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Tracking control for nonlinear networked control
systems

Romain Postoyan, Nathan van de Wouw, Dragan Né&fow, IEEE,W. P. M. H. (Maurice) HeemelsSenior
Member, IEEE

Abstract—We investigate the tracking control of nonlinear of appropriate control strategies to guarantee the destiad
networked control systems (NCS) affected by disturbancesVe  pjlity properties under the communication constraintsseal
consider a general scenario in which the network is used to by the use of the network. Most available results on NCS

ensure the communication between the controller, the planand trat the stabilizati ilibri int f
the reference system generating the desired trajectory to é concentrate on the stabilization efuilibrium points(see for

tracked. The communication constraints induce non-vanising €xample [2], [3], [4], [5], [6]), while very few studies adeBs
errors (in general) on the feedforward term and the output ofthe  the tracking controlof NCS, see [7], [8], [9], although this
reference system, which affect the convergence of the tratlg  problem is fundamental in control theory. The latter refiees
error. As a consequence, available results on the stabiligan have shown that tracking control exhibits specific difficgt

of equilibrium points for NCS are not applicable. Therefore, . o

we develop an appropriate hybrid model and we give sufficient which a_lre due to the use of th? C(_)mmunlcatlo!’ll Ch_annel
conditions on the closed-loop system, the communication procol @nd which are absent when considering the stabilization of
and an explicit bound on the maximum allowable transmission an equilibrium point. Indeed, tracking controllers areeaft
interval guaranteeing that the tracking error converges tothe composed of a feedback term (to ensure the convergence to
origin up to some errors due to both the external disturbancs s gesjred solution) and a feedforward term (which induces

and the aforementioned non-vanishing network-induced erors. the desired solution in the cl d-| ¢ Th th
The results cover a large class of the so-called uniformly gbally e desired solution in the closed-loop system). e asthor

asymptotically stable protocols which include the well-kown Of [7], [8], [9] have shown that the errors induced by the
round-robin and try-once-discard protocols. We also intraduce a network on the feedforward term leaddpproximateracking.

new dynamic protocol suitable for tracking control. Finally, we  Similarly, the fact that the reference signals are trartsahivia
show that our approach can be used to derive new results for 8 n6 communication channel may also be a source of errors that
observer design problem for NCS. It has to be emphasized that )

the approach is also new for the particular case of sampledata obstruct thg convergence of the tracking error to zero.
systems. The main purpose of the present paper is to propose a
method to design controllers which achieve a state tracking
objective for NCS affected by exogenous perturbations. The
reference to be tracked can either be given as a reference tra
jectory or as the states of a reference system as imtmster-

. INTRODUCTION slave synchronization problem. We follow an emulation-like
approach as in [2], [3], [4], [5], [6] which consists in first
designing a controller that solves the problem in the akesenc
ﬁ)f communication constraints. Afterwards, we implemeret th

plant via a network which may be used for other tasks as Weqf_)ntroller over a network and study the conditions that pre-

s implemenaton ofers reat avaniages over cassigf® 1K Popery up > sme Brors susse by e
point-to-point connections in terms of cost, flexibilitychease ' 9

of maintenance. On the other hand, it requires the develn'pmI used to ensure the communication betyveen the controller,
the plant and the reference system. This allows us to en-

This work was supported by the European 7th Framework Né&tvadr compass the a_rChlteptureS Stlj'd|ed n [7]’ [8]’ [9] as pamc
Excellence "Highly-complex and networked control systeridYCON2) cases and to investigate a rich class of new ones. At each

(grant agreement no. 257462), the Australian Research d@ounder the t{ransmission instant, the network is such that only a single

Discovery Projects and Future Fellowship schemes and thevational Re- de i f . d
search Incentives Scheme under the VICI grant "Wirelessrabsystems: A node(i.e. a group of sensors or actuators) is granted access

new frontier in automation” (No. 11382) awarded by NWO (Thetierlands to the network according to a rule calledheduling protocol
Organization for Scientific Research) and STW (Dutch Se@eReundation). The class of protocols we consider includes the round-robin

A prelimi ion of thi ted at the |EBEf .
nggim'n:r?d’ \éeorﬁ't?; 301;[?? perwas presented at the erence on (RR) protocol, the try-once-discard (TOD) protocol [6] and
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dnesic@unimelb.edu.au). we study the effect of sampling and scheduling (as opposed

Index Terms—Networked control systems, sampled-data, hy-
brid systems, tracking control, observers.

