
HAL Id: hal-00998864
https://hal.science/hal-00998864v1

Preprint submitted on 2 Jun 2014 (v1), last revised 13 Jul 2015 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection of dependence patterns with delay
Julien Chevallier, Thomas Laloë

To cite this version:

Julien Chevallier, Thomas Laloë. Detection of dependence patterns with delay. 2014. �hal-00998864v1�

https://hal.science/hal-00998864v1
https://hal.archives-ouvertes.fr


Detection of dependence patterns with delay

Julien Chevallier∗, Thomas Laloë

Université de Nice

Julien.CHEVALLIER@unice.fr

Summary

The Unitary Events (UE) method is a popular and efficient method used this last decade to detect dependence

patterns of joint spike activity among simultaneously recorded neurons. The first introduced method is based on

binned coincidence count (Grün, 1996) and can be applied on two or more simultaneously recorded neurons. This

counting method is known to be subject to loss in synchrony detection (Grün and others, 1999). This defect has

been corrected by the multiple shift coincidence count (Grün and others, 1999) for discrete time recordings of

two simultaneously recorded neurons. This multiple shift coincidence count has recently been transposed in the

continuous time framework (Tuleau-Malot and others, 2014) with the notion of delayed coincidence count (also for

two neurons). The extension of this count to more than two neurons has not been investigated until the present

work. First of all, we propose a generalization of the delayed coincidence count for more than two neurons. The

point processes framework allows computations leading to a Gaussian approximation of the count for Poissonian

spike trains. Since unknown parameters are involved in the approximation, a plug-in step is needed (where un-

known parameters are replaced by estimated ones) and leads to a modification of the limit distribution. Finally the

method takes the multiplicity of the tests into account via a Benjamini and Hochberg approach (Benjamini and

Hochberg, 1995), to guarantee a prescribed control of the false discovery rate. We compare our new method and

the UE method proposed in (Grün and others, 2002) over various simulations including changes in the underlying

model. Furthermore our method is applied on real data.
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I. Introduction

The communication between neurons relies on their capacity to generate characteristic electric pulses called action

potentials. These action potentials are usually assumed to be identical stereotyped events. Their maximum (called

spike) can be considered as the relevant information. That is why the study of spike frequencies (firing rates) of

neurons plays a key role in the comprehension of the information transmission in the brain (Abeles, 1982; Gerstein

and Perkel, 1969; Shinomoto, 2010). One of the most important way to study theses spikes has been the recording

of neurons activity via electrodes inserted in a laboratory animal’s brain. Using spike sorting methods, these events

are identified (associated to a neuron), and the measurements made by the electrodes end up in sequences of spikes

(called spike trains).

In this article, the issue of detecting dependence patterns between simultaneously recorded spike trains is

addressed. Despite the fact that some studies used to consider neurons as independent entities (Barlow, 1972),

it is now well established that neurons can possibly coordinate their activity (Hebb, 1949; Palm, 1990; Sakurai,

1999; von der Malsburg, 1981). The understanding of this synchronization phenomenon (Singer, 1993) required

the development of specific descriptive analysis methods of spike-timing over the last decades: cross-correlogram

(Perkel and others, 1967), gravitational clustering (Gerstein and others, 1985) or joint peristimulus time histogram

(JPSTH, Aertsen and others (1989)). In particular, Grün and collaborators developed one of the most popular

and efficient method used this last decade: the Unitary Events (UE) analysis method (Grün, 1996) and the cor-

responding independence test, which detects where dependence lies by assessing p-values. A Unitary Event is a

pattern that recurs more often than expected by chance. This method is based on a binned coincidence count

that is unfortunately known to suffer a loss in synchrony detection. This flaw has been corrected by the multiple

shift coincidence count (Grün and others, 1999). This method is used on discrete time processes. A new method

(MTGAUE), based on a generalization of this count, the delayed coincidence count, has recently been proposed

(Section 3.1 of Tuleau-Malot and others (2014) for two neurons). The results presented in this article are in the

lineage of this newest method and is applied on continuous point processes which are random sets of points. Test-

ing independence between real valued random variable is a well known problem. Various techniques have been

developed, from the classical chi-square test to re-sampling methods for example. The interested reader may look

at (Lehmann and Romano, 2005). Some of these methods and more general surrogate data methods have been

applied on binned coincidence count, since the binned process transforms the spike train in vectors of finite dimen-

sion. However, the case of point processes that are not preprocessed needs other tools and remains to study. The

binned method can indeed deal with several neurons (six simultaneously recorded neurons are analysed in (Grün

and others, 2002). However, both of the improvements (Multiple Shift and MTGAUE) can only consider pairs of



neurons. Thus, our goal is to generalize the method introduced in (Tuleau-Malot and others, 2014) for more than

two neurons. Following (Tuleau-Malot and others, 2014), spike trains are here modelled by point processes.

In Section II, we introduce the different notions of coincidence used through this article. In Section III, a test is

established and the asymptotic control of its level is proved. In Section IV our test is confronted to the original UE

method on simulated data and the accuracy of the Gaussian approximation is verified. In Section V the relevance

of our method when our main theoretical assumptions are weakened is also empirically put on test. Section VI

presents an illustration on real data. All the technical proofs are given in the Appendix.

II. Notions of coincidence and the classical UE methods

In order to detect synchronizations between the involved neurons, different notions of coincidence can be consid-

ered. Classically, there is a coincidence between neurons when they each emit a spike more or less simultaneously.

This notion has already been used in UE methods (Grün and others, 2002) and is based on the following idea: a real

dependency between n > 2 neurons should be characterized by an unusually large (or low) number of coincidence

(Grammont and Riehle, 2003; Grün, 1996; Tuleau-Malot and others, 2014).

II.1 Two notions of coincidence

The UE method (see Grün (1996)) considers discretized spike trains at a resolution ℓ of typically 1 or 0.1 millisec-

ond. Therefore, each trial consists in a set of n spike trains (one for each recorded neuron), each being represented

by a sequence of 0 and 1 of length S. Since it is quite unlikely that two spikes occur at exactly the same time at

this resolution ℓ, spike trains are binned and clipped at a coarser level. More precisely for a fixed bin size ∆ = dℓ,

a new sequence of length S/d of 0 and 1 is associated to each spike train (1 if at least one spike occurs in the

corresponding bin, 0 otherwise). For more precise informations on the binning procedure and the link with point

processes we refer the interested reader to Tuleau-Malot and others (2014).

A constellation or pattern is a vector of size n of 0 and 1 (see Figure 1 or Grün and others (2002)). Of course,

there are 2n different constellations. The UE statistic associated to some constellation w consists in counting the

number of occurrences of such w in the set of S/d vectors of size n

However, as shown in Figure 1, this method largely depends on the bin choice and it has been proved in Grün

and others (1999) that this can lead in the case n = 2 to up to 60% of loss in detection when ∆ is of the order of



the range of interaction.

Therefore, we propose a generalization to the case n > 2 of the notion of delayed coincidence count introduced

in Tuleau-Malot and others (2014), which was already inspired by Grün and others (1999).

Because delayed coincidence count is based on non discretized data, constellations cannot be considered. How-

ever, it is always possible to associate to each constellation w a set L(w) of indices corresponding to the positions of

the 1’s (see Figure 1). In this respect, a dependence pattern refers either to a constellation w or to a set L of indices.

Considering N1, . . . , Nn, some point processes on [a, b], and L, a set of indices i1 < · · · < iL, the delayed

coincidence count XL (of delay δ) over the neurons of subset L is given, for δ < b−a
2 , by

XL = XL(δ) =
∑

(x1,...,xL)∈Ni1 ×···×NiL

1∣
∣

∣

∣

max
i∈{1,...,L}

xi− min
i∈{1,...,L}

xi

∣

∣

∣

∣

6δ

.

