R, L}

• µ is the population measurement of index in

location ExtP3

• αl is the overall difference between measure-

ments in location ExtP3 and location l for

index (αExtP3 = 0)

• β f is the overall difference between measure-

ments of index and finger f in location ExtP3

(β I = 0)

• γl f is the interaction term of location l and

finger f (γExtP3, f = γl,I = 0 )

• ε l f i is the residual error, supposed to be nor-

mally distributed, centred, with variance σ2.
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Moreover, all residual errors are supposed to

be independent.

Residuals of the model appear in Figure 3. They

suffer from several defects:

• They are clearly not identically scattered from

one location to another, whereas ANOVA

model imposes equal variances in all groups.

• Some subjects have either all positive or all

negative residuals, which suggests a subject

effect that has not yet been taken into account.

• Residuals still remain very correlated from a

finger to another, as it can be seen in Figure 4.

To deal with these defects, in Section 4, we focus on

linear mixed-effects models to fit the data set.

4. Model specification using a linear
mixed-effects model

4.1. Modelling the random effect structure

Let denote Fl f ik the force measured on finger f

of individual i at trial k in location l with l =
ExtP3, FlexP3, ExtP1, f = I, M, R, L, i = 1, . . . , 15

and k = 1, 2, 3. The linear mixed model M0 for the

response Fl f ik is defined as

Fl f ik = µ + αl + β f + γl, f + ξi + ε l f ik (2)

with αExtP3 = 0, β I = 0, γExtP3, f = γl,I = 0. In this

model, µ is the mean for location ExtP3 and finger

index, αl is the fixed effect of location l with respect

to location ExtP3, β f is the fixed effect of finger f

with respect to finger index and γl, f is the interac-

tion between location l and finger f . The random

effect ξi in (2) is the individual random effect. The

linear mixed model (2) can be rewritten as
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(3)

with ξi ∼ N (0, τ2
1 ) and ε lik =









ε l Iik

ε lMik

ε lRik

ε lLik









∼ N (0, σ2 I)

with I the identity matrix. All random effects are

assumed independent from each other and indepen-

dent from the error term. Note that the assumption

Var(ε lik) = σ2 I can be relaxed as shown in section

4.2 in order to model unequal variances and specific

within-group correlation structures. In the sequel,

we use the ❧♠❡ function of the ♥❧♠❡ package to fit

models. We use the maximum likelihood estima-

tion criterion by specifying ♠❡t❤♦❞❂✑▼▲✑ in order to

compare several models using the ❛♥♦✈❛ function.

Model M0 is fitted using the R code displayed in

Table 1. Figures 5 and 6 show that for each location

and for each finger, the boxplots of the standard-

ized residuals by individual for model M0 are not

centred at zero. This clearly suggests that there

are different individual effects from one location to

another and from one finger to another.

To solve this problem, we introduce a location within

individual random effect ξil , a finger within indi-

vidual random effect ξi f and an interaction random

effect between location and finger ξil f leading to

model M1:
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(4)

with ξi ∼ N (0, τ2
1 ), ξil ∼ N (0, τ2

2 ), ξi f ∼ N (0, τ2
3 ),

ξil f ∼ N (0, τ2
4 ) and ε lik =









ε l Iik

ε lMik

ε lRik

ε lLik









∼ N (0, σ2 I).

We fit model M1 using the R code displayed in Table

2. For each location and for each finger, the boxplots

of the standardized residuals (Figures 7 and 8) by

individual for model M1 are now centred at zero.

However, Figure 7 also indicates that the residual

variability is different from a location to another. To

take this variability into account, we define a new

model M2 assuming a different variance per loca-

tion for ξil i.e ξil ∼ N (0, τ2
l ) . This model is fitted in

R using the code displayed in Table 3. To compare

these models, we first use the ANOVA function as

displayed in Table 4. The AIC and BIC values and

the p-value of the likelihood ratio statistic show that

model M2 gives a better fit. However, note that this

model does not improve the residual graphs: there
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still remains different residual variability from one

location to another.

To deal with this problem, a more general model will

be considered in Subsection 4.2.1 keeping the ran-

dom effects structure defined in model M2, but al-

lowing different variances by location for the within-

group errors. Moreover, by plotting the pairwise

scatter plots of model M2 residuals by each pair of

fingers in Figure 9, we note that introducing random

effect terms in the model did reduce correlations be-

tween fingers. Therefore, in Subsection 4.2.2, we

will consider different correlation structures for the

within-group errors.

4.2. Modelling the residual variance-covariance struc-

ture

The linear mixed model defined in Section 4.1 al-

lows flexibility in the specification of the random

effects structure, but restricts the within-group er-

rors to be independent, identically distributed with

mean zero and constant variance. As observed pre-

viously, we need to relax this assumption by al-

lowing heteroscedastic and correlated within-group

errors. Thus, we extend model M2 by assuming

ε lik =









ε l Iik

ε lMik

ε lRik

ε lLik









∼ N (0, σ2
Λl). Note that the within-

group errors ε lik are assumed to be independent for

different l , for different i and different k and inde-

pendent of the random effects. The 4 × 4 matrices

Λl , l = ExtP3, FlexP3, ExtP1 can be decomposed

into a product of simpler matrices Λl = VlClVl ,

where Vl is a diagonal matrix containing the stan-

dard deviation of each finger in location l and Cl

is a positive-definite matrix with all diagonal ele-

ments equal to 1 describing the correlation of the

random vector ε lik. This decomposition of Λl into

a variance structure component and a correlation

structure component is convenient both theoretically

and computationally. It allows us to model sepa-

rately the two structures and to combine them into

a flexible family of models. More detail on variance-

covariance structures can be found in Pinheiro and

Bates (2000).

The ♥❧♠❡ library provides a set of classes of variance

functions, the ✈❛r❋✉♥❝ classes, which are used to

specify within-group variance structures. The ♥❧♠❡

library also provides a set of classes of correlation

structures, the ❝♦r❙tr✉❝t classes, which are used

to model dependence among the within-group er-

rors in the context of linear mixed effects models

(Pinheiro and Bates (2000)).

