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We show that: (1) the Taylor expansion of a cut-free MELL proof-structure R with atomic axioms is

the (most informative part of the) relational semantics of R; (2) every (connected) MELL proof-net is

uniquely determined by the element of order 2 of its Taylor expansion; (3) the relational semantics is

injective for (connected) MELL proof-nets.

1 Introduction

Starting from investigations on denotational semantics of System F (second order typed λ -calculus), in

1987 Girard [7] introduced linear logic (LL), a refinement of intuitionistic logic. He defines two new

modalities, ! and ?, giving a logical status to structural rules and allowing to distinguish between linear

resources (i.e. usable exactly once during the cut-elimination process) and resources available at will.

One of the main features of LL is the possibility of representing proofs (and λ -terms) geometrically by

means of particular graphs: proof-structures. Among proof-structures it is possible to characterize “in

a geometric way” the ones corresponding to proofs in LL sequent calculus through the Danos-Regnier

correctness criterion (see [2]): a proof-structure corresponds to a proof in LL sequent calculus if and only

if it is a proof-net, i.e. it fulfills some conditions about acyclicity and connectedness.

Ehrhard [3] introduced finiteness spaces, a denotational model of LL (and λ -calculus) which interprets

formulas by topological vector spaces and proofs by analytical functions: in this model the operations

of differentiation and Taylor expansion make sense. Ehrhard and Regnier [4, 5, 6] internalized these

operations in the syntax and thus introduced differential linear logic DiLL (and differential λ -calculus),

where the promotion rule (the only one in LL which is responsible for introducing the !-modality and hence

creating resources available at will) is replaced by three “finitary” rules which are perfectly symmetric

to the rules for the ?-modality: this allows a more subtle analysis of the resources consumption during

the cut-elimination process. At the syntactic level, Taylor expansion decomposes a LL proof-structure in

a (infinite in general) formal sum of DiLL proof-structures (diffnets), each of which contains resources

usable only a fixed number of times.

Our contribution aims at looking further into the relationship between Taylor expansion and relational

model (a well-known and simple denotational semantics of LL and λ -calculus). More precisely:

1. We show that, given a normal (i.e. cut-free with atomic axioms) proof-structure R of MELL (the

multiplicative-exponential fragment of LL, sufficiently expressive to encode the λ -calculus), each
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element of the Taylor expansion of R can be identified with one and only one element of the set

of injective points of the interpretation of R in the relational model, quotiented by the equivalence

relation induced by atoms renaming (see Thm. 5 below).

2. We show that (see Thm. 9 below) every MELL proof-structure fulfilling the ACC condition (no

matter with or without cuts) is uniquely determined by the element of order 2 of its Taylor expansion.

Comparing (intuitively) to mathematical analysis, this would correspond to saying that analytical

functions fulfilling some condition are uniquely determined by their second derivatives.

3. As a corollary of points 1 and 2, we show that the relational model is injective with respect to

MELL proof-nets: given two ACC normal MELL proof-structures, if they have the same relational

interpretation then they are identical (see Thm. 10 below). A similar result has already been proven

in [1] but following a completely different (and more complicated) approach.

This study also pushes towards a deeper understanding of the Taylor expansion of MELL proof-

structures as a bridge between syntax and semantics, which should lead to a more abstract and synthetic

representation of this operation (see also [8]).

2 Preliminaries

In order to present our results, one can refer to any notion of MELL proof-structure and DiLL differential

net1 (diffnet for short). Actually, in the sequel we refer to the notion of proof-structure presented in [1]

and the notion of diffnet presented in [5] (which can be reformulated in the more precise terms of [1]),

both using the hypergraph-like syntax of interaction nets (where links are cells, i.e. oriented hyper-edges

labeled by MELL connectives, and premises and conclusions of a link are ports, i.e. nodes, see [9, 11]). A

proof-structure or diffnet is given with an order on its conclusions and we restrict in this extended abstract

to the typed case: every port is labeled by a MELL formula A (A ::= α | α⊥| A`A | A⊗A | ?A | !A).

When drawing a proof-structure or diffnet, we use generalized ?-cells and, for diffnets, generalized

!-cells (see [10]) and we order its conclusions from left to right. Also we represent wires (i.e. edges

connecting two ports) oriented top-down so that we can speak of cells or wires “above” a given cell/wire.

Definition 1. For any n ∈ N, a n-diffnet is a diffnet such that every !-cell has exactly n premises.

A MELL proof-structure is then a 1-diffnet with a box-function associating with every !-cell o (whose

premise is the principal door of the box of o) a set of premises of ?-cell, the auxiliary doors of the box of

o, in such a way that the nesting condition is fulfilled (see [7, 1]). The (principal or auxiliary) doors of a

box B of a !-cell represent the frontier of B: all that is above the doors of B is “inside” B.