Networked control system(®ICS) have received consider-
able research interest these last decades. This is judiifidte
fact that, nowadays, controllers often communicate with t
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to sampling and delays or quantization, although we belieeass/CL if for eacht € R>, (-, t) is of classiC, and, for
that the framework laid down in this paper allows extensioreachs € R+, (s, -) is decreasing to zero. Additionally, a
in these directions by exploiting the ideas from [3], [10} fofunction 3 : R3, — Rx is of classKLL, if 8(-,-,t) € KL
instance). andj(-,t,-) € KL for anyt € R>g. Forz € R™ andy € R™,
We present a new hybrid model using the formalism of [11he notation(x, ) stands forfz™, yT]*. We usel,, to denote
to study the tracking control of NCS which is general enoughe identity matrix of dimension and diagA;, A») to denote
to describe the setups of [7], [8], [9] and to represent weriothe block diagonal matrix made of the square matri¢desand
new architectures as mentioned above. It relies on the ehoi¢s. For (¢,7), (s, k) € R x Z>o, we write (t,5) =< (s, k) if
of a specific set of coordinates which facilitates the anslys +j < s + k.
afterwards. Next we state sufficient conditions on the clese We will study hybrid systems of the form below using the
loop system and we provide an explicit and easy-to-use bouiedmalism of [16], [17]
on the maximum allowable transmission interval (MATI) to .
ensure that the tracking error converges to the origin up t& — f
some errors due to the external perturbations, as expected, o m . . (1)
but also due to the aforementioned network-induced errof§1€"€% € R S the statew € R™ is the |nput,f_|s the.flow
These additional errors constitute an essential differamieh M3P:9 1S the jump map(’ is the flow set and) is the jump
the scenario where an equilibrium point has to be stabiliz&§" We assume thé;l andD are closed subsets Bf* and that
and they induce supplementary technical difficulties. &uje Jandg are respectlvely_contlnuous (ﬁ‘\ and onD. A subset
the stability analysis is based on the construction of aitlybrE C R>p xZx is ahybrid time domainif for all (7', J),E E,
Lyapunov function inspired by [2], which exhibits the feagu £ 1 (0.1 > {0,....J}) = et 1U J_l}([tjatj+l]a3) for
of potentially increasing at jumps (as opposed to [2]). Weome finite sequence of times Zt <t < ... <ty
then provide guidelines on how to implement the controllgg function w : £ — R™ is a hybrid inputif E is a
and to design the scheduling protocol to reduce the impagfbrid time domain and ifw(-,j) is Lebesgue measurable
of the non-vanishing network-induced errors on the tragkitand locally essentially bounded for each A function
accuracy. x : E — R"™ is ahybrid arc if F is a hybrid time
Building upon the analogies which exist between mastefomain and ifz(-,j) is locally absolutely continuous for
slave synchronization and observer design [12], we alsve@lereach j. The hybrid arcz : domz — R” and the hybrid
new results for the observer design problem for NCS. Coffhput w : domw — R™ is a solution pair to (1) if:
pared to [13], [14], we rely on a Lyapunov-based analysis (g domz = domw and x(0,0) € C U D; (i) for any
opposed to trajectory-based arguments) and we provide a newt Zso, z(t,j) € C and %x(t,j) = f(z(t, ), w(t, 7))
bound on the MATI. In addition, we envision an emulatiofor almost allt € 77 whereZ/ = {t : (t,j) € domz};
procedure similar to [15] which allows us to relax some of thgii) for every (t,7) € domz such that(t,j + 1) € domz,
assumptions of [13], [14] for the considered class of systemy(t,j) € D andz(t,j + 1) = g(z(t, j),w(t,5)). A solution
It has to be noticed that we focus on a more general clasgir (z,u) to (1) is maximalif it cannot be extended, and it

of observers than that in [15] and that we propose a differegtcompleteif dom is unbounded. Lety be a hybrid signal
stability analysis as well as a different MATI bound. Ovéralith (0,0) as initial hybrid time, we deﬁnq|w||(t 5=

