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Abstract

The biomechanical data considered in this paper are obtained from a study carried out to
understand the coordination patterns of finger forces produced from different tasks. This data
cannot be considered independent because of within-individual repeated measurements, and
because of simultaneous finger measurements. To fit these data, we propose a methodology
focused on linear mixed models. Different random effects structures and complex variance-
covariance matrices of the error are considered. We highlight how to use the ime R function
to deal with such a modelling. The paper is accessible to an audience experienced with linear
models. Some familiarity with the R software is also helpful.

Keywords : Linear mixed model, Repeated measures, Heteroscedasticity, Correlation, Ime R
function, Biomechanics.
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1. Introduction

In experimental sciences (agronomy, biology,
experimental psychology, ...), analysis of vari-
ance (ANOVA) is often used to explain one con-
tinuous response with respect to different ex-
perimental conditions, assuming homoscedas-
tic errors. In studies where individuals con-
tribute more than one observation, such as lon-
gitudinal or repeated-measures studies, classi-
cal ANOVA is no longer convenient since the
assumption of data independence is not valid.
The linear mixed model ( , )
then provides then a better framework to take
correlation between these observations into ac-
count. By introducing random effects, mixed
models allow to take into account the variabil-
ity of the response among the different individ-
uals and the possible within-individual corre-
lation. Published case studies using a mixed
model approach ( , ; ,

) often assume a classical homoscedastic
error term, i.e. normally distributed with mean
zero and constant variance. In this paper, we
consider a case study in which this assumption
is relaxed by allowing heteroscedastic and cor-
related within-group errors. This work high-
lights, in an educationnal way, the different
steps of such a modelling.

The data considered in this paper have been ob-
tained from a biomechanical study described
in detail in ( ). Experiments
have been carried out to better understand the
coordination patterns of finger forces produced
from different tasks corresponding to different
experimental conditions. One of the objectives
is to compare each finger force intensity be-
tween the various tasks and, for each task, to
compare nearby fingers force intensity. Sub-
jects are required to press ledges maximally
with four fingers simultaneaously in different
experimental conditions. Experiments have
been repeated three times per experimental
condition. In ( ), data have
been analyzed first using a two-factor ANOVA
model by considering the force measurement
as response and fingers and experimental con-
ditions as factors to be tested. Nevertheless, as

pointed out by the authors, in this particular
context, the ANOVA model is not convenient
since it does not take into account nor the de-
pendency between the fingers due to simulta-
neous measurements, nor the within-subject
dependency due to repeated measurements.
There are several facilities in R (

( )) and S-PLUS (5-P ( ) for
fitting mixed models to data. Among them are
the nlme ( , ) and 1me4 (

, ) libraries. All analyses in the present
paper have been performed using the Ime func-
tion in the nlme library, described in detail in

( ). The 1mer function
in the 1me4 library has been developed more
recently. This function provides an improve-
ment over the lme function, in particular by
implementing crossed random effects in a way
that is both easier for the user and much faster.
However, this function does not offer the same
flexibility as the 1me function for composing
complex variance-covariance structures. In this
paper, all analyses have been performed with
the 64-bit R version 3.1.0 (2014-04-10).
The paper is organized as follows. Section 2
presents the data set. Section 3 exposes a pre-
liminary study including the basic ANOVA
and its limits. Mixed model specification is
presented in Section 4, with details on the mod-
eling steps. We present and discuss the results
in Section 5 and we end with conclusions in
Section 6.

2. The data

The data considered in this paper have
been first described in ( ).
Biomechanical researchers propose experi-
ments where subjects are submitted to various
tasks with the four long fingers (without the
thumb). In this study, 15 subjects were required
to press ledges maximally with the four fin-
gers simultaneously in flexion and extension.
First in extension, two force locations at the
first (ExtP1) and at the third (ExtP3) phalanx
were tested and then in flexion, only the third
phalanx location (FlexP3) was tested. From
now on, we call location the three experimen-
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tal conditions, ExtP3, FlexP3, ExtP1. After 20
trials at low and intermediate intensity, sub-
jects are asked to press maximally three times
per location, with a one-minute rest to avoid
muscular fatigue. Experiments in the three dif-
ferent locations were separated by five minute
rests.

The data set thus includes 540 measures of
finger force intensity (F), subject number (in-
dividual from 1 to 15), location (with values
ExtP3, FlexP3 and ExtP1), finger (with values I
for index, M for middle, R for ring and L for
little). For coding purpose, a reiteration vari-
able (trial from 1 to 135) has been added with
different numbers from one subject to another
and from one location to another. In other
words, only 4 simultaneous measures of the
four fingers of one reiteration of a given indi-
vidual in a given location share the same value
of the reiteration variable. The head command
in R helps to observe the data structure:

> head(Data.new,200)
F location finger indiv trial

1 8.551025 ExtP3 I 1 1
2 7.836914 ExtP3 I 1 2
3 7.653809 ExtP3 I 1 3
4 7.598877 ExtP3 I 2 4
5 6.805420 ExtP3 I 2 5
6 6.506348 ExtP3 I 2 6
46  7.550049 ExtP3 M 1 1
47  6.848145 ExtP3 M 1 2
48  6.945801 ExtP3 M 1 3
49  4.431152 ExtP3 M 2 4
50  4.528809 ExtP3 M 2 5
51  4.699707 ExtP3 M 2 6
181 22.454834  FlexP3 I 1 46
182 25.079346  FlexP3 I 1 47
183 22.003174  FlexP3 I 1 48
184 29.632568  FlexP3 I 2 49
185 34.143066  FlexP3 I 2 50
186 34.051514  FlexP3 I 2 51