4.2.1 Modelling the variance matrix Vl for

each location

In this subsection, several variance structures Vl are

tested to model residuals. As already pointed out in

Section 4.1, the variance of residuals clearly differs

from one location to another. We therefore consider

a first model derived from model M2, noted model

M2.1, assuming a different variance from one loca-

tion to another

Vl =









σl 0 0 0

0 σl 0 0

0 0 σl 0

0 0 0 σl









, Cl =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









.

Note that, in this model, the correlation matrix Cl ,

equal to the identity matrix, assumes no correla-

tion between fingers. To fit model M2.1, we use the

✇❡✐❣❤ts argument of the ❧♠❡ function (see Table 5).

The option ❝♦♥tr♦❧❂❧♠❡❈♦♥tr♦❧✭♠s▼❛①■t❡r❂✶✵✵✵✮

makes it possible to increase the maximum number

of iterations of the algorithm to achieve convergence.

We compare model M2.1 to model M2 using the

❛♥♦✈❛ function (Table 6). The p-value of the likeli-

hood ratio statistic shows that the former best fits

the data. Figures 10 and 11 display boxplots of the

standardized residuals by location and by finger

from models M2 and M2.1 respectively. Note that,

because of different variances by location in model

M2.1, the standardized residuals, displayed in Fig-

ure 11, are calculated as the differences between the

data Fl f ik and the fitted values F̂l f ik divided by the

estimated standard deviation σ̂l .

Figure 11 shows that, in comparison to model M2,

the standardized residuals are now similarly scat-

tered from one location to another. It means that we

successfully captured the location variability of the

data. However, the index finger variability appears

to be different from that of the other fingers. Thus,

we introduce model M2.2 by assuming a different

residual variance for the index in each location (de-

noted σ2
l I for the index and σ2

lo for the other fingers):

Vl =









σl I 0 0 0

0 σlo 0 0

0 0 σlo 0

0 0 0 σlo









, Cl =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









.

Figure 12 shows that finger variabilities are now

similar. Finally, the empirical correlations of the

standardized residuals between fingers in model
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M2.2 are given in Table 7. They are lower than in

the previous models but they remain non negligible

between index and middle (0.450) and between ring

and little (0.330).

4.2.2 Modelling the correlation matrix Cl

Here, we retain the Vl matrix defined in model M2.2

and we propose different correlation matrix struc-

tures to model finger dependence.

In a first step, we define model M2.3 using the fol-

lowing correlation matrix:

Cl =









1 σMI σRI σLI

σMI 1 σRM σLM

σRI σRM 1 σLR

σLI σLM σLR 1









.

To do that, we use the ❝♦rr❡❧❛t✐♦♥ argument of the

❧♠❡ function.

Table 8 displays AIC and BIC criteria for models

M2.2 and M2.3. Using these criteria to compare both

models, we prefer model M2.3 taking into account

the correlation residuals between fingers since it has

the lowest AIC and BIC. Our choice is confirmed by

Figure 13, which displays the boxplots of the normal-

ized residuals by location and by finger for Model

M2.3. Note that the normalized residuals are calcu-

lated by multiplying the standardized residuals by

the inverse square-root factor of the estimated error

correlation matrix Ĉl . However, we can observe in

Table 9 that the correlations between fingers are not

really improved with respect to model M2.2. Nev-

ertheless, we keep model M2.3 as our final model

because it gives us an interpretable estimated corre-

lation matrix.

To explore further this correlation issue, we also

compute residual correlations between fingers, loca-

tion by location in Table 10. It appears that there is a

different correlation matrix by location. An improve-

ment of the final model would thus be to introduce

Cl defined as:

Cl =









1 σMIl σRIl σLIl

σMIl 1 σRMl σLMl

σRIl σRMl 1 σLRl

σLIl σLMl σLRl 1









.

Unfortunately, to the best of our knowledge, the

❝♦rr❡❧❛t✐♦♥ option of the ❧♠❡ function does not

allow such a modelling.

5. Results

For exploration of parameter estimates, we again fit

model M2.3 with the REML (restricted maximum

likelihood) method. REML is often preferred to

ML estimation because it produces unbiased vari-

ance parameter estimates (Patterson and Thompson,

1971).

5.1. Residuals analysis of the final model

To confirm the validation of model M2.3, we use the

classical plots (Figure 14) for diagnostics purposes:

normalized residuals histogram, normal QQ-plot,

normalized residuals versus fitted values plot, nor-

malized residuals versus observed values plot. The

histogram of the residuals and the normal QQ-plot

suggest that the residuals fit the normal distribution

reasonably well, except for the extreme tails. The

residuals versus fitted values plot and the residuals

versus observed values plot do not highlight any

residual structure.

5.2. Results analysis

From the ❧♠❡ output in Table 11, we summarize the

REML estimates of the standard deviation compo-

nents in Table 12. Estimated standard deviations

(τ̂1, τ̂l , τ̂2, τ̂4) of the random effects are directly ob-

tained from the output in the ❘❛♥❞♦♠ ❡❢❢❡❝ts part.

Moreover, the estimated within-group standard de-

viations, σ̂l f , in the last column of Table 12, are

obtained by multiplying the residual term 0.47 by

the parameter estimates of the ❱❛r✐❛♥❝❡ ❢✉♥❝t✐♦♥

part.

Most variance components have a greater standard

deviation than the residual one, hence justifying

their inclusion as random effects in the model. The

high estimates of the standard deviation compo-

nents τ̂1 and τ̂4 indicate that the individuals and

the interaction between finger and location clearly

contribute to the variability of the data. Concerning

the location within individual random effect, an im-

portant variability is observed for locations FlexP3

and ExtP1 with τ̂l equal to 5.46 and 1.92 respectively.

Concerning the finger within individual random ef-

fect, some variability is also observed, but is lower

than the previous ones. Finally, it means that vari-

ability of the force measures highly depends on the

individual and on the experimental conditions, in

particular in flexion at third phalanx location and in

extension at first phalanx location.
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The ❧♠❡ output in Table 11 also provides estimates

of the fixed parameters. The intercept (8.64) is in-

terpreted as the average force intensity measure for

the index finger in the ExtP3 location. This group of

measures is considered as the baseline group and all

other groups are compared to this one. For instance,

we can see a significant decrease (−2.74) of the force

intensity measure for the ring finger in the ExtP3

location compared to the force intensity measure

for the index finger in the same location. The aver-

age force intensity measure for the former is thus

8.64 − 2.74 = 5.90. In the same way, we calculate

and display in Table 13 the estimated mean level of

each finger in each location.