(x,w) fora e C, xt =g(x,w) forxe D,

we vyould like to emphasize that the presen_ted resultfs Aex ess.sup lw(t, 5,

new in the context of sampled-data systems (with non-umifor (#,5")edomw\T'(w), (0,0)=(t,5")=(t.)

sampling), in which case the scheduling protocol grantesgc sup _ _ lw(t',j)|} where TI'(w) is
to all nodes at each transmission instant. (t,5") €L (w), (0,0)2(t",5")3(t.5)

VA A
The paper is organized as follows. Preliminaries are prteh-e set of all(t', j') € domw such that(#', j" + 1) € domu.

sented in Section Il. The tracking control problem is formal

ized in Section Ill. Next, we propose a suitable NCS model lIl. PROBLEM STATEMENT
in Section IV and the assumptions we adopt are given m The tracking problem

Section V. The main stability results are stated in Sectibn V
In Section VII, we give examples of protocols suitable in the
scope of tracking. The application of the derived resultthto &p = £ (xp, u, wp), Yp = 8p(Tp), (2
observer design problem for NCS is presented in Section VIl

Examples are provided in Section IX. All the proofs are giveffneréz» € R« is the stateu € R ;[lhe control input,
in the Appendix. yp € R™ the measured output and, € R"» is an external

perturbation. The reference; that system (2) has to track is
given by the solution to

Consider the nonlinear plant model

Il. PRELIMINARIES

Let R := (—00,00), R>p := [0,00), Rsg := (0,00),
Z>o = {0,1,2,...}, and Zso := {1,2,...}. A function whereus; € R" is the (feedforward) inputy; € R™
v :R>9 = Ryxp is of classK if it is continuous, zero at zero denotes the measured output ang € R"+a is a vector of
and strictly increasing, and it is of clags,, if in addition it external disturbances. Whey is a given reference trajectory,
is unbounded. A continuous function: R2, — R>( is of w; may model the uncertainty on the feedforward termy

&g = fp(xa,upp,wa),  Ya = gp(xa), (3
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i Y d Upy + U Y
rb Plant P Y ! il Plant P

Network Network

upptugs Yp
Controller Controller Yd
Fig. 1. Block diagram of the tracking control of NCS studied[7], [9]. Fig. 2. Block diagram of the tracking control of NCS studied[8].
when its exact expression is not available. System (3) sy al D Uy + Urf Plant Yr Ya vrr
model amastersystem that the plant (2) has to synchronize

with. In this scenario, thenastersystem (3) may be affected
by external disturbances which justifies the presencevpf
in (3). We assume that the reference system (3) has a unique

Network

solution for any initial conditionz;(0) and any inputs: sy and st Up
wq Of interest. Bothu sy andy, are available for the purpose Controller Ga
of control.

We consider the following controller decomposition
Fig. 3. Block diagram of the tracking control of NCS when is sent by
u o= up+uyys, (4) the reference system.

where the feedforward term;; comes from (3) and the
feedback termuy, is the output of the dynamic controllertheir spatial location) which are connected to the network.
given by At each transmission instarit, i € Z>o, only one node is
i ) — g.(20) ®) granteq access to the network _by the scheduling protocel. Th
Te =le\Te, Yp, Yd, We),  Ufb = Belle)s transmission sequende; }icz. , is such that) < t; —t; | <
where z. € R is the controller state andb, € R"we 7% for i € Z-o, wheret* € Rsq is the MATI andv is
is a vector of perturbations which may affect the controlléhe lower bound on the minimum achievable transmission
dynamics. interval given by the hardware constraints (see [4]). Notic
that the transmission intervals — ¢;_; may be time-varying
B. Controller implementation over the network and uncertain. _
The plant (2) no longer receives = wuys, + usy but

We investigate the scenario where a network is used to_ i + it;; which is generated from the most recently

Eg;ﬁﬁlgzsg?g&ggﬁ“&g Zixgﬁlgrtgi dplt?]rg Sg:]Sto;t:;g ﬁgﬁsmitted feedback and feedforward terms. We distifguis
b thF feedback term s, from the feedforward term ¢, because

We also allow for the case where the communication chanqﬁ . o .
) . X ese may be transmitted via distinct nodes (see Figure 3 for
is used to transmit the output and the input of the reference