The way coincidences are count can be explained in the following way (see Figure 1):

• Fix some duration parameter δ which is the equivalent of the bin size ∆,

• Count how many times each neuron in L spike almost at the same time, modulo the delay δ.

This is intuitively a good marker of the dependence between neurons because the influence of a neuron over

others (whether exciting or inhibiting) results in the presence (or absence) of coincidence patterns, leading to the

detection of synchronisation (or anti-synchronisation if a pattern occurs too few times).

That is a simple and meaningful way to count coincidences in a continuous manner. However, more general

ways to count are possible and the results with respect to XL can easily be transposed to more general counts (see

the Appendix).

II.2 Original UE method

The final goal is to detect dependency between neurons. The idea is to compare two estimators of the expected

coincidence count. The first one is the empirical mean m̄w of the number of coincidence (i.e. for the UE method,

the occurrences of a given constellation w) through M trials,

m̄w =
1

M

M
∑

k=1

m(k)
w ,



where m
(k)
w is the number of occurrences of w during the kth trial. This estimator is consistent even with dependency

between the spike trains. The second one is consistent under the independence hypothesis, and is given by

m̂g,w =
S

d

∏

l∈L(w)

p̂l

∏

k /∈L(w)

(1 − p̂k), (II.1)

where p̂i is the empirical probability of finding a spike in a bin of neuron i.

This enables the construction of the test described in Grün and others (2002) and based on the comparison

between the statistic Mm̄w and a quantile of the Poisson distribution P(Mm̂g,w) where M is the length of the

sample. Most of the time only tests by upper values are computed (Grün, 1996; Grün and others, 2002). Following

the study of Tuleau-Malot and others (2014), we have decided to focus on symmetric tests. The one based on

the UE method rejects the independence hypothesis when m̄w is too different from m̂g,w. More precisely, the

symmetric independence test with significance level α is governed by the following rule: if

Mm̄w > q1−α/2 or Mm̄w 6 qα/2,

where qx is the x-quantile of the Poisson distribution P(Mm̂g,w), then the independence hypothesis is rejected.

The UE method is applied under the hypothesis that the discrete processes modelling the spike trains of neurons

are in fact Bernoulli processes. The equivalent in the "continuous" framework is the Poisson process (as it can be

seen in Tuleau-Malot and others (2014)). This leads to a different estimator of the expected coincidence count and

a different test which are defined properly in the next section.

III. Study of the delayed coincidence count

Once the notion of coincidence is defined with respect to continuous data, mathematical tools can be used to con-

struct the desired independence test. The procedure is to compute the expectation and the variance of the variable

XL. These computations classically implies a Gaussian approximation with respect to i.i.d trials. However, in order

to be useful from a statistical point of view, the Gaussian approximation requires the knowledge of estimators

of the expectation and the variance of XL. The next step is to replace these two parameters by corresponding

estimates. This plug-in procedure is known to change the underlying distribution. As in Tuleau-Malot and others

(2014), the delta method provides the exact nature of this change.

In the continuous framework, a sample is composed by M observations of N1, · · · , Nn the point processes

associated to spikes trains of n neurons on a window [a, b]. The goal is to answer the following question:



Given L a subset of {1, . . . , n}, are the processes Nl, l ∈ L independent?

To do this, a statistical test comparing the two hypotheses

{

(H0) The processes Nl, l ∈ L are independent;

(H1) The processes Nl, l ∈ L are not independent;

is proposed.

In this section our test and its asymptotic relevance are introduced. First, let us present and discuss our main

assumptions which are the same as in Tuleau-Malot and others (2014).

Assumption A1. N1, . . . , Nn are Poisson processes.

This assumption can be resumed to an assumption of independence of a point process with respect to itself

over the time, as Bernoulli processes in discrete settings.

Assumption A2. The Poisson processes N1, . . . , Nn are homogeneous on [0, T ]

Assumption A2 may also appear very restrictive. But once again Bernoulli processes considered in Grün and

others (1999, 2002) have the same drawback. Moreover, if necessary, one can partition [0, T ] in smaller intervals

on which A2 is satisfied. For more precise informations on Poisson processes we refer the interested reader to

Kingman (1993).

This assumptions are necessary in this work in order to obtain an explicit form for the expected number of

coincidences (and its variance). Note that there exist some trial-shuffling methods in the literature for which there

is no need of a model on the data (Pipa and others, 2003; Pipa and Grün, 2003). However, they are based on

binned coincidence count, and there is no equivalent with a delayed coincidence count, due to serious computa-

tional issues. Alternative works have also been done in the Bayesian paradigm (Archer and others, 2013).

III.1 Asymptotical properties

In order to build our independence test, we need to understand the behavior of the number of coincidence XL under

the independence hypothesis H0. In particular, the expected value and the variance of XL must be computed. In

a general point processes framework, these computations are impossible. This is why some restrictive assumptions

are needed, such as A1, A2 and the independence of the processes, as done in the original UE method where

independent Bernoulli processes have been considered.



Theorem III.1. Let L and XL be as defined previously. Suppose assumptions A1 and A2 and denote by λ1, . . . , λn

the respective intensities of N1, . . . , Nn. Under hypothesis H0, the expected value and the variance of the number

of coincidences XL are given by:

m0 := E [XL] =

(

L
∏

l=1

λil

)

I(L, 0)

and

V ar(XL) = m0 +

L−1
∑

k=1









∑

J ⊂L
#L=k

∏

j∈J

λ2
ij

∏

l/∈J

λil









I(L, k),

where the I(L, k) are given by Proposition III.1 below.

The proof lies on the calculus of the moments of a sum over a Poisson Process and is given in Appendix VII.

The expressions of the integrals I(L, k) are not trivial to obtain, but calculations can be made as showed in

the following result.

Proposition III.1. For b > a > 0 and 0 < δ < b − a, define for every k ∈ {0, . . . , L}

I(L, k) =

ˆ

[a,b]L−k







ˆ

[a,b]k

1∣
∣

∣

∣

max
i∈{1,...,L}

xi− min
i∈{1,...,L}

xi

∣

∣

∣

∣

6δ

dx1 . . . dxk







2

dxk+1 . . . dxL,

where the convention
´

[a,b]0

f (x) = f (x) is set. Then, for L > 2, and k ∈ {0, . . . , L − 1}

• I (L, L) = L2 (b − a)
2

δ2L−2 − 2L (L − 1) (b − a) δ2L−1 + (L − 1)
2

δ2L

• I (L, k) = f (L, k) (b − a) δL+k−1 − h (L, k) δL+k

where f (L, k) =
k (k + 1) + L (L + 1)

L − k + 1
,

and h (L, k) =
−k3 + k2(2 + L) + k(5 + 2L − L2) + L3 + 2L2 − L − 2

(L − k + 2)(L − k + 1)

Remark Note that for k < L, I (L, k) is of the order of δL+k−1 (when δ ≪ b − a).

III.2 Independence test

Now that the behavior of XL under H0 is known, the method to construct an independence test is quite clear.

Suppose that M i.i.d. trials are given. Denote N
(k)
i the spike train of neuron i during the kth trial. The basic idea

is to compare two estimates of the expectation of XL. The first one is the empirical mean of XL:

m̄L =
1

M

M
∑

k=1

X
(k)
L , (III.2)



where X
(k)
L is the delayed coincidence count during the kth trial. This estimate converges even if the processes are

not independent. More precisely the following asymptotic result is given by the Central Limit Theorem

√
M (m̄L − E [XL])

D−→
M→∞

N (0, V ar(XL)) ,

where
D−→ denotes the convergence in distribution.

The second estimate is given by Theorem III.1. Indeed, under H0 the following equality holds

E [XL] = m0 =

(

L
∏

l=1

λil

)

I(L, 0).