In order to provide answers to study objectives, we

introduce two contrast analyses. Once the location-

finger crossing groups variable (named ❣r♦✉♣) is

created, we use the ❝♦♥str❛sts function of the li-

brary ▼❆❙❙ (Venables and Ripley, 2002), as presented

in Table 14. Extract of results are displayed in Tables

15 and 16. We only interpret the lines of the first

8 (resp. 9) groups corresponding to the number of

tested contrasts in Table 15 (resp. Table 16) . Table

15 shows that, for one given finger, force intensities

of each considered pair of locations are significantly

different at 5%. On the contrary, one can see in Ta-

ble 16 that the two-by-two finger comparisons show

some significant differences:

• In the extension movement, the only significa-

tive difference between nearby fingers average

force intensities is between the index and the

middle on the first phalanx (p-value<1e − 06).

• In the flexion movement, we notice a signifi-

cantly higher average force intensity for the

middle than for the ring (p-value<1e − 16),

and a significantly higher average force in-

tensity for the ring than for the little (p-

value<1e − 11).

The estimation of the correlation matrix between

measures of the four fingers is also provided in the

❈♦rr❡❧❛t✐♦♥ s❡❝t✐♦♥ part of the ❧♠❡ output (see

Table 11). High positive correlations are observed

between the measures of index and middle fingers

(0.50), ring and little fingers (0.36) and, to a lesser

degree, middle and ring fingers (0.22). It means that,

in extension and flexion movements, index and mid-

dle fingers on the one hand, ring and little fingers

on the other hand, seem to vary in the same way.

6. Conclusion

In this paper, we have proposed a methodology to

handle with biomechanical data. The main features

of these data lie in the repetition of the force inten-

sity measures by individual and the simultaneity

of the measures of the four fingers obtained from

different tasks. Observations have been fitted using

a linear mixed model with a complex random ef-

fects structure and a non-diagonal residual variance-

covariance matrix using the ❧♠❡ R function from

the ♥❧♠❡ package. Although some limitations in

the implementation of a more complex model have

been pointed out, this methodology has been shown

to provide the behavior of the force among fingers

during different experimental conditions.

The force intensity is different for flexion and ex-

tension. In extension, we have found contrasting

intensity levels of the index and the middle fingers

on the first phalanx. In flexion, we have observed

different intensity levels concerning the middle and

the ring fingers, as well as concerning the ring and

little fingers. Moreover, we have highlighted vari-

ous sources of variability for the force intensities,

as the individual, the finger and the experimental

conditions.

The analysis of the residual correlations in Section

4.2.2 fails at giving independent normalized resid-

uals, suggesting that a more complex correlation

matrix should be introduced. Unfortunately, as far

as we know, although the ♥❧♠❡ library provides

a large set of classes of correlation structures (the

❝♦r❙tr✉❝t classes), it does not allow such a mod-

elling. To deal with this issue, an extension to our

work would be to develop a new ❝♦r❙tr✉❝t class,

integrating a more complex correlation matrix.

Thus, the difficulty of dealing with complex data

involving the use of linear mixed effects models is

clearly illustrated, and the need for further evidence

on the implications of this tool is demonstrated.
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Tables

Table 1: R code for fitting model M0 and plot-
ting the residuals

❢✐t▼✵ ❁✲ ❧♠❡✭❋ ⑦ ❢✐♥❣❡r✯❧♦❝❛t✐♦♥✱ r❛♥❞♦♠❂⑦✶⑤✐♥❞✐✈✐❞✉❛❧✱ ♠❡t❤♦❞❂✧▼▲✧✮

s✉♠♠❛r②✭❢✐t▼✵✮

r❡s▼✵✳st❞ ❁✲ r❡s✐❞✉❛❧s✭❢✐t▼✵✱t②♣❡❂✧♣❡❛rs♦♥✧✮

♣❧♦t✭❢✐t▼✵✱✐♥❞✐✈✐❞✉❛❧⑦r❡s▼✵✳st❞⑤❧♦❝❛t✐♦♥✱❛❜❧✐♥❡❂✵✱①❧✐♠❂❝✭✲✺✱✺✮✱①❧❛❜❂✧❙t❛♥❞❛r❞✐③❡❞ r❡s✐❞✉❛❧s✧✮

♣❧♦t✭❢✐t▼✵✱✐♥❞✐✈✐❞✉❛❧⑦r❡s▼✵✳st❞⑤❢✐♥❣❡r✱❛❜❧✐♥❡❂✵✱①❧✐♠❂❝✭✲✺✱✺✮✱ ①❧❛❜❂✧❙t❛♥❞❛r❞✐③❡❞ r❡s✐❞✉❛❧s✧✮