. . .~ Ihstance). The dynamics of the plant now becomes
system (3),i.e. y¢ and uys. We consider a general setting ) y P

because we can then capture, in a unified manner, specific Zp = fp(@p, g +app,wy) € [ti1,ti] )
scenarios in which the network is only used to realize some ¥ = 8p(Tp)-
relevant subsets _of the aforementioned communications, sisimilarly, the controller (5) no longer receivgs andy, but
ase.g.the cases in: their networked versiong, andy,
o [7], [9] where the reference and plant outpujg,andy, . PN _ _
respectively, are sent together to the controller angd uxc = g(&:a)yp, Ya, we) t € [ti1,ti] (7)
b = c\Lc)-

is not transmitted, see Figure 1.
« [8] where the outputy, is directly available to the The variablesiyy, iy, 9,, Ja have the following dynamics
controller andu¢s is generated by the controller (note
thatyy = x4 in [8]), see Figure 2.
Our approach also allows us to study the scenario depicted in
Figure 3 for instance, where the reference outputind the
feedforward termu s are transmitted via the network. In that
case, it is reasonable to set up the network in such a way taagd
the feedforward termuy is directly transmitted to the plant ¢, (¢

gy = ffb(xpwaffda Ups Uy Upty, U f)
dpp =Lrp(xp, Te, T, Yp, Ga, Uy, s )
gP = fp(zpv Le, Ld, -1710’ Yd, ﬁfbv ﬂff)
Ja = fd(mpv Ty Tds Yp, Yy Uph, aff)

t € [tim1,ti],

) +hyo(isep(ti), ealti), epn(ti), eps(ti)

fo(ti
rr(ti) +hyp(isep(ti), ea(ti), epp(ti), epp(ti))

actuators. dprth) =u ( t
The sensors and the actuators of the plant (2) and of thegp(t;r) = yp(ti) + 0, (i, ep(ti), ea(ts), e (ti), e (t:))
reference system (3) are grouped iitaodes (depending on 5, (t+) = y,(t;) 4+ ha(i, e, (t:), ea(ti), epp(ti), epp(ti)),
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whereeyy, 1=ty — up, € R, epp :=ayp —uypy € R"«, plant actuators (as there is no eregy,) or when there is no
ep == Up—Yp € R", ¢4 := Jg — yq € R"a (n., := n, scheduling (ash = 0). O
andn., = n., := n,) denote the network-induced errors on Our objective is to provide conditions on system (2)-(5) and
the feedback and the feedforward terms and the plant and threthe network to guarantee tla@proximateconvergence of
reference outputs, respectively. The functidis, f;;,f,,f; the plant state;, towards the reference statg in the presence
represent the holding functionise. the way the variablegs,, of network-induced communication constraints.
Urs, Up, Yq are generated between two successive transmission
idnstgnts: Inf pr?cticfe, fit is comn|10n tg huse]c zer(_)-order-hold IV. A HYBRID MODEL OF NCS

evicesj.e.fs, fr¢, f,, f; are equal td). Other functions may , , ,
also be imp{emifegte% such as model-based algorithms as eﬁeff”e presenting the_ hybrid mo_del, we need to define new
plained in [13], [14] for example. We |én5€b’ fff, fp, £, depend coordinates. As we are mterestgd in the convergenag m;b
onz,, r. andz, for the sake of generality to capture the casg¥ardsza, we introduce the tracking errgr:= z, —zq € Rng
where they depend on a part of these vector variables. T = na)- We also deﬂ?e the errar := (e¢,efp) € R™
functionshy, by, hy, hy model the scheduling mechanismVereées = ep — €a € R™¢, ne .= ny + ny andne, = ny.
which governs the transmissions at each instaretween '€ idea is to show that the- and thee-systems satisfy

the controller on the one hand and the plant and the referertoe"® robust asymptotic stability properties with respect t

system on the other hand. Following the terminology of [4 he external perturbation vectar := (w,, wq,w.) € R™
we refer to the equation below as theotocol M = Nw, + Nw, + Nw,) 8nd the network-induced errors