3. Preliminary study

3.1.  Exploratory data analysis

The raw data set is shown in Figure 1. One can see
that the intensities are clearly higher in FlexP3 lo-

cation than in ExtP1 location and in ExtP3 location,
in position but also in scattering. Index measures
(blue circles) are nearly always higher than middle
measures (red triangles), themselves higher than
ring measures (green plus), themselves higher than
little measures (magenta times), except in the ExtP1
location where this order appears less often. Dif-
ferences between subjects are also to be observed.
For instance, individual 4 always has low measures
whatever the location, whereas individual 7 always
has high measures. One can also see that index
and middle measures on the one hand, and ring
and little measures on the other hand, are close.
This is confirmed by the correlation between fingers
illustrated in Figure 2.

This exploratory data analysis suggests that inten-
sity measures are different from a location to an-
other, from a finger to another, but also that a sub-
ject effect has to be taken into account. Moreover,
simultaneous finger measurements imposed by the
experimental design cannot be considered as inde-
pendent.

3.2.  Two-factor ANOVA and its limits

As already done in ( ), and even
though it is not convenient in this context since we
omit the subject effect and the dependence between
simultaneous finger measurements, we begin our
study with a two-factor ANOVA, namely the loca-
tion and the finger effects. In other words, the study
is done as if measurements had been done finger by
finger, and with 45 different subjects. Following R
conventions, our model is thus:

Fgi=p+a+Bs+ ity 1)

where
e Iy is the measurement of individ-
ual i € {1,...,45}, in location |/ €

{ExtP3,FlexP3,ExtP1} and finger f €
{I, M,R,L}

e 1 is the population measurement of index in
location ExtP3

e y; is the overall difference between measure-
ments in location ExtP3 and location I for
index (agyxp3 = 0)

e fy is the overall difference between measure-
ments of index and finger f in location ExtP3
(Br=0)

® 7y is the interaction term of location / and
finger f (vextps,f = 71,1 =0)

e ¢/y; is the residual error, supposed to be nor-

mally distributed, centred, with variance o2
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Moreover, all residual errors are supposed to
be independent.
Residuals of the model appear in Figure 3. They
suffer from several defects:

o They are clearly not identically scattered from
one location to another, whereas ANOVA
model imposes equal variances in all groups.

e Some subjects have either all positive or all
negative residuals, which suggests a subject
effect that has not yet been taken into account.

o Residuals still remain very correlated from a
finger to another, as it can be seen in Figure 4.

To deal with these defects, in Section 4, we focus on
linear mixed-effects models to fit the data set.

4. Model specification using a linear
mixed-effects model

4.1.  Modelling the random effect structure

Let denote Fyfjx the force measured on finger f
of individual i at trial k in location | with [ =
ExtP3,FlexP3,ExtP1, f = I, M,R,L,i =1,...,15
and k = 1,2,3. The linear mixed model M for the
response Fjgjy is defined as

Frx=p+a+prtvs+litem (2

with agyps = 0,81 = 0, Ygxeps,f = 1,1 = 0. In this
model, y is the mean for location ExtP3 and finger
index, «; is the fixed effect of location / with respect
to location ExtP3, B is the fixed effect of finger f
with respect to finger index and 7y, f is the interac-
tion between location ! and finger f. The random
effect ¢; in (2) is the individual random effect. The
linear mixed model (2) can be rewritten as

Fipix 1 1 B1
Fipmix 1 1 Bm
+a +
FiRik " H1 Br
FiLi 1 1 Br
i 1 €] 1ik
Yim 1 €I Mik
+ +¢; 3
VIR G 1 €[Rik
T 1 €ILik
€11k
with gi ~ N(O, le) and Elik = EIMik ~ N(O, 0'21)
€IRik
€Lik

with I the identity matrix. All random effects are
assumed independent from each other and indepen-
dent from the error term. Note that the assumption

Var(egx) = 0*I can be relaxed as shown in section
4.2 in order to model unequal variances and specific
within-group correlation structures. In the sequel,
we use the Ime function of the nlme package to fit
models. We use the maximum likelihood estima-
tion criterion by specifying method=""ML’’ in order to
compare several models using the anova function.
Model M is fitted using the R code displayed in
Table 1. Figures 5 and 6 show that for each location
and for each finger, the boxplots of the standard-
ized residuals by individual for model My are not
centred at zero. This clearly suggests that there
are different individual effects from one location to
another and from one finger to another.