Table 2: R code for fitting model M1 and plot-
ting the residuals

❢✐t▼✶ ❁✲ ❧♠❡✭❋ ⑦ ❢✐♥❣❡r✯❧♦❝❛t✐♦♥✱

r❛♥❞♦♠❂❧✐st✭✐♥❞✐✈✐❞✉❛❧❂♣❞❇❧♦❝❦❡❞✭❧✐st✭♣❞■❞❡♥t✭⑦✶✮✱

♣❞■❞❡♥t✭⑦❧♦❝❛t✐♦♥✲✶✮✱

♣❞■❞❡♥t✭⑦❢✐♥❣❡r✲✶✮✱

♣❞■❞❡♥t✭⑦❧♦❝❛t✐♦♥✿❢✐♥❣❡r✲✶✮✮✮✮✱

♠❡t❤♦❞❂✧▼▲✧✮

r❡s▼✶✳st❞ ❁✲ r❡s✐❞✉❛❧s✭❢✐t▼✶✱t②♣❡❂✧♣❡❛rs♦♥✧✮

♣❧♦t✭❢✐t▼✶✱✐♥❞✐✈✐❞✉❛❧⑦r❡s▼✶✳st❞⑤❧♦❝❛t✐♦♥✱❛❜❧✐♥❡❂✵✱①❧✐♠❂❝✭✲✺✱✺✮✱

①❧❛❜❂✧❙t❛♥❞❛r❞✐③❡❞ r❡s✐❞✉❛❧s✧✮

♣❧♦t✭❢✐t▼✶✱✐♥❞✐✈✐❞✉❛❧⑦r❡s▼✶✳st❞⑤❢✐♥❣❡r✱❛❜❧✐♥❡❂✵✱①❧✐♠❂❝✭✲✺✱✺✮✱

①❧❛❜❂✧❙t❛♥❞❛r❞✐③❡❞ r❡s✐❞✉❛❧s✧✮

Table 3: R code for fitting model M2

❢✐t▼✷ ❁✲ ❧♠❡✭❋ ⑦ ❢✐♥❣❡r✯❧♦❝❛t✐♦♥✱

r❛♥❞♦♠❂❧✐st✭✐♥❞✐✈✐❞✉❛❧❂♣❞❇❧♦❝❦❡❞✭❧✐st✭♣❞■❞❡♥t✭⑦✶✮✱

♣❞❉✐❛❣✭⑦❧♦❝❛t✐♦♥✲✶✮✱

♣❞■❞❡♥t✭⑦❢✐♥❣❡r✲✶✮✱

♣❞■❞❡♥t✭⑦❧♦❝❛t✐♦♥✿❢✐♥❣❡r✲✶✮✮✮✮✱

♠❡t❤♦❞❂✧▼▲✧✮

Table 4: R code for comparing models M0, M1

and M2

❃ ❛♥♦✈❛✭❢✐t▼✵✱❢✐t▼✶✱❢✐t▼✷✮

▼♦❞❡❧ ❞❢ ❆■❈ ❇■❈ ❧♦❣▲✐❦ ❚❡st ▲✳❘❛t✐♦ ♣✲✈❛❧✉❡

❢✐t▼✵ ✶ ✶✹ ✸✵✻✷✳✻✶✹ ✸✶✷✷✳✻✾✻ ✲✶✺✶✼✳✸✵✼

❢✐t▼✶ ✷ ✶✼ ✷✺✺✾✳✺✺✹ ✷✻✸✷✳✺✶✶ ✲✶✷✻✷✳✼✼✼ ✶ ✈s ✷ ✺✵✾✳✵✻✵✸ ❁✳✵✵✵✶

❢✐t▼✷ ✸ ✶✾ ✷✺✸✻✳✻✷✸ ✷✻✶✽✳✶✻✸ ✲✶✷✹✾✳✸✶✷ ✷ ✈s ✸ ✷✻✳✾✸✶✵ ❁✳✵✵✵✶
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Table 5: R code for fitting model M2.1

❢✐t▼✷✳✶ ❁✲ ❧♠❡✭❋ ⑦ ❢✐♥❣❡r✯❧♦❝❛t✐♦♥✱

r❛♥❞♦♠❂❧✐st✭✐♥❞✐✈✐❞✉❛❧❂♣❞❇❧♦❝❦❡❞✭❧✐st✭♣❞■❞❡♥t✭⑦✶✮✱

♣❞❉✐❛❣✭⑦❧♦❝❛t✐♦♥✲✶✮✱

♣❞■❞❡♥t✭⑦❢✐♥❣❡r✲✶✮✱

♣❞■❞❡♥t✭⑦❧♦❝❛t✐♦♥✿❢✐♥❣❡r✲✶✮✮✮✮✱

✇❡✐❣❤ts❂✈❛r■❞❡♥t✭❢♦r♠❂⑦✶⑤❧♦❝❛t✐♦♥✮✱

♠❡t❤♦❞❂✧▼▲✧✱❝♦♥tr♦❧❂❧♠❡❈♦♥tr♦❧✭♠s▼❛①■t❡r❂✶✵✵✵✮✮

Table 6: R code for comparing models M2 and
M2.1.

❃ ❛♥♦✈❛✭❢✐t▼✷✱❢✐t▼✷✳✶✮

▼♦❞❡❧ ❞❢ ❆■❈ ❇■❈ ❧♦❣▲✐❦ ❚❡st ▲✳❘❛t✐♦ ♣✲✈❛❧✉❡

❢✐t▼✷ ✶ ✶✾ ✷✺✸✻✳✻✷✸ ✷✻✶✽✳✶✻✸ ✲✶✷✹✾✳✸✶✷

❢✐t▼✷✳✶ ✷ ✷✶ ✷✷✵✾✳✹✺✵ ✷✷✾✾✳✺✼✸ ✲✶✵✽✸✳✼✷✺ ✶ ✈s ✷ ✸✸✶✳✶✼✸✸ ❁✳✵✵✵✶

Table 7: Correlation between finger residuals
from model M2.2

✐♥❞❡①✳r❡s▼✷✳✷✳st❞ ♠✐❞❞❧❡✳r❡s▼✷✳✷✳st❞ r✐♥❣✳r❡s▼✷✳✷✳st❞ ❧✐tt❧❡✳r❡s▼✷✳✷✳st❞

✐♥❞❡①✳r❡s▼✷✳✷✳st❞ ✶✳✵✵✵✵✵✵✵✵✵ ✵✳✹✹✾✾✸✹✷✾ ✵✳✵✺✷✽✺✽✵✽ ✵✳✵✵✷✽✽✵✵✷✶

♠✐❞❞❧❡✳r❡s▼✷✳✷✳st❞ ✵✳✹✹✾✾✸✹✷✾✶ ✶✳✵✵✵✵✵✵✵✵ ✵✳✶✾✼✽✼✺✶✺ ✲✵✳✵✺✹✷✼✸✺✻✵

r✐♥❣✳r❡s▼✷✳✷✳st❞ ✵✳✵✺✷✽✺✽✵✽✸ ✵✳✶✾✼✽✼✺✶✺ ✶✳✵✵✵✵✵✵✵✵ ✵✳✸✸✵✵✹✵✸✼✺

❧✐tt❧❡✳r❡s▼✷✳✷✳st❞ ✵✳✵✵✷✽✽✵✵✷✶ ✲✵✳✵✺✹✷✼✸✺✻ ✵✳✸✸✵✵✹✵✸✼ ✶✳✵✵✵✵✵✵✵✵✵

Table 8: R code for comparing models M2.2

and M2.3.