Then we only have to replace the spiking intensities λil
by λ̂i := 1

M(b−a)

∑M
k=1 N

(k)
i ([a, b]), where N

(k)
i ([a, b])

denotes the number of spikes in [a, b] for neuron i during the kth trial. Therefore, the following estimator is

considered

m̂0,L =

L
∏

l=1

λ̂il
.I (L, 0) (III.3)

So there are two estimates of E [XL] as for the UE method: m̄L who is always consistent and m̂0,L who

is consistent only under H0. This leads to the following test: the independence assumption is rejected when

the difference between m̄L and m̂0,L is large. More precisely, Theorem III.2 gives the asymptotic behavior of

√
M (m̄L − m̂0,L) under H0.

Theorem III.2. Under the notations and assumptions of Theorem III.1, and under H0, the following assumptions

are true

• The following convergence in distribution holds:

√
M (m̄L − m̂0,L)

D−→
M→∞

N
(

0, σ2
)

,

where N (µ, s2) denotes the gaussian distribution with mean µ, variance s2 and

σ2 = V ar(XL) − (b − a)−1
E [XL]

2

(

L
∑

l=1

λ−1
ij

)

.

• Moreover, σ2 can be estimated by

σ̂2 = v̂ (XL) − (b − a)−1I(L, L)

L
∏

l=1

λ̂2
il

(

L
∑

k=1

λ̂−1
ik

)

,

where

v̂(XL) = m̂0,L +

L−1
∑

k=1









∑

J ⊂L
#L=k

∏

j∈J

λ̂2
ij

∏

l/∈J

λ̂il









I(L, k),

and

√
M

(m̄L − m̂0,L)√
σ̂2

D→ N (0, 1) .



The proof relies on a standard application of the delta method (Casella and Berger, 2002) and is given in

Appendix B.

Note that the results obtained in Theorems III.1 and III.2 are true for more general delayed coincidence counts.

A more general result and its proof are given in Appendix. However when one considers more general ways to

count coincidences the integrals I(L, k) are harder to compute.

The results obtained in Theorem III.2 allow us to easily build a test for detecting a dependency between

neurons:

Definition III.1 (The GAUE test). For α ∈ ]0, 1[, denote zα the α-quantile of the standard Gaussian distribution

N (0, 1). Then the symmetric test which rejects H0 when m̄ and m̂0,L are too different is defined by

∣

∣

∣

∣

√
M

(m̄L − m̂0,L)√
σ̂2

∣

∣

∣

∣

6 z1−α/2.

Note that once a subset is rejected by our test, one can determine if the dependency is rather excitatory or

inhibitory according to the sign of m̄L − m̂0,L. If m̄L − m̂0,L > 0 (respectively < 0) then the dependency is rather

excitatory (respectively inhibitory).

The following corollary is an immediate consequence of Theorem III.2.

Corollary III.1. Under assumptions of Theorem III.2, the test presented in Definition III.1 is asymptotically of

level α.

IV. Illustration Study

In this section, an illustration of the previous theoretical results is given. In order to do that, Poisson processes

are simulated. We choose a Framework F1 (size of the window, number of neurons, discharge rates) close to real

data:

• Trial duration of b − a is randomly selected (uniform distribution) between 0.2s and 0.4s;

• n = 4 neurons with different intensities randomly selected (uniform distribution) between 8 and
20 Hz;

• L = {1, 2, 3, 4};

• Coincidence delay δ randomly selected (uniform distribution) between 0.015s and 0.025s.



















































F1

IV.1 Illustration of Theorem III.2

To empirically validate the theoretical result on the level of our test we simulate independent Poisson processes

with the previously provided parameters (Framework F1). Considering M independent trials of n point processes,

the asymptotic of the delayed coincidence count is studied when M grows. To this aim, we use a Monte Carlo



method via a large number of simulations (1000) of M trials. For each iteration, we randomly select a new set of

parameters (trial duration, intensities, coincidence delay). Finally, on each simulation, we compute our statistic

Si =
√

M
(m̄L,i−m̂0,i)√

σ̂2
i

(for i from 1 to 1000) and plot (Figure 2) the Kolmogorov distance KS(FM,1000, F ) between

the estimated distribution function over the 1000 repetition FM,1000 and the standard Gaussian distribution

function F :

KS(FM,1000, F ) = sup
x

|FM,1000(x) − F (x)|.

As expected, the Kolmogorov distance decreases to 0 as M grows. Moreover, it seems reasonable to consider

sample size of the order of 30 or larger since the KS distance does not decrease significantly after that.

Under H0, the theoretical results give that the p-values should be asymptotically distributed (in M) as the

uniform distribution. Thus, the evolution (with respect to M) of the Kolmogorov distance between the empirical

distribution function of the obtained p-values (with our test and the one given by the UE method) and the uniform

distribution is plotted for symmetric tests (See Figure 3). As previously, it seems reasonable to consider sample size

of the order of 30 or larger. Moreover, the distribution of the p-values given by the UE test does not converge to

the uniform. In order to describe more precisely what happens, we plot in Figure 4 the sorted p-values in function

of their normalized rank (for M = 50). Note that if a curve is below (respectively above) the diagonal, then the

probability of rejecting independence is more (respectively less) important than it should be under H0. Our test

seems to be too conservative except for very small p-values. The problem induced by this non conservativeness for

very small p-values is detailed at the end of Section V. However, the empirical frequency of p-values lower than

0.05 is 5%. On the other side, the UE test rejects too many cases. For example, the UE test with level 5% rejects

almost 10% of the cases.

IV.2 Illustration of the Power of the test

To evaluate the power of the test, we simulate a sample which is dependent and check how many times the test

rejects H0. Note that unlike the level of the test, no theoretical information can be deduced from Theorem III.2,

since we do not now the distribution of our statistic if we are not under H0.

To obtain dependent Poisson processes an injection model inspired by the one used in Grün and others

(2002, 1999) or Tuleau-Malot and others (2014) is used. Consider independent homogeneous Poisson processes

N1, . . . , Nn, drawn according to Framework F1. We simulate an other Poisson process (according to the same

framework but independent from the previous ones) N{1,...,n} which is injected for every neuron. Thus our se-



quence of dependent Poisson processes is given by

Ni = N i ∪ N{1,...,n}.

This new framework (F1 completed by the injection) is referred as Framework F2.

Note that in the injection model used in Grün and others (1999), a small shift is applied before injection. In our

Poissonian framework this shift cannot be performed in order to keep the Poissonian properties of the processes

under H1. Moreover, this injection model can only model excess of coincidences and not lack of coincidences. For

a fixed level 0.05, Figure 5 illustrates the power of the two tests in function of M . Then Figure 6 represents the

p-values in function of their normalized rank, for M = 50. The gap between the two tests in terms of test power

may seem significant (around 20% for small sample sizes in favor of the original UE tests) but this is at the price

of an uncontrolled first kind error.

V. Non-Poissonian framework

In this section, a more realistic framework than the Poisson one is considered. Indeed, it is interesting to see if

our test is still reliable when the Poisson framework is not valid anymore. Our test is confronted to multivariate

Hawkes processes, which can be simulated thanks to Ogata’s Thinning method (Ogata, 1981) inspired by Lewis

and Shedler (1979). The use of Hawkes processes in neurobiology was first introduced in Chornoboy and others

(1988). With the development of simultaneous neuron recording there is a recent trend in favor of Hawkes processes

in terms of modelling spike trains (Krumin and others (2010); Pernice and others (2011, 2012); Tuleau-Malot and

others (2014)). In this model, interaction between two neurons can be easily and in a more realistic way inserted.

This is one of the reasons of this trend.

A counting process N j is characterized by its conditional intensity λj
t which is related with the local probability

of finding a new point given the past. (Informally, the quantity λj
tdt gives the probability that a new point on N j

appears in [t, t + dt] given the past.) So let us define the conditional intensities of a multivariate Hawkes process.