To solve this problem, we introduce a location within
individual random effect ¢;, a finger within indi-
vidual random effect ¢; r and an interaction random
effect between location and finger §;;¢ leading to
model Mj:

Fipix 1 17 Bi M1
Fimik 1 1 Bm TIM
= + o + +
FiRik i h Br YIR
Frix 1 1] BL 7L
1 1 Gi it
|1 1 Sim Cilm
i 1] Git 1| iR N iR
1 L1 GiL GilL
E1ik
€IMik (4)
€IRik
ELik
with & ~ N(0,77), & ~ N(0,13), Giy ~ N(0,73),
€11ik
&iip ~ N(0,7F) and gy = ?M.ik ~ N(0,021).
IRik
€lLik

We fit model M; using the R code displayed in Table
2. For each location and for each finger, the boxplots
of the standardized residuals (Figures 7 and 8) by
individual for model M; are now centred at zero.
However, Figure 7 also indicates that the residual
variability is different from a location to another. To
take this variability into account, we define a new
model M, assuming a different variance per loca-
tion for &; i.e & ~ N(0,77) . This model is fitted in
R using the code displayed in Table 3. To compare
these models, we first use the ANOVA function as
displayed in Table 4. The AIC and BIC values and
the p-value of the likelihood ratio statistic show that
model M gives a better fit. However, note that this
model does not improve the residual graphs: there
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still remains different residual variability from one
location to another.

To deal with this problem, a more general model will
be considered in Subsection 4.2.1 keeping the ran-
dom effects structure defined in model My, but al-
lowing different variances by location for the within-
group errors. Moreover, by plotting the pairwise
scatter plots of model M, residuals by each pair of
fingers in Figure 9, we note that introducing random
effect terms in the model did reduce correlations be-
tween fingers. Therefore, in Subsection 4.2.2, we
will consider different correlation structures for the
within-group errors.

4.2, Modelling the residual variance-covariance struc-
ture

The linear mixed model defined in Section 4.1 al-
lows flexibility in the specification of the random
effects structure, but restricts the within-group er-
rors to be independent, identically distributed with
mean zero and constant variance. As observed pre-
viously, we need to relax this assumption by al-
lowing heteroscedastic and correlated within-group
errors. Thus, we extend model M, by assuming
€11ik
€k = 211\3: ~ N(0,0%A;). Note that the within-
€1Lik
group errors £ are assumed to be independent for
different I , for different i and different k and inde-
pendent of the random effects. The 4 x 4 matrices
A, 1 = ExtP3,FlexP3,ExtP1 can be decomposed
into a product of simpler matrices A; = VGV,
where V] is a diagonal matrix containing the stan-
dard deviation of each finger in location ! and C;
is a positive-definite matrix with all diagonal ele-
ments equal to 1 describing the correlation of the
random vector ¢j;3. This decomposition of A; into
a variance structure component and a correlation
structure component is convenient both theoretically
and computationally. It allows us to model sepa-
rately the two structures and to combine them into
a flexible family of models. More detail on variance-
covariance structures can be found in
(2000).
The nlme library provides a set of classes of variance
functions, the varFunc classes, which are used to
specify within-group variance structures. The nlme
library also provides a set of classes of correlation
structures, the corStruct classes, which are used
to model dependence among the within-group er-
rors in the context of linear mixed effects models

( (2000)).

4.21 Modelling the variance matrix V; for
each location

In this subsection, several variance structures V; are
tested to model residuals. As already pointed out in
Section 4.1, the variance of residuals clearly differs
from one location to another. We therefore consider
a first model derived from model M5, noted model
My 1, assuming a different variance from one loca-
tion to another

o0 0 0 0 100 0
0 oy 0 O o100
Vl_oomo’C’_O()lo
0 0 0 o 000 1

Note that, in this model, the correlation matrix C,
equal to the identity matrix, assumes no correla-
tion between fingers. To fit model M, ;, we use the
weights argument of the Ime function (see Table 5).
The option control=lmeControl (msMaxIter=1000)
makes it possible to increase the maximum number
of iterations of the algorithm to achieve convergence.
We compare model M, to model M, using the
anova function (Table 6). The p-value of the likeli-
hood ratio statistic shows that the former best fits
the data. Figures 10 and 11 display boxplots of the
standardized residuals by location and by finger
from models Mp and M ; respectively. Note that,
because of different variances by location in model
My 1, the standardized residuals, displayed in Fig-
ure 11, are calculated as the differences between the
data Fjs;, and the fitted values £ ik divided by the
estimated standard deviation 07 .

Figure 11 shows that, in comparison to model Mj,
the standardized residuals are now similarly scat-
tered from one location to another. It means that we
successfully captured the location variability of the
data. However, the index finger variability appears
to be different from that of the other fingers. Thus,
we introduce model M;, by assuming a different
residual variance for the index in each location (de-
noted o7 for the index and 0’120 for the other fingers):

op 0 0 0 100 0
o @, 0 0 o1 0 0
i=1lo o Tl o[ “=1lo 01 0
0 0 0 o 000 1

Figure 12 shows that finger variabilities are now
similar. Finally, the empirical correlations of the
standardized residuals between fingers in model
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My, are given in Table 7. They are lower than in
the previous models but they remain non negligible
between index and middle (0.450) and between ring
and little (0.330).

4.2.2 Modelling the correlation matrix C;

Here, we retain the V; matrix defined in model M >
and we propose different correlation matrix struc-
tures to model finger dependence.

In a first step, we define model M; 3 using the fol-
lowing correlation matrix:

1 omr orr OLI
omi 1 ormM oM
orr OrM 1 OLR
oLy oM OLr 1

To do that, we use the correlation argument of the
1me function.