❃ ❛♥♦✈❛✭❢✐t▼✷✳✷✱ ❢✐t▼✷✳✸✮

▼♦❞❡❧ ❞❢ ❆■❈ ❇■❈ ❧♦❣▲✐❦ ❚❡st ▲✳❘❛t✐♦ ♣✲✈❛❧✉❡

❢✐t▼✷✳✷ ✶ ✷✹ ✷✶✾✻✳✶✽✶ ✷✷✾✾✳✶✼✽ ✲✶✵✼✹✳✵✾✵

❢✐t▼✷✳✸ ✷ ✸✵ ✷✶✻✸✳✾✽✹ ✷✷✾✷✳✼✸✶ ✲✶✵✺✶✳✾✾✷ ✶ ✈s ✷ ✹✹✳✶✾✻✺✼ ❁✳✵✵✵✶

Table 9: Correlation between finger residuals
from model M2.3

✐♥❞❡①✳r❡s▼✷✳✸✳♥♦r♠ ♠✐❞❞❧❡✳r❡s▼✷✳✸✳♥♦r♠ r✐♥❣✳r❡s▼✷✳✸✳♥♦r♠ ❧✐tt❧❡✳r❡s▼✷✳✸✳♥♦r♠

✐♥❞❡①✳r❡s▼✷✳✸✳♥♦r♠ ✶✳✵✵✵✵✵✵✵✵✵✵ ✵✳✹✸✹✾✺✼✼ ✵✳✵✼✻✾✵✼✺✹ ✲✵✳✵✵✵✾✹✹✻✺✶✾

♠✐❞❞❧❡✳r❡s▼✷✳✸✳♥♦r♠ ✵✳✹✸✹✾✺✼✻✾✻✹ ✶✳✵✵✵✵✵✵✵ ✵✳✶✽✻✻✶✹✶✾ ✲✵✳✶✵✵✵✹✵✷✺✷✶

r✐♥❣✳r❡s▼✷✳✸✳♥♦r♠ ✵✳✵✼✻✾✵✼✺✹✸✺ ✵✳✶✽✻✻✶✹✷ ✶✳✵✵✵✵✵✵✵✵ ✵✳✸✶✻✵✶✵✷✸✻✺

❧✐tt❧❡✳r❡s▼✷✳✸✳♥♦r♠ ✲✵✳✵✵✵✾✹✹✻✺✶✾ ✲✵✳✶✵✵✵✹✵✸ ✵✳✸✶✻✵✶✵✷✹ ✶✳✵✵✵✵✵✵✵✵✵✵
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Table 10: Correlation between finger residuals
from model M2.3

❬✶❪ ✧❊①tP✸✧

✐♥❞❡①✳❊①tP✸ ♠✐❞❞❧❡✳❊①tP✸ r✐♥❣✳❊①tP✸ ❧✐tt❧❡✳❊①tP✸

✐♥❞❡①✳❊①tP✸ ✶✳✵✵✵✵✵✵✵✵ ✵✳✷✾✼✵✸✶✵✽ ✵✳✵✶✺✻✼✵✽✻ ✵✳✶✶✺✽✾✹✼✻

♠✐❞❞❧❡✳❊①tP✸ ✵✳✷✾✼✵✸✶✵✽ ✶✳✵✵✵✵✵✵✵✵ ✵✳✶✷✸✼✾✵✷✾ ✵✳✵✹✹✺✻✸✷✽

r✐♥❣✳❊①tP✸ ✵✳✵✶✺✻✼✵✽✻ ✵✳✶✷✸✼✾✵✷✾ ✶✳✵✵✵✵✵✵✵✵ ✵✳✹✹✾✼✵✼✷✻

❧✐tt❧❡✳❊①tP✸ ✵✳✶✶✺✽✾✹✼✻ ✵✳✵✹✹✺✻✸✷✽ ✵✳✹✹✾✼✵✼✷✻ ✶✳✵✵✵✵✵✵✵✵

❬✶❪ ✧❋❧❡①P✸✧

✐♥❞❡①✳❋❧❡①P✸ ♠✐❞❞❧❡✳❋❧❡①P✸ r✐♥❣✳❋❧❡①P✸ ❧✐tt❧❡✳❋❧❡①P✸

✐♥❞❡①✳❋❧❡①P✸ ✶✳✵✵✵✵✵✵✵✵ ✵✳✺✵✷✵✶✹✽ ✵✳✵✽✶✺✾✾✻✹ ✲✵✳✶✼✶✵✹✸✼

♠✐❞❞❧❡✳❋❧❡①P✸ ✵✳✺✵✷✵✶✹✼✾ ✶✳✵✵✵✵✵✵✵ ✵✳✸✷✺✾✻✹✶✷ ✲✵✳✶✹✵✺✽✺✹

r✐♥❣✳❋❧❡①P✸ ✵✳✵✽✶✺✾✾✻✹ ✵✳✸✷✺✾✻✹✶ ✶✳✵✵✵✵✵✵✵✵ ✵✳✹✷✺✺✾✾✹

❧✐tt❧❡✳❋❧❡①P✸ ✲✵✳✶✼✶✵✹✸✼✸ ✲✵✳✶✹✵✺✽✺✹ ✵✳✹✷✺✺✾✾✹✵ ✶✳✵✵✵✵✵✵✵

❬✶❪ ✧❊①tP✶✧

✐♥❞❡①✳❊①tP✶ ♠✐❞❞❧❡✳❊①tP✶ r✐♥❣✳❊①tP✶ ❧✐tt❧❡✳❊①tP✶

✐♥❞❡①✳❊①tP✶ ✶✳✵✵✵✵✵✵✵ ✵✳✹✾✷✷✶✵✷ ✵✳✶✷✼✼✹✷✹ ✵✳✵✼✸✶✼✾✻

♠✐❞❞❧❡✳❊①tP✶ ✵✳✹✾✷✷✶✵✷ ✶✳✵✵✵✵✵✵✵ ✵✳✶✶✻✼✻✷✼ ✲✵✳✶✾✷✷✽✸✸

r✐♥❣✳❊①tP✶ ✵✳✶✷✼✼✹✷✹ ✵✳✶✶✻✼✻✷✼ ✶✳✵✵✵✵✵✵✵ ✵✳✶✷✷✵✼✼✷

❧✐tt❧❡✳❊①tP✶ ✵✳✵✼✸✶✼✾✻ ✲✵✳✶✾✷✷✽✸✸ ✵✳✶✷✷✵✼✼✷ ✶✳✵✵✵✵✵✵✵
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Table 11: Extract from the ❧♠❡ output for the
final model