The process
(

N i
)

i=1...n
is a multivariate Hawkes process if there exist some functions (hij)i,j=1...n (called

interaction functions) and some positive constants (µi)i=1...n (spontaneous intensities) such that λj given by

λj
t = max

(

0, µj +

n
∑

i=1

ˆ

s<t

hij (t − s) N i (ds)

)

is the intensity of the point process N j , where N i(ds) is the point measure associated to N i that is

N i(ds) =
∑

T ∈Ni δT where δT is the Dirac measure at point T .



The functions hij represent the influence of neuron i over neuron j in terms of spiking intensity. This influence

can be exciting (h > 0) or inhibiting (h 6 0)

Remark 1. This includes the case where the interaction function can be negative, which is possible thanks to

the positive part.

2. The homogeneous Poisson process is a particular case of Hawkes processes (take null interaction functions).

For example, suppose that hij = α1[0,x]. If α > 0 (respectively α < 0) then the apparition of a spike on N i

increases (respectively decreases) during a delay (namely x) the probability to have a spike on N j : neuron i excites

(respectively inhibits) neuron j. The processes (N i) in this Hawkes model are independent if and only if hij = 0

for all i 6= j.

Note also that the self-interaction functions hjj can model refractory periods, making the Hawkes model more

realistic than Poisson processes, even in the independence case. In particular when hjj = −µj1[0,x] , all the other

interaction functions being null, the n-dimensional process is composed by n independent Poisson processes with

dead time x, modelling strict refractory periods of length x (Reimer and others (2012)).

All the following tests are computed according to the Framework F3 below:

• Trial duration of b − a is randomly selected (uniform distribution) between 0.2 and 0.4;

• n = 4 neurons with spontaneous intensity µ1, . . . , µ4 randomly selected (uniform distribution)
between 8 and 20 Hz;

• Negative Auto interaction hi,i = −µi1[0,0.005s];

• L = {1, 2, 3, 4};

• Coincidence delay δ randomly selected (uniform distribution) between 0.015 and 0.025.
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
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




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






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
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






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





F3

To illustrate the level and power of the test in this new framework (where no theoretical result is proven), we

use the same methodology as in the Poissonian framework.

V.1 Illustration of the level

As in the Poissonian framework (Section IV.1), Figure 7 shows the evolution of the KS distance between FM,1000

and F and Figure 8 the evolution of the KS distance between the sorted p-values and the uniform. The conclusions

appear to be similar: it seems reasonable to consider sample size of the order of 30 or larger and the U.E. sorted

p-values are further away from the uniform distribution.

Finally, Figure 9 plays the same role than Figure 6 and presents the sorted p-values in function of their

normalized rank (for M = 50). Our test appears to be even more conservative than in the Poissonnian framework



(for example, the empirical frequency of p-values lower than 0.05 is of the order of 1% instead of 5% in the

Poissonian framework). On the other side, UE test still rejects too many cases. For example, the UE test with

level 5% rejects almost 10% of the cases.

V.2 Illustration of the Power of the test

As said previously, it is more realistic to introduce dependency between Hawkes processes than Poisson processes.

Still considering Framework F3, interaction functions hi,j = α1[0,0.005s], α being randomly selected between 20

and 30 Hz, are added. More precisely, we add three interaction functions: h3,1, h4,2 and h2,1 (see Figure 10). This

new framework (F3 completed by the three interaction function) is referred as Framework F4.

As previously we provide first an illustration of the power of the two tests, associated to a level of 0.05, in

function of M (Figure 11). Then Figure 12 represents the p-values in function of their normalized rank, for M = 50.

The gap between the two tests in terms of test power is smaller in this case (around 10% for small sample sizes,

in favor of the original UE tests) but still at the price of an uncontrolled first kind error.

V.3 Multiple pattern test

Rather than perform the test on the complete pattern {1, 2, 3, 4}, one can test all the eleven sub-pattern of two,

three or four neurons. In multiple testing, the notion of test level is not relevant. The closest notion to the level of

a test might be the Family-Wise Error Rate (FWER) which is the probability to wrongly reject at least one of the

tests. This error rate can be controlled using Bonferroni’s method but it is too restrictive, in particular when the

number of tests involved is too large. One popular way to deal with multiple testing is the Benjamini-Hochberg

procedure (Benjamini and Hochberg, 1995) which ensures a control of the False Discovery Rate (FDR). False

discoveries cannot be avoided but it is not a problem if the ratio of Fp the number of false positives (detections)

divided by R the total number of rejects is controlled. Therefore, the FWER and the FDR are mathematically

defined by FWER = P (Fp > 0) and FDR = E

[

Fp

R
1R>0

]

.

Note that in the full independent case, the FWER and the FDR are equal. The following procedure, due to

Benjamini and Hochberg ensures a small FDR:

1. Fix a level q (q = 5% for example);

2. Denote by (P1, . . . , PK) the p-values obtained for all considered tests;

3. Order them in increasing order and denote the increasing vector (P(1), . . . , P(K));



4. Note k0 the largest k such that P(k) 6 kq/K;

5. Then, reject all the tests corresponding to p-values smaller than P(k0).

The theoretical result of (Benjamini and Hochberg, 1995) ensures that if the p-values are upper bounded by

a uniform distribution and independently distributed under the null hypothesis, then the procedure guarantees a

FDR less than q. The main drawback of this procedure in our case is that one needs to compute p-values that are

very small when K is large. For example, if K > 50 and q = 0.05, the upper bound given by kq/K can be smaller

than one thousandth and as noted in Section IV.1 the empirical frequency of very small p-values is greater than

expected and therefore the uniform upper bound of the p-values is not guaranteed in our case. However, only 11

tests are considered here and the procedure still returns reliable results.

We perform 1000 simulations and count how many times the tests reject the independence. The results, ob-

tained for M = 50, are presented in Figure 13. They show that our test mostly detects the pattern {1, 2}, {1, 3},

{2, 4}, {1, 2, 3}, {1, 2, 4} and {1, 2, 3, 4}. This is consistent with the considered framework (F4) since the real con-

nection are between {1, 2}, {1, 3} and {2, 4}. Moreover, the asymmetry in terms of detection between {1, 3} and

{2, 4} can be explained by our configuration which excites more Neuron 1 than any other. More precisely, the

auto-inhibitions imply strict refractory periods only for neurons 3 and 4 since they are not excited by an other

neuron. This is not true for neurons 1 and 2: For example, neuron 1 is excited by neurons 3 and 2 whereas neuron

2 is excited by neuron 4 only.

The U.E. test essentially detects much less the pattern {1, 2, 3, 4} and to a lesser extent {1, 2, 4}.

VI. Real data study

Our test being validated on simulations, our method can be now applied on real data and results in agreement

with classical knowledge on those data are shown.

VI.1 Description of the data

The data set considered here is the same as in Tuleau-Malot and others (2014) and previous experimental studies

Grammont and Riehle (2003); Riehle and others (2000, 2006). The following description of the experiment is

copied from Section 4.1 of Tuleau-Malot and others (2014). These data were collected on a 5-year-old male Rhesus

monkey who was trained to perform a delayed multidirectional pointing task. The animal sat in a primate chair in

front of a vertical panel on which seven touch-sensitive light-emitting diodes were mounted, one in the center and



six placed equidistantly (60 degrees apart) on a circle around it. The monkey had to initiate a trial by touching

and then holding with the left hand the central target. After a fix delay of 500ms, the preparatory signal (PS) was

presented by illuminating one of the six peripheral targets in green. After a delay of either 600ms (with probability

0.3) or 1200ms (with probability 0.7), it turned red, serving as the response signal and pointing target. Signals

recorded from up to seven microelectrodes (quartz insulated platinum-tungsten electrodes, impedance: 2-5MΩ at

1000Hz) were amplified and band-pass filtered from 300Hz to 10kHz. Using a window discriminator, spikes from

only one single neuron per electrode were then isolated. Neuronal data along with behavioral events (occurrences

of signals and performance of the animal) were stored on a PC for off-line analysis with a time resolution of 10kHz.