(eq, ey ) which are regarded as external disturbances similarly
e(tf/) = h(iet)), (8) to [8]. This choice is motivated by the fact thai and ey
typically depend on the reference system (3) and there is a
_ . : riori no reason why they should satisfy some asymptotic
andh := (hy, ha, hyy, hyy). Since the network is CC)rmjosecjgtabiIity properties even for very fast transmissionsdHethat

.OM nodes, we partition ase = (.el’ .- e) (after reorder_mg, the MATI 7* cannot be infinitely small as it needs to be such
if necessary). The protocol (8) is such that at each trarssomis é1

wheree := (ep, eq, epp, €55) € R, ng 1= ne, +ne, + 20,

: : ) thatT > v > 0), contrary toe as we will show in Section VI.
instantt;, if nodej gets access to the network, the correspongd- . . )
r instance, when zero-order-hold devices are implendente

ing errore; experiences a jump while the other components of i and érr — —ier SO that the origin is not an
e remain unchanged; usualy () = 0 but this is not needed ilib Yd S ffff tﬁ uftf . do. gh 20
in general. It has been shown in [4] that several commoer?'gl.I fum p0|rr:_ ?1. € sys e”mshmld an efﬁ W en?{(‘? # 0
protocols can be modeled by (8). For the RR protocol whidh o -/ # U (which is generally the case when tracking time-
grants access to each node in a periodic fashion, the fumctio Y9 trajectories). : .
h is given by We model the overall_ NCS_ as a hybr_|d system u5|_ng_the
formalism of [16], for which a jump describes a transmission
h(i,e) = (I—A(i))e (9) We use the coordinate&, zc, x4, €, €q, €5, K, T1,72). The
. . . . variablex € Z~( is a counter variable which keeps track of the
where A(i) = diag(Aq(i),. ... A(1)). Fork € {1,....6}  nymber of transmissions. It is used to describe protocals su
andi € Zxo, Ax(i) = 0 (i), where ke{lz Z}”k = Me  asthe RR protocol where it plays the role of the discrete time
and 6,(i) = 1if i = k+ jl for j € Z=g and Sp(i) = 0 @ 1in (9). The variables, 7, € R>o are clock variablesr
otherwise. The try-once-discard (TOD) protocol (introedc represents the time elapged since the Igst transm|§3|om2and
in [6]) gives access to the node where the norm of the lodgodels the ‘continuous’ time. The following model is dedve

network-induced errote;| with j € {1,..., ¢}, is the largest.

Therefore, we have = fe(T2, &, e, 2as €, ea, 51, W)
hiie) = (I-U(e)e (10)  Fe = Jelm2 8,2, 2as €, €0, 0)
Tq = fd(Tg,xd,w)

where ¥ (e) := diag¢1(e)l,,, ..., Ye(e)l,,) wherey;(e) = € = ge(12,&, T, Tq, €, €4, €57, W)
Lif j = min(argmax; (1, ¢} |€j7]) and;(e) = 0 other- €q = ga(12, &, Te, g, €, €4, €45, W) 71 € [0, 7]
wise. Model (8) also captures standard sampled-data sgstemeé sy = g¢s(72,§, zc, xa, €, €4, €55, W)
(in which case there is no scheduling) by settlngo 0. k=0

Remark 1:When the output of the controller (5) is of the +# =1
form up, = ge(xe,Yp,ya) (instead ofuy, = ge(x.)), the Tyo=1
protocol (8) depends on,, 2, andz, in generalj.e.e(t}) = £t =¢ (11)

h(i,e(t;), zp(ti), za(ti), zc(t;)). The model presented in the af = z.

next section has to be modified accordingly in this case and a:d+ = a4

the stability results of Section VI will apply; only the agais et = he(k, e eq,er¢)
of the protocol in Section VII needs to be revisited. It has to et = hy(rk, e, eq, ey ) T € [v,T*].
be noticed that there are situations in which the protocpl (8 e}Lf = hys(k,e,eq,efr)
remains independent af,, z4, z. Whenus, = ge(xc, Yp, Ya) kT = k+1

(in which case the results of Section VII holds). This occurs =0
for instance when the controller is directly connected te th =
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The functionsfe, fe, fa, ge, 9a» gsfs hes ha and hyy are andey; are parts of the overall stagg, while in [18] there are
obtained by direct calculations from the developments Bxogenous disturbances). The consjaint (13) often depends
Section Ill (ther»-argument captures their dependencyugn  on the number of nodes of the network in such a way
or r¢) and are assumed to be continuous. We similarly writhat large¢ leads to largep, which tends tol as ¢ goes to
e = hy(k, e eq,epp) and e;ﬁb = hsp(K, e, eq,er5) to model infinity (as we will see in Section VII). This implies a smalle
the jumps of the:,- and thee ¢,-systems at each transmissiordecrease ot/ at each jump and therefore a smaller MATI
instant. bound according to the formula given in the following.