▲✐♥❡❛r ♠✐①❡❞✲❡❢❢❡❝ts ♠♦❞❡❧ ❢✐t ❜② ❘❊▼▲

❉❛t❛✿ ◆❯▲▲

❆■❈ ❇■❈ ❧♦❣▲✐❦

✷✶✹✽✳✺✸✼ ✷✷✼✻✳✻✶ ✲✶✵✹✹✳✷✻✽

❘❛♥❞♦♠ ❡❢❢❡❝ts✿

❈♦♠♣♦s✐t❡ ❙tr✉❝t✉r❡✿ ❇❧♦❝❦❡❞

❇❧♦❝❦ ✶✿ ✭■♥t❡r❝❡♣t✮

❋♦r♠✉❧❛✿ ⑦✶ ⑤ ✐♥❞✐✈✐❞✉❛❧

✭■♥t❡r❝❡♣t✮

❙t❞❉❡✈✿ ✷✳✵✶✺✹✽✸

❇❧♦❝❦ ✷✿ ❧♦❝❛t✐♦♥❊①tP✸✱ ❧♦❝❛t✐♦♥❋❧❡①P✸✱ ❧♦❝❛t✐♦♥❊①tP✶

❋♦r♠✉❧❛✿ ⑦❧♦❝❛t✐♦♥ ✲ ✶ ⑤ ✐♥❞✐✈✐❞✉❛❧

❙tr✉❝t✉r❡✿ ❉✐❛❣♦♥❛❧

❧♦❝❛t✐♦♥❊①tP✸ ❧♦❝❛t✐♦♥❋❧❡①P✸ ❧♦❝❛t✐♦♥❊①tP✶

❙t❞❉❡✈✿ ✵✳✵✵✵✸✾✼✾✸✵✾ ✺✳✹✻✸✼✼✼ ✶✳✾✷✷✹✺✸

❇❧♦❝❦ ✸✿ ❢✐♥❣❡r■✱ ❢✐♥❣❡r▼✱ ❢✐♥❣❡r❘✱ ❢✐♥❣❡r▲

❋♦r♠✉❧❛✿ ⑦❢✐♥❣❡r ✲ ✶ ⑤ ✐♥❞✐✈✐❞✉❛❧

❙tr✉❝t✉r❡✿ ▼✉❧t✐♣❧❡ ♦❢ ❛♥ ■❞❡♥t✐t②

❢✐♥❣❡r■ ❢✐♥❣❡r▼ ❢✐♥❣❡r❘ ❢✐♥❣❡r▲

❙t❞❉❡✈✿ ✵✳✹✾✼✶✺✶✾ ✵✳✹✾✼✶✺✶✾ ✵✳✹✾✼✶✺✶✾ ✵✳✹✾✼✶✺✶✾

❇❧♦❝❦ ✹✿ ❧♦❝❛t✐♦♥❊①tP✸✿❢✐♥❣❡r■✱ ❧♦❝❛t✐♦♥❋❧❡①P✸✿❢✐♥❣❡r■✱ ❧♦❝❛t✐♦♥❊①tP✶✿❢✐♥❣❡r■✱ ❧♦❝❛t✐♦♥❊①tP✸✿❢✐♥❣❡r▼✱ ❧♦❝❛t✐♦♥❋❧❡①P✸✿❢✐♥❣❡r▼✱ ❧♦❝❛t✐♦♥❊①tP✶✿❢✐♥❣❡r▼✱ ❧♦❝❛t✐♦♥❊①tP✸✿❢✐♥❣❡r❘✱ ❧♦❝❛t✐♦♥❋❧❡①P✸✿❢✐♥❣❡r❘✱ ❧♦❝❛t✐♦♥❊①tP✶✿❢✐♥❣❡r❘✱ ❧♦❝❛t✐♦♥❊①tP✸✿❢✐♥❣❡r▲✱ ❧♦❝❛t✐♦♥❋❧❡①P✸✿❢✐♥❣❡r▲✱ ❧♦❝❛t✐♦♥❊①tP✶✿❢✐♥❣❡r▲