Table 8 displays AIC and BIC criteria for models
My, and Mj; 3. Using these criteria to compare both
models, we prefer model M, 3 taking into account
the correlation residuals between fingers since it has
the lowest AIC and BIC. Our choice is confirmed by
Figure 13, which displays the boxplots of the normal-
ized residuals by location and by finger for Model
M, 3. Note that the normalized residuals are calcu-
lated by multiplying the standardized residuals by
the inverse square-root factor of the estimated error
correlation matrix C;. However, we can observe in
Table 9 that the correlations between fingers are not
really improved with respect to model Mj». Nev-
ertheless, we keep model M; 3 as our final model
because it gives us an interpretable estimated corre-
lation matrix.

To explore further this correlation issue, we also
compute residual correlations between fingers, loca-
tion by location in Table 10. It appears that there is a
different correlation matrix by location. An improve-
ment of the final model would thus be to introduce
C; defined as:

1 omnp orn oLn

c, = |omn L ormi o1
ORIl ORMI 1 OLRI
oL 0rmi LRI 1

Unfortunately, to the best of our knowledge, the
correlation option of the Ime function does not
allow such a modelling.

5. Results

For exploration of parameter estimates, we again fit
model Mj3 with the REML (restricted maximum
likelihood) method. REML is often preferred to
ML estimation because it produces unbiased vari-
ance parameter estimates ( ,

).

5.1.  Residuals analysis of the final model

To confirm the validation of model M, 3, we use the
classical plots (Figure 14) for diagnostics purposes:
normalized residuals histogram, normal QQ-plot,
normalized residuals versus fitted values plot, nor-
malized residuals versus observed values plot. The
histogram of the residuals and the normal QQ-plot
suggest that the residuals fit the normal distribution
reasonably well, except for the extreme tails. The
residuals versus fitted values plot and the residuals
versus observed values plot do not highlight any
residual structure.

5.2.  Results analysis

From the 1me output in Table 11, we summarize the
REML estimates of the standard deviation compo-
nents in Table 12. Estimated standard deviations
(%1, 1y, 12, T4) of the random effects are directly ob-
tained from the output in the Random effects part.
Moreover, the estimated within-group standard de-
viations, 0; r in the last column of Table 12, are
obtained by multiplying the residual term 0.47 by
the parameter estimates of the Variance function
part.

Most variance components have a greater standard
deviation than the residual one, hence justifying
their inclusion as random effects in the model. The
high estimates of the standard deviation compo-
nents 7; and 74 indicate that the individuals and
the interaction between finger and location clearly
contribute to the variability of the data. Concerning
the location within individual random effect, an im-
portant variability is observed for locations FlexP3
and ExtP1 with 1; equal to 5.46 and 1.92 respectively.
Concerning the finger within individual random ef-
fect, some variability is also observed, but is lower
than the previous ones. Finally, it means that vari-
ability of the force measures highly depends on the
individual and on the experimental conditions, in
particular in flexion at third phalanx location and in
extension at first phalanx location.



-7- C. Bazzoli et al

The 1me output in Table 11 also provides estimates
of the fixed parameters. The intercept (8.64) is in-
terpreted as the average force intensity measure for
the index finger in the ExtP3 location. This group of
measures is considered as the baseline group and all
other groups are compared to this one. For instance,
we can see a significant decrease (—2.74) of the force
intensity measure for the ring finger in the ExtP3
location compared to the force intensity measure
for the index finger in the same location. The aver-
age force intensity measure for the former is thus
8.64 —2.74 = 5.90. In the same way, we calculate
and display in Table 13 the estimated mean level of
each finger in each location.

In order to provide answers to study objectives, we
introduce two contrast analyses. Once the location-
finger crossing groups variable (named group) is
created, we use the constrasts function of the li-
brary MASS ( , ), as presented
in Table 14. Extract of results are displayed in Tables
15 and 16. We only interpret the lines of the first
8 (resp. 9) groups corresponding to the number of
tested contrasts in Table 15 (resp. Table 16) . Table
15 shows that, for one given finger, force intensities
of each considered pair of locations are significantly
different at 5%. On the contrary, one can see in Ta-
ble 16 that the two-by-two finger comparisons show
some significant differences:

o In the extension movement, the only significa-
tive difference between nearby fingers average
force intensities is between the index and the
middle on the first phalanx (p-value<le — 06).

o In the flexion movement, we notice a signifi-
cantly higher average force intensity for the
middle than for the ring (p-value<le — 16),
and a significantly higher average force in-
tensity for the ring than for the little (p-
value<le — 11).

The estimation of the correlation matrix between
measures of the four fingers is also provided in the
Correlation section part of the Ime output (see
Table 11). High positive correlations are observed
between the measures of index and middle fingers
(0.50), ring and little fingers (0.36) and, to a lesser
degree, middle and ring fingers (0.22). It means that,
in extension and flexion movements, index and mid-
dle fingers on the one hand, ring and little fingers
on the other hand, seem to vary in the same way.