For the sake of convenience, we introduge := We assume that the following exponential growth condition
(&, zc,zq) € Ry andge 1= (e,eq,er5) € R to distinguish on theg.-dynamics between two transmission instants holds,
the physical variables from the errors induced by the ndiwomhich thus depends on the continuous-time dynamics of
whereR, := R tnectnz and R, := R™ "< ™"¢s Inthat y,,ya,us, ury and on the choice of the holding functions.
way, we can write Assumption 2:There existL > 0, a continuous function
H : R, — Rso andv? vff v¥ € K. such that for all

e = I (72 G, w) Gs € Ray k € Z>o, T» € Rsg, w € R™ and almost all
Qe = 9(727(]17(1651”) - -
£k =0 1 € [0,77 Ge € Re
o= 1 <%;’q"),g(72,qz,qe,w)> < LW(k,qe) + H(gs)
v (12) v (Jeal) + v/ (leg ) + v (),
qgr = h(k, q) whereWW comes from Assumption 1. O
kt = k41 m € [v, 7] The controller (4)-(5) needs to be designed so that the
=0 condition below is valid.
o= n Assumption 3:There exist a locally Lipschitz function
ViR, — Rzo, Qay,ay € Ke, € € Rso, v € RZO and
V. ASSUMPTIONS 0,017 0% € Ko such that for anyy, € R,
Inspired by [2], we present the assumptions we adopt ay(&) < Vig) < av(lgsl), (14)

which can be used as guidelines to design and implementd ; I R R R and al ¢ all
the controller (4)-(5) for the robust stabilisation of thesged 2@ 'OF &ll¢e € e, 72 € R>o0, w € and aimost a

trajectory. Ga € Re
The protocol has to be such that Assumption 1 holds. (VV(q.), f(72, @z, @e, w)) <V (qs) —eW? (K, qe) — H*(qz)
Assumption 1There exist a functiohV : Z>o xR, — R>g +v2W2(k, qe) + o(leal) + o (less]) + o (Jw)),
that is locally Lipschitz ing., oy, @w € Koo, p € [0,1) and (15
u?, uff € Ko such that for anyk, ¢.) € Z>o x R., it holds whereW and H come from Assumptions 1-2. O
that The function V' may depend on the full vectay, but it

— needs to be lower bounded by a cldSs:- function of the
< < N T .
Wi+ 1 hg(‘g('e)'% - V[I//Igle;qe)) I ‘?(TZ(I()]:'-)’ 1 (les]) norm of £&. This kind of Lyapunov functions is investigated
I Qe)) = P de) T HERICD) T B ff(1'3 in [19] in the context of the stability with respect to two

p measures for example. It relaxes standard requirements and
The functionlV’ is used to analyze the stability of the discretet 1S Sufficient to make statements about the convergence
time dynamics of theg.-system. We will see in Section of the tracking error towards the origin. According to (14_)
VIl that this system is strongly related to the schedulingd (15), the emulated controller does ensure an ISS-like
protocol. It can be noted thdt’ is allowed to depend on Property for the tracking error dynamicse( the ¢-system)
the full vectorg. but it needs to be lower bounded by &Vith Wiea,efr,w as inputs. Assumption 3 also implies
classk.. function of |e| according to (13). It is shown in that the {-system satisfies arC,-stability property from
Section VII that RR and TOD protocols admit a functitin W, \/"d_(|€d|)v Vol (legsl), 3/.0w(|w|)) to H. The constant
which only depends on. However, it is possible to envision® I (15) is usually taken sufficiently small. We will show how
protocols wherelV does depend on the full vectat (e.g. Assumptions 2 and 3 can be validated for particular (classes
see Section VII-B). Contrary to similar conditions in [2g]] ©f) Systems in Section IX. _
[4], the second inequality in (13) holds with the additional '€ last condition is on the MATI. As in [2], we need to
perturbation termsu? and u//. This difference is due to have a network which has a sufficiently high bandwidth so
the fact that Assumption 1 does not apply to the protocHiat the assumption stated be*low IS s_,a'usfled.
(8) but to theg,.-system at jumps which, although related, ASSumption 4:The MATI 7 satisfies7* < T(p,7, L)
are different dynamical systems. Indeed, the jumpsg.cére Where
governed by the vector field = (h, — ha, hss, hsf) while 1 arctan (%) if v > L