❋♦r♠✉❧❛✿ ⑦❧♦❝❛t✐♦♥✿❢✐♥❣❡r ✲ ✶ ⑤ ✐♥❞✐✈✐❞✉❛❧

❙tr✉❝t✉r❡✿ ▼✉❧t✐♣❧❡ ♦❢ ❛♥ ■❞❡♥t✐t②

❧♦❝❛t✐♦♥❊①tP✸✿❢✐♥❣❡r■ ❧♦❝❛t✐♦♥❋❧❡①P✸✿❢✐♥❣❡r■ ❧♦❝❛t✐♦♥❊①tP✶✿❢✐♥❣❡r■

❙t❞❉❡✈✿ ✷✳✶✸✶✾✵✸ ✷✳✶✸✶✾✵✸ ✷✳✶✸✶✾✵✸

❧♦❝❛t✐♦♥❊①tP✸✿❢✐♥❣❡r▼ ❧♦❝❛t✐♦♥❋❧❡①P✸✿❢✐♥❣❡r▼ ❧♦❝❛t✐♦♥❊①tP✶✿❢✐♥❣❡r▼

❙t❞❉❡✈✿ ✷✳✶✸✶✾✵✸ ✷✳✶✸✶✾✵✸ ✷✳✶✸✶✾✵✸

❧♦❝❛t✐♦♥❊①tP✸✿❢✐♥❣❡r❘ ❧♦❝❛t✐♦♥❋❧❡①P✸✿❢✐♥❣❡r❘ ❧♦❝❛t✐♦♥❊①tP✶✿❢✐♥❣❡r❘

❙t❞❉❡✈✿ ✷✳✶✸✶✾✵✸ ✷✳✶✸✶✾✵✸ ✷✳✶✸✶✾✵✸

❧♦❝❛t✐♦♥❊①tP✸✿❢✐♥❣❡r▲ ❧♦❝❛t✐♦♥❋❧❡①P✸✿❢✐♥❣❡r▲ ❧♦❝❛t✐♦♥❊①tP✶✿❢✐♥❣❡r▲

❙t❞❉❡✈✿ ✷✳✶✸✶✾✵✸ ✷✳✶✸✶✾✵✸ ✷✳✶✸✶✾✵✸

❘❡s✐❞✉❛❧

❙t❞❉❡✈✿ ✵✳✹✻✼✷✽✸

❈♦rr❡❧❛t✐♦♥ ❙tr✉❝t✉r❡✿ ●❡♥❡r❛❧

❋♦r♠✉❧❛✿ ⑦✶ ⑤ ✐♥❞✐✈✐❞✉❛❧✴tr✐❛❧

P❛r❛♠❡t❡r ❡st✐♠❛t❡✭s✮✿

❈♦rr❡❧❛t✐♦♥✿

✶ ✷ ✸

✷ ✵✳✹✾✽

✸ ✵✳✵✽✷ ✵✳✷✶✼

✹ ✵✳✵✵✺ ✲✵✳✵✸✾ ✵✳✸✻✵
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❱❛r✐❛♥❝❡ ❢✉♥❝t✐♦♥✿

❙tr✉❝t✉r❡✿ ❉✐❢❢❡r❡♥t st❛♥❞❛r❞ ❞❡✈✐❛t✐♦♥s ♣❡r str❛t✉♠

❋♦r♠✉❧❛✿ ⑦✶ ⑤ ❧♦❝❛t✐♦♥ ✯ ■♥❞❡①

P❛r❛♠❡t❡r ❡st✐♠❛t❡s✿

❊①tP✸✯■ ❊①tP✸✯♦t❤❡r ❋❧❡①P✸✯■ ❋❧❡①P✸✯♦t❤❡r ❊①tP✶✯■ ❊①tP✶✯♦t❤❡r

✶✳✵✵✵✵✵✵✵ ✵✳✽✸✺✸✶✵✽ ✼✳✼✸✻✻✸✽✻ ✹✳✽✾✺✹✵✼✾ ✸✳✶✾✸✼✶✷✽ ✷✳✶✸✷✾✾✶✽

❋✐①❡❞ ❡❢❢❡❝ts✿ ❋ ⑦ ❢✐♥❣❡r ✯ ❧♦❝❛t✐♦♥

❱❛❧✉❡ ❙t❞✳❊rr♦r ❉❋ t✲✈❛❧✉❡ ♣✲✈❛❧✉❡

✭■♥t❡r❝❡♣t✮ ✽✳✻✹✹✽✽✹ ✵✳✼✼✶✹✺✹✸ ✺✶✹ ✶✶✳✷✵✺✾✺✽ ✵✳✵✵✵✵

❢✐♥❣❡r▼ ✲✶✳✸✾✸✸✻✺ ✵✳✽✵✶✾✼✸✶ ✺✶✹ ✲✶✳✼✸✼✹✷✶ ✵✳✵✽✷✾

❢✐♥❣❡r❘ ✲✷✳✼✹✷✷✹✷ ✵✳✽✵✹✵✻✽✹ ✺✶✹ ✲✸✳✹✶✵✹✺✽ ✵✳✵✵✵✼

❢✐♥❣❡r▲ ✲✸✳✻✼✼✶✻✺ ✵✳✽✵✹✹✺✽✺ ✺✶✹ ✲✹✳✺✼✵✾✽✶ ✵✳✵✵✵✵

❧♦❝❛t✐♦♥❋❧❡①P✸ ✶✻✳✻✸✷✵✽✵ ✶✳✼✵✵✹✸✺✼ ✺✶✹ ✾✳✼✽✶✵✼✵ ✵✳✵✵✵✵

❧♦❝❛t✐♦♥❊①tP✶ ✻✳✵✽✹✾✸✹ ✵✳✾✺✷✷✷✻✵ ✺✶✹ ✻✳✸✾✵✷✷✵ ✵✳✵✵✵✵

❢✐♥❣❡r▼✿❧♦❝❛t✐♦♥❋❧❡①P✸ ✶✳✺✽✺✹✷✷ ✶✳✷✵✵✵✷✺✻ ✺✶✹ ✶✳✸✷✶✶✺✼ ✵✳✶✽✼✵

❢✐♥❣❡r❘✿❧♦❝❛t✐♦♥❋❧❡①P✸ ✲✺✳✷✾✹✽✻✽ ✶✳✷✻✸✸✸✸✷ ✺✶✹ ✲✹✳✶✾✶✶✽✽ ✵✳✵✵✵✵

❢✐♥❣❡r▲✿❧♦❝❛t✐♦♥❋❧❡①P✸ ✲✶✵✳✶✷✻✻✽✷ ✶✳✷✼✹✼✽✾✾ ✺✶✹ ✲✼✳✾✹✸✽✵✹ ✵✳✵✵✵✵
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Table 12: REML estimates of the standard de-
viation components for the final model

Standard deviation of the random effects Residual standard deviation

Location Finger τ̂1 τ̂l τ̂3 τ̂4 σ̂l f

ExtP3 I 2.02 3.98 × 10−4 0.50 2.13 0.47

M,R,L 2.02 3.98 × 10−4 0.50 2.13 0.39

FlexP3 I 2.02 5.46 0.50 2.13 3.61
M,R,L 2.02 5.46 0.50 2.13 2.29

ExtP1 I 2.02 1.92 0.50 2.13 1.49
M,R,L 2.02 1.92 0.50 2.13 0.99

Table 13: Estimated mean levels of the location-
finger crossing groups.