6. Conclusion

In this paper, we have proposed a methodology to
handle with biomechanical data. The main features
of these data lie in the repetition of the force inten-
sity measures by individual and the simultaneity
of the measures of the four fingers obtained from
different tasks. Observations have been fitted using
a linear mixed model with a complex random ef-
fects structure and a non-diagonal residual variance-
covariance matrix using the 1me R function from
the nlme package. Although some limitations in
the implementation of a more complex model have
been pointed out, this methodology has been shown
to provide the behavior of the force among fingers
during different experimental conditions.

The force intensity is different for flexion and ex-
tension. In extension, we have found contrasting
intensity levels of the index and the middle fingers
on the first phalanx. In flexion, we have observed
different intensity levels concerning the middle and
the ring fingers, as well as concerning the ring and
little fingers. Moreover, we have highlighted vari-
ous sources of variability for the force intensities,
as the individual, the finger and the experimental
conditions.

The analysis of the residual correlations in Section
4.2.2 fails at giving independent normalized resid-
uals, suggesting that a more complex correlation
matrix should be introduced. Unfortunately, as far
as we know, although the nlme library provides
a large set of classes of correlation structures (the
corStruct classes), it does not allow such a mod-
elling. To deal with this issue, an extension to our
work would be to develop a new corStruct class,
integrating a more complex correlation matrix.
Thus, the difficulty of dealing with complex data
involving the use of linear mixed effects models is
clearly illustrated, and the need for further evidence
on the implications of this tool is demonstrated.

Acknowledgements

The authors would like to thank Franck Quaine
and Florent Paclet for providing access to the data.
Collecting the data was financially supported by a
PHRC grant (Rhone Alpes). The data analysis has
been partially supported by the LabEx PERSYVAL-
Lab (ANR-11-LABX-0025-01). The authors thank the
PEPS program of the Communauté d'Universités et
d’Etablissements Université de Grenoble and CNRS
for financial support.



-8- C. Bazzoli et al

References

(1992). S-PLUS Programmer’s Manual. StatSci, a Divi-
sion of MathSoft, Inc., Seattle, WA, USA, version
3.1 edition.

Baayen, R., Davidson, D., and Bates, D. (2008).
Mixed-effects modeling with crossed random ef-
fects for subjects and items. Journal of Memory and
Language, 59:390—412.

Bates, D., Maechler, M., and Bolker, B. (2013). Ime4:
Linear mixed-effects models using S4 classes. R pack-
age version 0.999999-2.

Laird, N. M. and Ware, J. H. (1982). Random-effects
models for longitudinal data. Biometrics, 38:963—
974.

Onyango, N. O. (2009). On the linear mixed effects

regression (Imer) r function for nested animal
breeding data. CSBIGS, 4(1):44-58.

Correspondence: frederique.letue@imag.fr.

Patterson, H. and Thompson, R. (1971). Recovery
of interblock information when block sizes are
unequal. Biometrika, 58(3):545-554.

Pinheiro, J. and Bates, D. (2000). Mixed-effects models
in S and S-Plus. Springer-Verlag, New-York.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and
R Core Team (2014). nlme: Linear and Nonlinear
Mixed Effects Models. R package version 3.1-117.

Quaine, F, Paclet, E, Letué, FE, and Moutet, F.
(2012). Force sharing and neutral line during
finger extension tasks. Human Movement Science,
31(4):749-757.

R Development Core Team (2008). R: A Language
and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria.
ISBN 3-900051-07-0.

Venables, W. N. and Ripley, B. D. (2002). Modern Ap-
plied Statistics with S. Springer, New York, fourth
edition. ISBN 0-387-95457-0.


mailto:frederique.letue@imag.fr

-9- C. Bazzoli et al

Tables

Table 1: R code for fitting model M, and plot-
ting the residuals

fitMO <- 1lme(F ~ finger*location, random="1|individual, method="ML")

summary (£itMO0)

resMO.std <- residuals(fitMO,type="pearson")

plot (£itMO,individual~resMO.std|location,abline=0,x1lim=c(-5,5) ,xlab="Standardized residuals")
plot(£itMO,individual~resM0.std|finger,abline=0,xlim=c(-5,5), xlab="Standardized residuals")

Table 2: R code for fitting model M; and plot-
ting the residuals

fitM1 <- 1lme(F ~ fingerx*location,
random=1list (individual=pdBlocked(list(pdIdent(~1),
pdIdent(~location-1),
pdldent (“finger-1),
pdIdent(~location:finger-1)))),
method="ML")
resMl.std <- residuals(fitM1,type="pearson")
plot(£fitM1,individual~resM1l.std|location,abline=0,x1im=c(-5,5),
xlab="Standardized residuals")
plot(fitM1,individual~resMl.std|finger,abline=0,xlim=c(-5,5),
xlab="Standardized residuals")

Table 3: R code for fitting model M,

fitM2 <- 1lme(F ~ fingerx*location,
random=1list (individual=pdBlocked(list(pdIdent(~1),
pdDiag(~location-1),
pdldent(“finger-1),
pdldent(~location:finger-1)))),
method="ML")

Table 4: R code for comparing models My, M;
and M,

> anova(fitMO,fitM1,fitM2)

Model df AIC BIC loglik Test L.Ratio p-value
f£itMO 1 14 3062.614 3122.696 -1517.307
fitM1 2 17 2559.554 2632.511 -1262.777 1 vs 2 509.0603 <.0001

fitM2 3 19 2536.623 2618.163 -1249.312 2 vs 3 26.9310 <.0001
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Table 5: R code for fitting model M 1

fitM2.1 <- 1me(F ~ finger*location,

random=1list(individual=pdBlocked(list(pdIdent(~1),
pdDiag(~location-1),
pdIdent(~finger-1),
pdIdent(~location:finger-1)))),

weights=varIdent(form="1|location),
method="ML",control=1meControl (msMaxIter=1000))

Table 6: R code for comparing models M; and
Ma.