Equality between MELL proof-structures is isomorphism of hypergraphs (see [1]).

Definition 2. Let ρ be a diffnet. A correctness hypergraph of ρ is the (undirected) hypergraph obtained

from ρ by disconnecting all the premises but one of each ?- and `-cell. We say that ρ is ACC or ρ satisfies

the correctness criterion if every correctness hypergraph of ρ is acyclic and connected.

Let R be a MELL proof-structure: R is a proof-net when R satisfies the ACC condition defined as

usual by induction on the depth of R (see for example [13, Def. A.6 and Rmk. A.7]).

A MELL proof-structure is normal if it is cut-free and with atomic axioms (i.e. the conclusions of

each axiom of R are labeled by dual atomic formulas).

We denote by Γ,∆, . . . any finite sequence of MELL formulas. Given a finite sequence of MELL

formulas Γ = (A1, . . . ,An) for some n ∈ N+, we set `Γ = A1 ` · · ·`An.

1For us, diffnets of DiLL are “promotion-free”: they may contain multiplicative (`- and ⊗-) links, structural (?-) links and

co-structural (!-) links but not boxes.
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3 Relational model and Taylor expansion

Let X be an infinite set, whose elements are called atoms. In the typed case considered here, the relational

model associates the set X with every atomic MELL formula. The interpretation of the other MELL

formulas is defined in the well-known way, by induction (for instance, see [13, Def. B.1]). The elements

of a set A interpreting a MELL formula are called points of A.

Definition 3. A point x of a set A interpreting a MELL formula is injective, when every atom occurring in

x occurs exactly twice in x.2 For M ⊆ A, we denote by Minj the set of injective points of A belonging to M.

Every bijective function σ : X → X induces in the obvious way a bijective function σA : A → A, for

any set A interpreting a MELL formula. We denote by SA the set of such bijective functions σA.

If A is the interpretation of a MELL formula, we denote by ∼A the equivalence relation on Ainj defined

by: x ∼A y ⇐⇒ ∃σA ∈ SA (x = σA(y)).

Roughly speaking, given a set A interpreting a MELL formula, the equivalence relation ∼A on Ainj

identifies any two injective points of A that are equal up to renaming of their atoms.

When R is a MELL proof-structure with conclusion Γ, we denote by JRK the interpretation of R in the

relational semantics, i.e. the subset of points of the set interpreting `Γ which are results of the experiments

of R; for more details, see [1, Def. 24 and 26]. It is well-known that JRK is a morphism from an arbitrary

singleton set to the set interpreting `Γ in the category Rel of sets and relations, and it is invariant under

cut-elimination and η-expansion (i.e. the substitution of every axiom with conclusions A,A⊥ with the

standard proof of A,A⊥ where the conclusions of every axiom are now typed by dual atomic formulas).

Definition 4. Let R be a MELL proof-structure. We denote by τ(R) the Taylor expansion of R.3 Given a

ρ ∈ τ(R), one can define a function τρ,R associating with every cell of ρ the “corresponding” cell of R.

For every n ∈ N, the n-diffnet of R is the (unique) element of τ(R) which is a n-diffnet.

Intuitively, given a MELL proof-structure R, an element ρ of τ(R) is obtained by replacing each box

B of R with nB copies of its content, recursively (for any nB ∈ N), so that the function τρ,R establishing

the correspondence between the cells of ρ and R can be naturally defined. The n-diffnet of R is then the

element of τ(R) obtained from R by taking n copies of the content of every box of R.

Theorem 5. For every normal MELL proof-structure R with conclusion Γ, let A be the set interpreting

the formula `Γ. One has that JRKinj/∼A ≃ τ(R).4

Thm. 5 (for the proof, see [12]) says that, for a normal MELL proof-structure R, every element of τ(R)
is a canonical representative of the equivalence class (generated by atoms renaming) of some injective

point of JRK, presented in a geometrical way. In this sense, the Taylor expansion of a normal MELL

proof-structure is an object between syntax and semantics.

4 Empires for differential nets

The notion of empire is a well-known tool introduced by Girard in [7] in order to prove the sequentialization

theorem for ACC proof-structures of the multiplicative fragment of LL. We adapt this notion to diffnets.