The idea of the analysis is to detect some conspicuous patterns of coincident spike activity appearing during the

response signal in the case of a long delay (1200ms). Therefore, we only consider trials where the response signal

is indeed occurring after a long delay.

VI.2 The test

We dispose of recordings of four neurons (35 trials by neurons) and we consider two sub windows: one between

300ms and 500ms (i.e. before the preparatory signal), the other between 1100ms and 1300ms (i.e. around the

expected signal). Our idea is that more synchronisation should be detected during the second window. Moreover,

for each window, all eleven subsets (of at least two neurons) of the four considered neurons are tested. Thus we

use the Benjamini-Hochberg procedure (presented in the previous section) for K = 22 tests to perform. Moreover,

we took several values for the delay δ between 0.015s and 0.025s and the results remained stable.

The results are presented in Figure 14. Note that we saw in sections IV and V that our test is too conservative

even for small number of trials. This ensure that the level of our test can be trusted. We see that synchronizations

between the subsets {3, 4} and {1, 3, 4} appear in the second window. These results suggest that neurons 1, 3

and 4 belong to a neuronal assembly which is formed around the expected signal. This is in agreement with more

quantitative results on those data (Grammont and Riehle, 2003; Tuleau-Malot and others, 2014).

VII. Conclusion

This paper generalizes the delayed coincidence count introduced in Tuleau-Malot and others (2014) to more than

two neurons. This delayed coincidence count leads to an independence test for point processes which are commonly

used to model spike trains.

Under the hypothesis that the point processes are homogeneous Poisson processes, the expectation and variance



of the delayed coincidence count can be computed (Theorem III.1), and then a test with prescribed level is built

(Theorem III.2). A simulation study allows us to confirm our theoretical results and to state the empirical validity

of our test with a relaxed Poisson assumption. Indeed, we considered Hawkes processes which are a more realistic

model of spike trains. The simulation study gives good results, even for small sample size. This allows us to use

our test on real data, in order to highlight the emergence of a neuronal assembly involved at some particular time

of the experiment.

However, we cannot achieve the full generalization of the MTGAUE method mainly because of the default of

Gaussian approximation concerning extreme values of the test statistics. More precisely, very small p-values are

not distributed as expected. In particular, as noted in Section IV, when the sample size (or number of trials M)

is moderate, the present test returns too many very small p-values (M = 50). In Tuleau-Malot and others (2014),

the MTGAUE method is applied simultaneously on 1900 sliding windows. In the present case, the total number

of tests is even larger since, for each sliding window, there are 2n − n − 1 tests to perform, where n is the number

of neurons. As said at the end of Section V this would lead to extremely small p-values. It could be therefore of

interest to explore surrogate data method such as trial-shuffling (Pipa and others, 2003). A very recent work based

on permutation approach for delayed coincidence count with n = 2 neurons (Albert and others, 2014) is a first

step in this direction but needs to be generalized to more than 2 neurons.
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APPENDIX

As said in Section III.2, we prove more general results than Theorems III.1 and III.2. Considering N1, . . . , Nn,

some point processes on [a, b], and L, a set of indices i1 < · · · < iL we prove the same results with any coincidence

function c (x1, . . . , xL) with value either 0 or 1 satisfying Definition A.1 below.

Definition A.1.

1. A coincidence function is a function c : [a, b]
L → {0, 1} which is symmetric.

2. Let (x1, . . . , xL) ∈
L
∏

l=1

Nil
be a L-uplet with a spiking time of every neuron of the subset L. Say that

(x1, . . . , xL) is a coincidence if and only if c (x1, . . . , xL) = 1.

3. Given c a coincidence function we define XL the number of coincidences on [a, b] by:

XL =

ˆ

[a,b]L

c (x1, . . . , xL) dNi1
(x1) . . . dNiL

(xL)

where dNi1 , . . . , dNiL
are the point measures associated to Ni1 , . . . , NiL

.

4. Define

∀k ∈ {0, . . . , L}, I(L, k) =

ˆ

[a,b]L−k







ˆ

[a,b]k

c (x1, . . . , xL) dx1 . . . dxk







2

dxk+1 . . . dxL

A. Proof of Theorem III.1

Theorem A.1. Under assumptions and Notations of Definition A.1, if N1, . . . , Nn are some independent homo-

geneous Poisson processes on [a, b] with intensities λ1, . . . , λn, the expected value and the variance of the number

of coincidences XL are given by:

m0 := E [XL] =

(

L
∏

l=1

λil

)

I(L, 0)

and

V ar(XL) = m0 +
L−1
∑

k=1









∑

J ⊂L
#L=k

∏

j∈J

λ2
ij

∏

l/∈J

λil









I(L, k).

Proof.

E [XL] = E







ˆ

[a,b]L

c (x1, . . . , xL) dNi1 (x1) . . . dNiL
(xL)







Using the fact that N1, · · · , Nn are independent homogeneous Poisson processes with respective intensities λ1, · · · , λn

one can prove (see Daley and Vere-Jones (2003)) that

E [XL] =

(

L
∏

l=1

λil

)

ˆ

[a,b]L

c (x1, . . . , xL) dx1 . . . dxL



To compute the variance, first define [a, b]
(1)

=
{

(x, y) ∈ [a, b]2 | x = y
}

and [a, b]
(2)

= [a, b]
2 \ [a, b]

(1)
.

Thanks to Fubini Theorem we have

E
[

X2
L

]

= E







ˆ

[a,b]2L

c (x1, . . . , xL) c (y1, . . . , yL)

L
∏

l=1

dNil
(xl) dNil

(yl)







Let us see that [a, b]2L =
(

[a, b]
2
)L

and decompose the integral by piece taking [a, b]
(2)

or [a, b]
(1)

on each copy of

[a, b]
2
.

Denote Φ =
{

φ : {1, . . . , L} →
{

[a, b]
(1)

, [a, b]
(2)
}}

(used to formalize all the possible decompositions). We

have

E
[

X2
L

]

=
∑

φ∈Φ

E













ˆ

∏

k=1...L

φ(k)

c (x1, . . . , xL) c (y1, . . . , yL)

L
∏

l=1

dNil
(xl) dNil

(yl)













For φ ∈ Φ, denote p = Card
(

φ−1
(

[a, b]
(1)
))

. Using the symmetry of the coincidence function c, it is sufficient to

compute when φ−1
(

[a, b]
(1)
)

= {1, . . . , p}. This leads by properties of the moment measure of Poisson processes

(see Daley and Vere-Jones (2003) or Kingman (1993) in a more simplified framework):

E









ˆ

([a,b](1))
p

ˆ

([a,b](2))
L−p

c (x1, . . . , xL) c (y1, . . . , yL)
L
∏

l=1

dNil
(xl) dNil

(yl)









=

p
∏

l=1

λil

L
∏

j=p+1

λ2
ij

ˆ

[a,b]p







ˆ

[a,b]2(L−p)

c (t1, . . . , tp, xp+1, . . . , xL) c (t1, . . . , tp, yp+1, . . . , yL)

L
∏

k=p+1

dxkdyk






dt1 . . . dtp

For fixed (t1, . . . , tp) one can apply Fubini Theorem to the inner integral which leads to:

p
∏

l=1

λil

L
∏

j=p+1

λ2
ij

ˆ

[a,b]p







ˆ

[a,b]2(L−p)

c (t1, . . . , tp, tp+1, . . . , tJ) dtp+1 . . . dtL







2

dt1 . . . dtp

This expression is equal to
p
∏

l=1

λil

L
∏

j=p+1

λ2
ij

I (L, L − p). So we have:

E
[

X2
L

]

= E [XL]
2

+
L−1
∑

k=0









∑

J ⊂L
#J =k

∏

j∈J

λ2
ij

∏

l/∈J

λil









I(L, k)

where k = Card
(

φ−1
(

[a, b]
(2)
))

= L − p. More precisely, the term E [XL]
2

corresponds to φ ≡ [a, b]
(2)

(k = L).