> anova(fitM2,fitM2.1)

Model df AIC BIC logLik
fitM2 1 19 2536.623 2618.163 -1249.312
fitM2.1 2 21 2209.450 2299.573 -1083.725 1

Table 7: Correlation between finger residuals
from model My »

Test L.Ratio p-value

vs 2 331.1733

<.0001

index.resM2.2.std middle.resM2.2.std ring.resM2.2.std little.resM2.2.std

index.resM2.2.std 1.000000000 0.
middle.resM2.2.std 0.449934291 1.
ring.resM2.2.std 0.052858083 0.
little.resM2.2.std 0.002880021 -0.

Table 8: R code for comparing models M,
and M2.3.

> anova(fitM2.2, fitM2.3)

Model df AIC BIC logLik
fitM2.2 1 24 2196.181 2299.178 -1074.090
fitM2.3 2 30 2163.984 2292.731 -1051.992 1

Table 9: Correlation between finger residuals
from model M 3

44993429
00000000
19787515
05427356

0.05285808 0.002880021
0.19787515 -0.054273560
1.00000000 0.330040375
0.33004037 1.000000000

Test L.Ratio p-value

vs 2 44.19657

<.0001

index.resM2.3.norm middle.resM2.3.norm ring.resM2.3.norm little.resM2.3.norm

index.resM2.3.norm 1.0000000000
middle.resM2.3.norm 0.4349576964
ring.resM2.3.norm 0.0769075435

little.resM2.3.norm -0.0009446519

0.4349577
1.0000000
0.1866142
-0.1000403

0.07690754 -0.0009446519
0.18661419 -0.1000402521
1.00000000 0.3160102365
0.31601024 1.0000000000
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Table 10: Correlation between finger residuals

from model M 3

[1] "ExtP3"

index.ExtP3 middle.ExtP3 ring.ExtP3 little.ExtP3
0.29703108 0.01567086 0O
1.00000000 0.12379029 O
0.12379029 1.00000000 O
0.04456328 0.44970726 1

index.ExtP3 1.00000000
middle.ExtP3 0.29703108
ring.ExtP3 0.01567086
little.ExtP3 0.11589476

[1] "FlexP3"

.11589476
.04456328
.44970726
.00000000

index.FlexP3 middle.FlexP3 ring.FlexP3 little.FlexP3
0.5020148 0.08159964
1.0000000 0.32596412
0.3259641 1.00000000
-0.1405854 0.42559940

index.FlexP3 1.00000000
middle.FlexP3 0.50201479
ring.FlexP3 0.08159964
little.FlexP3 -0.17104373

[1] "ExtP1"

-0.1710437
-0.1405854
0.4255994
1.0000000

index.ExtP1 middle.ExtP1 ring.ExtP1 little.ExtP1

index.ExtP1 1.0000000
middle.ExtP1 0.4922102
ring.ExtP1 0.1277424
little.ExtP1 0.0731796

0.4922102
1.0000000
0.1167627
-0.1922833

0.1277424
0.1167627 -
1.0000000
0.1220772

0.0731796
0.1922833
0.1220772
1.0000000
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Table 11: Extract from the 1me output for the
final model

Linear mixed-effects model fit by REML
Data: NULL
AIC BIC logLik
2148.537 2276.61 -1044.268

Random effects:
Composite Structure: Blocked

Block 1: (Intercept)

Formula: ~1 | individual
(Intercept)

StdDev: 2.015483

Block 2: locationExtP3, locationFlexP3, locationExtP1
Formula: ~location - 1 | individual
Structure: Diagonal

locationExtP3 locationFlexP3 locationExtP1
StdDev: 0.0003979309 5.463777 1.922453

Block 3: fingerI, fingerM, fingerR, fingerL
Formula: ~“finger - 1 | individual
Structure: Multiple of an Identity

fingerI  fingerM fingerR  fingerL
StdDev: 0.4971519 0.4971519 0.4971519 0.4971519

Block 4: locationExtP3:fingerI, locationFlexP3:fingerI, locationExtPl:fingerI, locationExtP3:finge:
Formula: “location:finger - 1 | individual
Structure: Multiple of an Identity

locationExtP3:fingerl locationFlexP3:fingerI locationExtPl:fingerI

StdDev: 2.131903 2.131903 2.131903
locationExtP3:fingerM locationFlexP3:fingerM locationExtP1:fingerM

StdDev: 2.131903 2.131903 2.131903
locationExtP3:fingerR locationFlexP3:fingerR locationExtPl:fingerR

StdDev: 2.131903 2.131903 2.131903
locationExtP3:fingerl locationFlexP3:fingerL locationExtPl:fingerL