Location / finger Index Middle Ring Little

ExtP3 8.64 7.25 5.90 4.97

FlexP3 25.28 25.47 17.24 11.47

ExtP 1 14.73 11.16 9.83 10.94
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Table 14: R code for contrast analysis.
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Table 15: Extract of the R output for contrat
analysis for comparing each finger force inten-
sity between locations (group1=ExtP3/FlexP3
I, group2=ExtP3/FlexP3 M,
group3=ExtP3/FlexP3 R,
group4=ExtP3/FlexP3 L, group5=ExtP3/ExtP1
I, group6=ExtP3/ExtP1 M, group7=ExtP3ExtP1
R, group8=ExtP3/ExtP1 L)
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Table 16: Extract of the R output for con-
trat analysis for comparing nearby finger
force intensities for each location (group1=I/M,
ExtP3, group2=I/M, FlexP3, group3=I/M,
ExtP1, group4=M/R, ExtP3, group5=M/R,
FlexP3, group6=M/R, ExtP1, group7=R/L,
ExtP3, group8=R/L, FlexP3, group9=R/L,
ExtP1)

❋✐①❡❞ ❡❢❢❡❝ts✿ ❋ ⑦ ❣r♦✉♣

❱❛❧✉❡ ❙t❞✳❊rr♦r ❉❋ t✲✈❛❧✉❡ ♣✲✈❛❧✉❡

✭■♥t❡r❝❡♣t✮ ✶✷✳✼✹✶✸✼✶ ✵✳✼✹✻✷✺✸✵ ✺✶✹ ✶✼✳✵✼✸✼✾✼ ✵✳✵✵✵✵

❣r♦✉♣✶ ✶✳✸✾✸✸✻✺ ✵✳✽✵✶✾✼✸✷ ✺✶✹ ✶✳✼✸✼✹✷✶ ✵✳✵✽✷✾

❣r♦✉♣✷ ✲✵✳✶✾✷✵✺✼ ✵✳✾✷✽✽✼✺✺ ✺✶✹ ✲✵✳✷✵✻✼✻✸ ✵✳✽✸✻✸

❣r♦✉♣✸ ✸✳✺✻✼✽✹✹ ✵✳✽✷✸✶✽✺✶ ✺✶✹ ✹✳✸✸✹✶✾✹ ✵✳✵✵✵✵

❣r♦✉♣✹ ✶✳✸✹✽✽✼✼ ✵✳✽✵✷✻✺✺✾ ✺✶✹ ✶✳✻✽✵✺✶✼ ✵✳✵✾✸✺

❣r♦✉♣✺ ✽✳✷✷✾✶✻✼ ✵✳✾✵✻✵✾✵✵ ✺✶✹ ✾✳✵✽✷✵✻✸ ✵✳✵✵✵✵

❣r♦✉♣✻ ✶✳✸✷✽✶✷✺ ✵✳✽✷✵✻✽✵✹ ✺✶✹ ✶✳✻✶✽✸✷✷ ✵✳✶✵✻✷

❣r♦✉♣✼ ✵✳✾✸✹✾✷✸ ✵✳✽✵✷✵✺✷✷ ✺✶✹ ✶✳✶✻✺✻✻✸ ✵✳✷✹✹✸

❣r♦✉♣✽ ✺✳✼✻✻✼✸✼ ✵✳✽✽✼✺✹✵✷ ✺✶✹ ✻✳✹✾✼✹✸✽ ✵✳✵✵✵✵

❣r♦✉♣✾ ✲✶✳✶✶✶✷✹✼ ✵✳✽✶✻✽✷✸✵ ✺✶✹ ✲✶✳✸✻✵✹✺✵ ✵✳✶✼✹✸

❣r♦✉♣✶✵ ✷✳✼✸✸✷✷✺ ✶✳✶✶✸✺✽✸✾ ✺✶✹ ✷✳✹✺✹✹✹✵ ✵✳✵✶✹✹

❣r♦✉♣✶✶ ✶✽✳✻✶✹✻✸✼ ✷✳✸✺✵✾✺✶✼ ✺✶✹ ✼✳✾✶✼✾✶✻ ✵✳✵✵✵✵



-16- C. Bazzoli et al

Figures

Figure 1: Finger force intensity by location (left ExtP3, centre FlexP3, right ExtP1), by subject
(on the x axis) and finger (blue circle for index, red triangle for middle, green plus for ring and
magenta times for little).
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Figure 2: Pairwise scatter plots of force intensity measures for each pair of fingers (circle ExtP3,
triangle FlexP3, plus ExtP1). Empirical correlations are 0.921 between index and middle, 0.876
between index and ring, 0.801 between index and little, 0.898 between middle and ring, 0.704
between middle and little, 0.764 between ring and little.
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Figure 3: ANOVA residuals by location (left ExtP3, centre FlexP3, right ExtP1), by subject (on the
x axis) and finger (blue circle for index, red triangle for middle, green plus for ring and magenta
times for little).
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Figure 4: Pairwise scatter plots of the ANOVA residuals for each pair of fingers (circle ExtP3,
triangle FlexP3, plus ExtP1). Empirical correlations are 0.863 between index and middle, 0.742
between index and ring, 0.787 between index and little, 0.753 between middle and ring, 0.732
between middle and little, 0.741 between ring and little.
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Figure 5: Individual boxplots of the standardized residuals by location for model M0.

Figure 6: Individual boxplots of the standardized residuals by finger for model M0.
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Figure 7: Individual boxplots of the standardized residuals by location for model M1.

Figure 8: Individual boxplots of the standardized residuals by finger for model M1.
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Figure 9: Pairwise scatter plots of model M2 residuals for each pair of fingers (circle ExtP3, triangle
FlexP3, plus ExtP1). Empirical correlations are 0.482 between index and middle, 0.187 between
index and ring, 0.005 between index and little, 0.370 between middle and ring, −0.026 between
middle and little, 0.405 between ring and little.

Figure 10: Boxplots of the standardized residuals by location and by finger for model M2.
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Figure 11: Boxplots of the standardized residuals by location and by finger for model M2.1.

Figure 12: Boxplots of the standardized residuals by location and by finger for model M2.2.
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Figure 13: Boxplots of the normalized residuals by location and by finger for model M2.3.
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Figure 14: Diagnostic plots for model M2.3.
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