2In particular, notice that the empty multiset [ ], which is a point – for example – of the set interpreting the MELL-formula ?α ,

is an injective point.
3See for example [10, Def. 9] and [11, Def. 5] for details. Notice that the Taylor expansion defined in [6] was given in terms

of linear combination of resource λ -terms with scalars in Q≥0. With respect to the results achieved in our work, scalars play no

role, hence we do not tackle coefficients issue, and we will define Taylor expansions as sets of diffnets, as in [10, 11].
4Here JRKinj/∼A ≃ τ(R) means that there is a “canonical way” to associate with every element of JRKinj/∼A an element of

τ(R) and vice-versa.
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Figure 1: Two different proof-nets R (Fig. 1(a)) and R′ (Fig. 1(b)), having the same 1-diffnet ρ1 (Fig. 1(c)) but two

different 2-diffnets, ρ2 (Fig. 1(d)) and ρ ′
2 (Fig. 1(e)) respectively.

Definition 6. Let ρ be a diffnet and let p be a premise of some cell of ρ . If G is a correctness hypergraph

of ρ , the p-correctness hypergraph of ρ in G is the hypergraph obtained from G by disconnecting p from

its cell. The empire of p is the hypergraph obtained from ρ by keeping only ports q (resp. cells l; wires

w) such that, for every correctness hypergraph G, q (resp. l; w) is connected to p in the p-correctness

hypergraph of ρ in G.

If ρ is a ACC diffnet and p is a premise of some cell of ρ , then the empire of p is the largest sub-diffnet

of ρ having p among its conclusions. Empires play a crucial role in the proof of the following proposition.

Proposition 7. Let ρ2 (resp. ρ1) be a 2-diffnet (resp. 1-diffnet), and let R and R′ be two MELL proof-nets.

If {ρ1,ρ2} ⊆ τ(R)∩ τ(R′), then R = R′.

PROOF. Since R and R′ have the same 1-diffnet ρ1, they might only differ in their box-functions. The

frontier of the box of a !-cell o of R (and thus the image of the box-function applied to o) coincides with

the frontier of the empire of any of the two premises of any !-cell of ρ2 which is an element of τ−1
ρ2,R

(o).
As an example, consider the proof-nets in Fig. 1: as stated, for R (resp. R′) one can compute the frontier of

the unique box by means of the empire of any of the two premises of the unique !-cell of ρ2 (resp. ρ ′
2). �

Notice that empires do not give the correct information about the frontier of boxes in 1-diffnets: this is

the reason why in the statement of Prop. 7 we require that τ(R) and τ(R′) have not only the same 1-diffnet

but also the same 2-diffnet. In Fig. 1, R and R′ are two different proof-nets having the same 1-diffnet ρ1

but different 2-diffnets (ρ2 and ρ ′
2 respectively): the empire of the premise of the !-cell in ρ1 takes over

the two ?-cells, but in R (resp. R′) the box incorporates only the upper ?-cell (resp. no ?-cells).

In the sequel, for a MELL proof-net R and any k ∈ N, we denote by k(R) the k-diffnet of R.

Lemma 8. Let R and R′ be two proof-nets. If 2(R) = 2(R′) then 1(R) = 1(R′).

The idea to prove Lemma 8 is that, given a proof-net R and ρ ∈ τ(R) such that every !-cell of ρ has

more than one premise, if ρ ′ is the diffnet obtained from ρ by erasing the empire of a premise of a !-cell,

then ρ ′ ∈ τ(R). A useful tool to prove that is the proto-Taylor expansion, a notion introduced in [8].

Theorem 9. Let R and R′ be two proof-nets. If 2(R) = 2(R′), then R = R′.

PROOF. By Lemma 8, R and R′ have the same 1-diffnet. Then apply Prop. 7. �

5 Injectivity of relational semantics for MELL proof-nets

Given a syntactic logical system and a denotational model for it, the question of injectivity of the

semantics naturally arises: do the equivalence relation on proofs defined by cut-elimination and η-

expansion procedures and the one defined by the model coincide? When the answer is positive one says
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that the model is injective (it separates syntactically different proofs). Indeed, two proofs are “syntactically”

equivalent when (roughly speaking) they have the same cut-free η-expanded form (in a confluent and

weakly normalizing system), and they are “semantically” equivalent in a given denotational model when

they have the same interpretation. In the framework of LL, the question of injectivity (of coherent and

relational semantics) was first addressed and studied in [13].

Theorem 10 (Injectivity). Let R and R′ be two normal proof-nets. If JRK = JR′K then R = R′.

PROOF. By Thm. 5, τ(R) = τ(R′) and hence R and R′ have the same 2-diffnet. By Thm. 9, R = R′. �

The injectivity of the relational model for MELL proof-nets has already recently been proved by de

Carvalho and Tortora de Falco in [1]. Our proof, which represents a remarkable simplification, follows a

completely different approach based on the notion of Taylor expansion. All these works fit in the general

perspective of abolishing the old traditional distinction between syntax and semantics.
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