StdDev: 2.131903 2.131903 2.131903
Residual

StdDev: 0.467283

Correlation Structure: General
Formula: ~1 | individual/trial
Parameter estimate(s):
Correlation:

1 2 3

2 0.498

3 0.082 0.217

4 0.005 -0.039 0.360
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Structure: Different standard deviations per stratum
Formula: “1 | location * Index

Parameter estimates:
ExtP3*I ExtP3*other

1.0000000
Fixed effects: F ~

(Intercept)
fingerM
fingerR
fingerL

locationFlexP3
locationExtP1

fingerM:locationFlexP3
fingerR:locationFlexP3

fingerL:locationFlexP3 -

fingerM:locationExtP1
fingerR:locationExtP1
fingerL:locationExtP1

0.8353108

FlexP3*I FlexP3*other

ExtP1*I ExtPl*other

7.7366386 4.8954079 3.1937128 2.1329918
finger * location

Value Std.Error DF  t-value p-value
8.644884 0.7714543 514 11.205958 0.0000
-1.393365 0.8019731 514 -1.737421 0.0829
-2.742242 0.8040684 514 -3.410458 0.0007
-3.677165 0.8044585 514 -4.570981 0.0000
16.632080 1.7004357 514 9.781070 0.0000
6.084934 0.9522260 514 6.390220 0.0000
1.585422 1.2000256 514 1.321157 0.1870
-5.294868 1.2633332 514 -4.191188 0.0000
10.126682 1.2747899 514 -7.943804 0.0000
-2.174479 1.1202164 514 -1.941124 0.0528
-2.153727 1.1338847 514 -1.899424 0.0581
-0.107558 1.1364151 514 -0.094646 0.9246

Table 12: REML estimates of the standard de-

viation components for the final model

Standard deviation of the random effects | Residual standard deviation
Location | Finger | T T 13 Ty Oif
ExtP3 I 2.02 [ 398 x 10~% | 0.50 2.13 0.47
MR,L | 2.02 | 398 x 10~* | 0.50 2.13 0.39
FlexP3 I 2.02 5.46 0.50 2.13 3.61
MR,L | 2.02 5.46 0.50 2.13 2.29
ExtP1 I 2.02 1.92 0.50 2.13 1.49
MR,L | 2.02 1.92 0.50 2.13 0.99

Table 13: Estimated mean levels of the location-
finger crossing groups.

Location / finger | Index | Middle | Ring | Little
ExtP3 8.64 725 | 590 | 497
FlexP3 25.28 2547 | 17.24 | 1147
ExtP 1 14.73 11.16 | 9.83 | 10.94
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Table 14: R code for contrast analysis.

group <- gl(12,45,540,labels=c("ExtP3:I","ExtP3:M","ExtP3:R","ExtP3:L",
"FlexP3:I","FlexP3:M","FlexP3:R","FlexP3:L",
"ExtP1:I","ExtP1:M","ExtP1:R","ExtP1:L"))

library(MASS)
M.location<-cbind(
c(1,0,0,0,-1,0,0,0,0,0,0,0), # ExtP3/FlexP3,I
c(0,1,0,0,0,-1,0,0,0,0,0,0), # ExtP3/FlexP3,M
c(0,0,1,0,0,0,-1,0,0,0,0,0), # ExtP3/FlexP3,R
c(0,0,0,1,0,0,0,-1,0,0,0,0), # ExtP3/FlexP3,L
c(1,0,0,0,0,0,0,0,-1,0,0,0), # ExtP3/ExtP1,I
c(0,1,0,0,0,0,0,0,0,-1,0,0), # ExtP3/ExtP1,M
c(0,0,1,0,0,0,0,0,0,0,-1,0), # ExtP3/ExtP1,R
c(0,0,0,1,0,0,0,0,0,0,0,-1) # ExtP3/ExtP1,L
)
contrasts (group)<-t(ginv(M.location))
fitM2.3.REML.location <- 1lme(F ~ group,
random=1ist (individual=pdBlocked(list(pdIdent(~1),
pdDiag(~location-1),
pdIdent(“finger-1),
pdIdent(~location:finger-1)))),
weights=varIdent (form="1|location*Index),
correlation=corSymm(form="1|individual/trial),
method="REML", control=1lmeControl (msMaxIter=1000))
summary (fitM2.3.REML. location)

M.finger<-cbind(
c(1,-1,0,0,0,0,0,0,0,0,0,0), # I/M, ExtP3
c(0,0,0,0,1,-1,0,0,0,0,0,0), # I/M, FlexP3
c(0,0,0,0,0,0,0,0,1,-1,0,0), # I/M, ExtP1
c(0,1,-1,0,0,0,0,0,0,0,0,0), # M/R, ExtP3
c(0,0,0,0,0,1,-1,0,0,0,0,0), # M/R, FlexP3
c(0,0,0,0,0,0,0,0,0,1,-1,0), # M/R, ExtP1
c(0,0,1,-1,0,0,0,0,0,0,0,0), # R/L, ExtP3
c(0,0,0,0,0,0,1,-1,0,0,0,0), # R/L, FlexP3
c(0,0,0,0,0,0,0,0,0,0,1,-1) # R/L, ExtP1