To finish the proof, it suffices to separate the case k = 0 in the summation, which leads to:

V ar(XL) =

L
∏

l=1

λil
I(L, 0) +

L−1
∑

k=1









∑

J ⊂L
#J =k

∏

j∈J

λ2
ij

∏

l/∈J

λil









I(L, k)

�

Theorem III.1 is a direct consequence of Theorem A.1 since the function cδ : [a, b]
L → {0, 1} defined by



cδ(x1, . . . , xn) = 1∣
∣

∣

∣

max
i∈{1,...,L}

xi− min
i∈{1,...,L}

xi

∣

∣

∣

∣

6δ

, 0 < δ <
b − a

2

satisfies Definition A.1.

B. Proof of Theorem III.2

Theorem B.1. Under Notation and Assumptions of Theorem A.1, the two following assertion are valid:

• The following convergence in distribution holds:

√
M (m̄L − m̂0,L)

D−→
M→∞

N
(

0, σ2
)

,

where

σ2 = V ar(XL) − (b − a)−1
E [XL]

2

(

L
∑

l=1

λ−1
ij

)

.

• Moreover, σ2 can be estimated by

σ̂2 = v̂ (XL) − (b − a)−1I(L, L)
L
∏

l=1

λ̂2
il

(

L
∑

k=1

λ̂−1
ik

)

,

where

v̂(XL) = m̂0,L +

L−1
∑

k=1









∑

J ⊂L
#L=k

∏

j∈J

λ̂2
ij

∏

l/∈J

λ̂il









I(L, k),

and

√
M

(m̄L − m̂0,L)√
σ̂2

D→ N (0, 1) .

Proof. An application of the Central Limit Theorem leads to:

1√
M

M
∑

k=1

























X
(k)
L

N
(k)
i1

([a, b])
...

N
(k)
iL

([a, b])













−











E [XL]
λi1(b − a)

...
λiL

(b − a)























D→ NL+1 (0, Γ) ,

where Γ is the following covariance matrix:

Γ =











V ar(XL) E [XL] · · · E [XL]
E [XL] λi1

(b − a) 0 0
... 0

. . . 0
E [XL] 0 0 λiL

(b − a)













The matrix is obtained using the fact that the (Ni) are independent and from the following computation:

E [XLNi1
([a, b])] = E







ˆ

[a,b]L+1

c (x1, . . . , xL) dNi1
(x1) . . . dNiL

(xL) dNi1
(y)







= E







ˆ

[a,b]L−1







ˆ

[a,b](2)

c (x1, . . . , xL) dNi1
(x1) dNi1

(y)






dNi2

(x2) . . . dNiL
(xL)







+E







ˆ

[a,b]L−1







ˆ

[a,b](1)

c (x1, . . . , xL) dNi1
(x1) dNi1

(y)






dNi2

(x2) . . . dNiL
(xL)







= λi1

L
∏

l=1

λil

ˆ

[a,b]L+1

c (x1, . . . , xL) dx1 . . . dxLdy +

L
∏

l=1

λil
.I(L, 0)

= λi1(b − a)

(

L
∏

l=1

λil

)

I(L, 0) +

(

L
∏

l=1

λil

)

I(L, 0)

= E [Ni1
([a, b])]E [XL] + E [XL]

Define g(x, u1, . . . , uL) = x −
L
∏

l=1

ul(b − a)−LI(L, 0) and remark that:

g

(

1

M

M
∑

k=1

X
(k)
L ,

1

M

M
∑

k=1

N
(k)
i1

([a, b]) , . . . ,
1

M

M
∑

k=1

N
(k)
iL

([a, b])

)

= m̄L − m̂0,L

g (E [XL] , λi1
(b − a), . . . , λiL

(b − a)) = 0

So we have

√
M (m̄L − m̂0,L) =

√
M

[

g

(

1

M

M
∑

k=1

X
(k)
L ,

1

M

M
∑

k=1

N
(k)
i1

([a, b]) , . . . ,
1

M

M
∑

k=1

N
(k)
iL

([a, b])

)

−g (E [XL] , λi1
(b − a), . . . , λiL

(b − a))

]

And the delta method (Casella and Berger, 2002) gives the convergence in distribution:

√
M (m̄L − m̂0,L)

D−→ N
(

0, tDΓD
)

,

where D is the gradient of g at the point (E [XL] , λi1
(b − a), . . . , λiL

(b − a)) i.e.

D =











1
−λ−1

i1
E [XL] (b − a)−1

...
−λ−1

iL
E [XL] (b − a)−1











We have:

tDΓD = tD















V ar(XL) − (b − a)−1
E [XL]

2

(

L
∑

l=1

λ−1
il

)

E [XL] − E [XL]
...

E [XL] − E [XL]















= V ar(XL) − (b − a)−1
E [XL]

2

(

L
∑

l=1

λ−1
il

)

,

which proves the first part of the Theorem B.1.



To get the second part, it suffices to apply Slutsky lemma (Casella and Berger, 2002). �

Once again, Theorem III.2 is a direct consequence of Theorem B.1 since the function cδ : [a, b]
L → {0, 1}

defined by

cδ(x1, . . . , xn) = 1∣
∣

∣

∣

max
i∈{1,...,L}

xi− min
i∈{1,...,L}

xi

∣

∣

∣

∣

6δ

, 0 < δ <
b − a

2

satisfies Definition A.1.

C. Proof of Proposition III.1

To get simpler expressions we consider n instead of L, i.e., we compute

I (n, k) =

ˆ

[a,b]n−k







ˆ

[a,b]k

1| max(∨xi,∨yi)−min(∧xi,∧yi)|6δ dx1 . . . dxk







2

dxk+1 . . . dxn

where ∧xi = min {xi, i ∈ {1, . . . , k}} and ∨xi = max {xi, i ∈ {1, . . . , k}}.

To calculate I (n, k), we have to first compute the inner integral

Σ =

ˆ

[a,b]k

1| max(∨xi,∨yi)−min(∧xi,∧yi)|6δ dx1 . . . dxk

In order to do that let us fix some (y1, . . . , yn−k) ∈ [a, b]
n−k

, cut the integral into pieces according to the following

cases:

1. ∧xi > ∧yi and ∨xi > ∨yi. Denote the integral A.

2. ∧xi < ∧yi and ∨xi < ∨yi. Denote the integral B.

3. ∧xi > ∧yi and ∨xi < ∨yi. Denote the integral C.

4. ∧xi < ∧yi and ∨xi > ∨yi. Denote the integral D.

Since we have partitioned [a, b]
k

up to a null measure set, we have Σ = A + B + C + D. The computation is

summarized in the next Lemma.

Lemma C.1. ∀k ∈ {0, . . . , n − 1},

A = 1|∨yi−∧yi|6δ

[

(min(δ, b − ∧yi))
k − (∨yi − ∧yi)

k
]

B = 1|∨yi−∧yi|6δ

[

(min(δ, ∨yi − a))
k − (∨yi − ∧yi)

k
]

C = 1|∨yi−∧yi|6δ (∨yi − ∧yi)
k

D = 1|∨yi−∧yi|6δ

[

(∨yi − ∧yi)
k − (min(δ, ∨yi − a))

k

+k (min(∧yi, b − δ) − max (∨yi − δ, a)) δk−1 + (max(δ, b − ∧yi))
k − (b − ∧yi)

k
]

and

Σ = 1|∨yi−∧yi|6δ

[

(k + 1) δk + k (min(∧yi, b − δ) − max (∨yi, a + δ)) δk−1
]



Proof of Lemma C.1 Proof. Let k ∈ {2, . . . , n − 1}. To compute A, it is sufficient to only consider the case when

x1 = ∨xi, provided a multiplication by k. So we have:

A = k

b
ˆ

x1=∨yi







ˆ

[∧yi,x1]k−1

1|x1−∧yi|6δ dx2 . . . dxk






dx1

= k1|∨yi−∧yi|6δ

min(∧yi+δ,b)
ˆ

x1=∨yi







ˆ

[∧yi,x1]k−1

1 dx2 . . . dxk






dx1

= k1|∨yi−∧yi|6δ

min(∧yi+δ,b)
ˆ

x1=∨yi

(x1 − ∧yi)
k−1

dx1

= 1|∨yi−∧yi|6δ

[

(min(∧yi + δ, b) − ∧yi)
k − (∨yi − ∧yi)

k
]

= 1|∨yi−∧yi|6δ

[

(min(δ, b − ∧yi))
k − (∨yi − ∧yi)

k
]

To calculate B, let us do the same with x1 = ∧xi.