)

contrasts(group)<-t(ginv(M.finger))

fitM2.3.REML.finger <- lme(F ~ group,

random=1list (individual=pdBlocked(list (pdIdent(~1),

pdDiag(~location-1),
pdIdent (“finger-1),
pdIdent(“location:finger-1)))),

weights=varIdent (form="1|location*Index),
correlation=corSymm(form="1|individual/trial),
method="REML", control=1meControl(msMaxIter=1000))

summary (£itM2.3.REML.finger)
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Table 15: Extract of the R output for contrat
analysis for comparing each finger force inten-
sity between locations (group1=ExtP3/FlexP3
I, group2=ExtP3/FlexP3 M,
group3=ExtP3/FlexP3 R,
group4=ExtP3/FlexP3 L, group5=ExtP3/ExtP1
I, group6=ExtP3/ExtP1 M, group7=ExtP3ExtP1
R, group8=ExtP3/ExtP1 L)

Fixed effects: F 7 group
Value Std.Error DF t-value p-value
(Intercept) 12.741371 0.7462516 514 17.073827 0.0000

groupl -16.632080 1.7004340 514 -9.781079 0.0000
group?2 -18.217502 1.6479859 514 -11.054404 0.0000
group3 -11.337212 1.6479859 514 -6.879435 0.0000
group4 -6.505398 1.6479859 514 -3.947484 0.0001
groupb -6.084934 0.9522274 514 -6.390211 0.0000
group6 -3.910455 0.9369387 514 -4.173651 0.0000
group? -3.931207 0.9369387 514 -4.195799 0.0000
group8 -5.977376 0.9369387 514 -6.379688 0.0000
group9 2.927701 0.6237270 514 4.693882 0.0000
groupl0 -9.304134 0.6694338 514 -13.898513 0.0000
groupll -0.337429 0.6151191 514 -0.548558 0.5835

Table 16: Extract of the R output for con-
trat analysis for comparing nearby finger
force intensities for each location (groupl=I/M,
ExtP3, group2=I/M, FlexP3, group3=I/M,
ExtP1, group4=M/R, ExtP3, group5=M/R,
FlexP3, group6=M/R, ExtP1, group7=R/L,
ExtP3, group8=R/L, FlexP3, group9=R/L,
ExtP1)

Fixed effects: F 7 group
Value Std.Error DF t-value p-value

(Intercept) 12.741371 0.7462530 514 17.073797 0.0000
groupl 1.393365 0.8019732 514 1.737421 0.0829
group?2 -0.192057 0.9288755 514 -0.206763 0.8363
group3 3.567844 0.8231851 514 4.334194 0.0000
group4 1.348877 0.8026559 514 1.680517 0.0935
groupb 8.229167 0.9060900 514 9.082063 0.0000
group6 1.328125 0.8206804 514 1.618322 0.1062
group7 0.934923 0.8020522 514 1.165663 0.2443
group8 5.766737 0.8875402 514 6.497438 0.0000
group9 -1.111247 0.8168230 514 -1.360450 0.1743
grouplO 2.733225 1.1135839 514 2.454440 0.0144
groupll 18.614637 2.3509517 514 7.917916 0.0000
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Figure 1: Finger force intensity by location (left ExtP3, centre FlexP3, right ExtP1), by subject
(on the x axis) and finger (blue circle for index, red triangle for middle, green plus for ring and
magenta times for little).
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Figure 2: Pairwise scatter plots of force intensity measures for each pair of fingers (circle ExtP3,
triangle FlexP3, plus ExtP1). Empirical correlations are 0.921 between index and middle, 0.876
between index and ring, 0.801 between index and little, 0.898 between middle and ring, 0.704
between middle and little, 0.764 between ring and little.
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Figure 3: ANOVA residuals by location (left ExtP3, centre FlexP3, right ExtP1), by subject (on the
x axis) and finger (blue circle for index, red triangle for middle, green plus for ring and magenta
times for little).
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Figure 4: Pairwise scatter plots of the ANOVA residuals for each pair of fingers (circle ExtP3,
triangle FlexP3, plus ExtP1). Empirical correlations are 0.863 between index and middle, 0.742
between index and ring, 0.787 between index and little, 0.753 between middle and ring, 0.732
between middle and little, 0.741 between ring and little.
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Figure 5: Individual boxplots of the standardized residuals by location for model M.
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Figure 6: Individual boxplots of the standardized residuals by finger for model M.



21-

18
14
12
12
1
10

O N )

individual

15
14
12
12
11
10

9

N R

Figure 7: Individual boxplots of the standardized residuals by location for model M.
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Figure 8: Individual boxplots of the standardized residuals by finger for model M.
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Figure 9: Pairwise scatter plots of model M residuals for each pair of fingers (circle ExtP3, triangle
FlexP3, plus ExtP1). Empirical correlations are 0.482 between index and middle, 0.187 between
index and ring, 0.005 between index and little, 0.370 between middle and ring, —0.026 between
middle and little, 0.405 between ring and little.
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Figure 10: Boxplots of the standardized residuals by location and by finger for model Mj.
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Figure 11: Boxplots of the standardized residuals by location and by finger for model M; ;.
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Figure 13: Boxplots of the normalized residuals by location and by finger for model M; 3.
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Figure 14: Diagnostic plots for model Mj 3.
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