B = k

∧yi
ˆ

x1=max(∨yi−δ,a)

(∨yi − x1)
k−1

dx1

= 1|∨yi−∧yi|6δ

[

(∨yi − max (∨yi − δ, a))
k − (∨yi − ∧yi)

k
]

= 1|∨yi−∧yi|6δ

[

(min(δ, ∨yi − a))
k − (∨yi − ∧yi)

k
]

The computation of C is clear.

C =

ˆ

[∧yi,∨yi]k

1|∨yi−∧yi|6δ dx1 . . . dxk = 1|∨yi−∧yi|6δ (∨yi − ∧yi)
k

To calculate D, it is sufficient to only consider the case when x1 = ∧xi and x2 = ∨xi, provided a multiplication

by k (k − 1). So we have:

D = k (k − 1)

∧yi
ˆ

x1=a

b
ˆ

x2=∨yi





x2
ˆ

x1

1|x2−x1|6δ dx3 . . . dxk



 dx2dx1

= k (k − 1) 1|∨yi−∧yi|6δ

∧yi
ˆ

x1=max(∨yi−δ,a)

min(x1+δ,b)
ˆ

x2=∨yi

(x2 − x1)
k−2

dx2dx1

= k1|∨yi−∧yi|6δ

∧yi
ˆ

x1=max(∨yi−δ,a)

(min(x1 + δ, b) − x1)
k−1 − (∨yi − x1)

k−1
dx1

= 1|∨yi−∧yi|6δ

[

(∨yi − ∧yi)
k − (∨yi − max (∨yi − δ, a))

k

+k (min(∧yi, b − δ) − max (∨yi − δ, a)) δk−1 + (b − min(∧yi, b − δ))
k − (b − ∧yi)

k
]

= 1|∨yi−∧yi|6δ

[

(∨yi − ∧yi)
k − (min(δ, ∨yi − a))

k

+k (min(∧yi, b − δ) − max (∨yi − δ, a)) δk−1 + (max(δ, b − ∧yi))
k − (b − ∧yi)

k
]

To check the given expression of Σ it suffices to remark that

(min(δ, b − ∧yi))
k

+ (max(δ, b − ∧yi))
k

= δk + (b − ∧yi)
k



and

max (∨yi − δ, a) = max (∨yi, a + δ) − δ

�

Remark We took k > 2 to avoid the division by 0 (divisions by k and k − 1). However in these particular cases

an easy computation shows that the general formula stands in these cases. Σ = 1|∨yi−∧yi|6δ when k = 0 and

Σ = 1|∨yi−∧yi|6δ [min(∧yi + δ, b) − max (∨yi − δ, a)] when k = 1.

Following of the proof of Proposition III.1

It remains to calculate I(n, k) =
´

[a,b]n−k

Σ (y1, . . . , yn−k)
2

dy1 . . . dyn−k. In order to do that, cut the integral into

pieces according to the following cases:

1. ∨yi 6 a + δ. In this case, Σ = δk−1 [δ + k (∧yi − a)], and denote the integral Y .

2. ∧yi > b − δ. In this case, Σ = δk−1 [δ + k (b − ∨yi)], and denote the integral Z.

3. ∨yi > a + δ and ∧yi 6 b − δ. In this case, Σ = 1|∨yi−∧yi|6δδk−1 [(k + 1) δ − k (∨yi − ∧yi)], and denote the

integral W .

These three cases are distinct because δ < b−a
2 .

Lemma C.2. ∀k ∈ {0, . . . , n − 1},

Y = Z = C (n, k) δn+k

where

C (n, k) = (n − k)
(k + 1)

n−k+2

kn−k

ˆ
k

k+1

0

tn−k−1 (1 − t)
2

dt,

and

W = f (n, k) (b − a) δn+k−1 − [f (n, k) + g (n, k)] δn+k

where

f (n, k) = (n − k) (k + 1)
2 − 2 (n − k − 1) k (k + 1) +

(n − k) (n − k − 1)

(n − k + 1)
k2

and

g (n, k) = (k + 1)
2 − 2

(n − k − 1) k (k + 1)

(n − k + 1)
+

(n − k) (n − k − 1)

(n − k + 1) (n − k + 2)
k2



Proof of Lemma C.2 Proof. Let k ∈ {0, . . . , n − 2}. To calculate Y , it is sufficient to only consider the case when

y1 = ∧yi, provided a multiplication by (n − k). So we have:

Y =

ˆ

∨yi6a+δ

Σ2 dy1 . . . dyn−k

= (n − k) δ2k−2

a+δ
ˆ

y1=a







ˆ

[y1,a+δ]n−k−1

[δ + k (y1 − a)]
2

dy2 . . . dyn−k






dy1

= (n − k) δ2k−2

a+δ
ˆ

y1=a

(a + δ − y1)
n−k−1

[δ + k (y1 − a)]
2

dy1

Defining the variable u = a + δ − y1, leads to

Y = (n − k) δ2k−2

ˆ δ

0

un−k−1 [δ + k (δ − u)]
2

du

= (n − k) δ2k−2

ˆ δ

0

un−k−1 [(k + 1) δ − ku]
2

du

And by defining the variable t = ku
(k+1)δ , we have

Y = (n − k) δ2k−2

ˆ
k

k+1

0

(

(k + 1) δt

k

)n−k−1

(k + 1)
2

δ2 (1 − t)
2 (k + 1) δ

k
dt

= (n − k) δn+k (k + 1)
n−k+2

kn−k

ˆ
k

k+1

0

tn−k−1 (1 − t)
2

dt

The computation of Z can be done in the same way by inverting the roles of a and b on the one hand and of ∧yi

and ∨yi on the other hand. This leads to Z = Y . To calculate W , it is sufficient to only consider the case when

y1 = ∧yi and y2 = ∨yi, provided a multiplication by (n − k) (n − k − 1). So we have:

W = (n − k) (n − k − 1) δ2k−2

b−δ
ˆ

y1=a

b
ˆ

y2=max(y1,a+δ)

(
ˆ

1|y2−y1|6δ [(k + 1) δ − k (y2 − y1)]
2

dy3 . . . dyn−k

)

dy2dy1

= (n − k) (n − k − 1) δ2k−2

b−δ
ˆ

y1=a

y1+δ
ˆ

y2=max(y1,a+δ)

(

(y2 − y1)
n−k−2

[

(k + 1)
2

δ2 − 2k (k + 1) δ (y2 − y1) + k2 (y2 − y1)
2
])

dy2dy1

which leads to

W = (n − k) δ2k−2

ˆ b−δ

a

(k + 1)
2

δ2
[

δn−k−1 − (max (y1, a + δ) − y1)
n−k−1

]

dy1

− (n − k − 1) δ2k−2

ˆ b−δ

a

2k (k + 1) δ
[

δn−k − (max (y1, a + δ) − y1)
n−k

]

dy1

+
(n − k) (n − k − 1)

(n − k + 1)
δ2k−2

ˆ b−δ

a

k2
[

δn−k+1 − (max (y1, a + δ) − y1)
n−k+1

]

dy1

First, let us calculate W1 the integral between a + δ and b − δ.



W1 = δ2k−2

ˆ b−δ

a+δ

[

(n − k) (k + 1)
2 − 2 (n − k − 1) k (k + 1) +

(n − k) (n − k − 1)

(n − k + 1)
k2

]

δn−k+1 dy1

= (b − a − 2δ) f (n, k) δn+k−1

= f (n, k) (b − a) δn+k−1 − 2f (n, k) δn+k

where f (n, k) = (n − k) (k + 1)
2 − 2 (n − k − 1) k (k + 1) + (n−k)(n−k−1)

(n−k+1) k2.

Second, let us calculate W2 the integral between a and a + δ.

W2 = δ2k−2

[

ˆ a+δ

a

f (n, k) δn−k+1 dy1

− (n − k) (k + 1)
2

δ2

ˆ a+δ

a

(a + δ − y1)
n−k−1

dy1

+2 (n − k − 1) k (k + 1) δ

ˆ a+δ

a

(a + δ − y1)
n−k

dy1

− (n − k) (n − k − 1)

(n − k + 1)
k2

ˆ a+δ

a

(a + δ − y1)
n−k+1

dy1

]

Let us denote g (n, k) = (k + 1)
2 − 2 (n−k−1)k(k+1)

(n−k+1) + (n−k)(n−k−1)
(n−k+1)(n−k+2) k2 which leads to

W2 = f (n, k) δn+k − g (n, k) δn+k

So,

W = f (n, k) (b − a) δn+k−1 − [f (n, k) + g (n, k)] δn+k

�

Remark We took k 6 n − 2 to avoid division by 0 (divisions by n − k and n − k − 1). However, in the particular

case where k = n − 1, the computations of Y and Z are also valid because we only divide by n − k = 1. Moreover

the case “∨yi > a + δ and ∧yi < a + δ” is impossible when k = n − 1 because ∨yi = ∧yi. An easy computation

shows that

W1 = n2 (b − a) δ2n−2 − 2n2δ2n−1

and that the general formula of W stands in this case.

Conclusion of the proof of Proposition III.1

It only remains to calculate

ˆ
k

k+1

0

tn−k−1 (1 − t)
2

dt =

(

k

k + 1

)n−k
[

1

n − k
− 2k

(k + 1) (n − k + 1)
+

k2

(k + 1)
2

(n − k + 2)

]

So we have the stated formula

I (n, k) = W + Y + Z = f (n, k) (b − a) δn+k−1 − [f (n, k) + g (n, k) − 2C (n, k)] δn+k



In the stated result we just used the software Mathematica in order to simplify the expressions. This simplification

leads to

f (n, k) =
k (k + 1) + n (n + 1)

n − k + 1

and

f (n, k) + g (n, k) − 2C (n, k) = h (n, k) =
−k3 + k2(2 + n) + k(5 + 2n − n2) + n3 + 2n2 − n − 2

(n − k + 2)(n − k + 1)
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Continuous time
spike trains

Discretized
spike trains

B : Discretization of spike trains

C : Delayed coincidence count

Bin 1 2 3 . . . S-1 S

Neuron 1 1 1 0 . . . 0 1

Neuron 2 0 1 0 . . . 1 1

Neuron 3 0 1 0 . . . 0 1

Neuron 4 0 0 1 . . . 1 1

{1} {1,2,3} {4} . . . {2,4} {1,2,3,4}

A : Simultaneously recorded neurons

Figure 1. In A, 4 parallel binary processes of length S are displayed. At each time step, the constellation and its corresponding
subset of {1, 2, 3, 4} are given. For instance, the constellation associated to the first bins is the vector (1, 0, 0, 0) and the
corresponding subset is {1}. In B, illustration of the UE method with two different choices of bins of the same size (the
results are different, for example the constellation full of 1s is present in the second case and not in the first one). In C, an
illustration of the way delayed coincidence count is computed. The subset L being fixed, coincidences can be distinguished
with respect to the minimal spike time of the coincidence. Indeed, it suffices to consider each spike time t0 of every neuron
of L, and once t0 is fixed, to count the spike times of the other neurons of L between t0 and t0 + δ. For instance, in the
figure, if L = {1, 2, 3}, there are 2 × 1 = 2 coincidences with t0 as the minimal spike time. If L = {1, 2, 4}, there is 1 × 1 = 1
coincidence.



0 50 100 150 200

0.
05

0.
10

0.
15

0.
20

M

D
is

tK
S

Figure 2. Under Framework F1. Evolution (under the independence assumption) of the Kolmogorov distance (in function of
the number of trials) averaged on 1000 simulations between the estimated distribution of the test statistics and the standard
Gaussian distribution function.
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Figure 3. Under Framework F1. Evolution (under the independence assumption) of the Kolmogorov distance averaged on
1000 simulations between the repartition of the p-values and the uniform distribution with respect to the number of trials.
The plain line stands for our test and the dashed line for the original UE one.



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NormalizedRank

P
va

l

Figure 4. Under Framework F1. Graphs of the sorted 1000 p-values (under the independence assumption and for 50 trials)
in function of their normalized rank under H0. The plain line stands for our test, the dashed line for the original UE one
and the dotted line for the uniform distribution.
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Figure 5. Under Framework F2. Illustration of the power of the test, for a level 0.05. The curves represent the evolution,
with respect to the number of trials, of the percentage (averaged on 1000 simulations) of the rejection of the independence
assumption when there is a dependence structure (induced by an injection model) between neurons. The plain line stands
for our test and the dashed line for the original UE one.
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Figure 6. Under Framework F2. Graphs of the sorted 1000 p-values for dependent Poisson processes (50 trials). The plain
line stands for our test, the dashed line for the original UE one and the dotted line for the uniform distribution.
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Figure 7. Under Framework F3. Evolution (under the independence assumption) of the Kolmogorov distance (in function of
the number of trials) averaged on 1000 simulations between the estimated distribution of the test statistics and the standard
Gaussian distribution function.
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Figure 8. Under Framework F1. Evolution (under the independence assumption) of the Kolmogorov distance averaged on
1000 simulations between the repartition of the p-values and the uniform distribution with respect to the number of trials.
The plain line stands for our test and the dashed line for the original UE one.
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Figure 9. Under Framework F3. Graphs of the sorted 1000 p-values (under the independence assumption and for 50 trials)
in function of their normalized rank under H0. The plain line stands for our test, the dashed line for the original UE one
and the dotted line for the uniform distribution.
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Figure 10. Local independence graph. An arrow means a non null interaction function. Blue arrow means inhibition and
red arrow means excitation.
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Figure 11. Under Framework F4. Illustration of the power of the test, for a level 0.05. The curves represent the evolution,
with respect to the number of trials, of the percentage (averaged on 1000 simulations) of the rejection of the independence
assumption when there is a dependence structure (presented in Figure 10) between neurons. The plain line stands for our
test and the dashed line for the original UE one.
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Figure 12. Under Framework F4. Graphs of the sorted 1000 p-values for dependent Hawkes processes (see Figure 10), for
50 trials. The plain line stands for our test, the dashed line for the original UE one and the dotted line for the uniform
distribution.



{3,4} {2,4} {1,4} {2,3} {1,3} {1,2} {2,3,4} {1,3,4} {1,2,4} {1,2,3} {1,2,3,4}

0
10

0
20

0
30

0
40

0
50

0

12
0

248

15 16
0

10
0

338

15

473

0

80

12

153

2

470

112

420

37

353

218

Figure 13. Under Framework F4. Number of dependence detection (among 1000 simulations) for each pattern. Grey for our
test, white for the original UE method.
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Figure 14. Evolution of the synchronization between neurons. The lines indicate the subset for which our test detects
dependence. Here we detect an excess of coincidences between neurons {1, 3, 4} and {3, 4}
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