L p

the protocol concerns the varialdavhose jumps are dictated T I)oe irl__p e TN

by h = (hy, ha, hys, hyf). It can be noticed that analogous (P, D)=\ 71 i n=

conditions to (13) are considered in [18] where input-tmtest ﬁarct&mh s ) T <L,
T p(L )J" +p

stable (ISS) protocols have been defined (except that here (16)
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with = /’(%)Q _ 1’, pel0,1) andv, L > 0 come from 0“([wl, ;) as(t,j) grows. Thus{ indeed converges to the

A . 1-3 0 origin up to some errors due to, as expected, but also due
ssumptions 1-3. to esy and ey which are induced by the network, similar to

[8]. In practice, we want these errors to be sufficiently $mal

) ) and it might then be convenient to have some estimates of
We are ready to state the main result. Its proof is based SN leall t,j)) and&ff(HeffH(t_j))' While it may be possible to

the proof of Theorem 1 in [2] and requires some essentigdnd the norms of, ande;; (see Remark 2), we know that

modifications to handle the effect of the network-inducege expressions fai’ andé’/ we can deduce from the proof

errorseq, e and external perturbations. . of Theorem 1 are subject to some conservatism. Nevertheless
Theorem 1Consider system (12) and suppose ASSUMPtiOR$s result in Theorem 1 provides the following qualitative

1-4 hold. Then there exist € KLL, 6¢,677, 6" € Ko such insights on how to reduce the impact of the network-induced

VI. MAIN RESULTS

that for any solution(qz, ge, %, 71, 72, w) errorses; ande, on the tracking error:
(€t 5), et 9))] < B(1(gz(0,0), g (0,0))] .2, ) o For §//(lessl, ,): first, whenus; can be directly
+6%lleall ¢ 7)) + 67 Nlesrll ) + 8% (lwlle 5, implemented ori the actuators, we haye = 0. When
817) this is not possible, some previews ofi; might be
for all (t,7) in the domain of the solution. Moreovef(s) considered as in [8] to reduce the error due:fg.
andd’/ (s) can be written agl+¢(r*))¢(v=")d(s) fors > 0o For§?(|leq], ;): it can be shown thai? can be written
whered, ¢ € Ko andy : R>g — Ry. O asd(s) = ap(s) + v(s) + o(s)) for s > 0, where

Property (17) is obtained by constructing a hybrid Lyapunov  , is some clasé., function (which depends ol, W,
function U (see the proof of Theorem 1) which satisfies an .+ gng v) and u, v, 0% come from Assumptions 1-3.
ISS-like property on rows_but not at jumps. Thus, we use the \We show in Section VII that it is possible to sef =0
fact thatU flows for some time (at least seconds, see Section by selecting an appropriate protocol or by appropriately

[11-B) before jumping in order for the decreasing property.o implementing the emulated controller.
on flows to compensate, in some sense, the potential increas

of U at jumps.
Remark 2.The norms of the erroreal|, ;) . [lef¢ll, ;, and

i d §rfj * S . "
the f?ngtlonsé 7b5 :jn $17) dependdon the MATI™. We point is addressed in the proposition below.
may 1ind Upper bounds qred”(t,j) an ”effHém) on a case- Proposition 1: Consider system (12) and suppose the fol-
by-case basis. For instance, when zero-order-hold deximriesI .
. . O\éylng holds.
implemented and the RR protocol is selected, we can proceed ]
like in (31) in [8] (where delays are taken into account but () Assumptions 1-4 hold. e
not scheduling). On the other hand, the functiéhss// also (i) There exist some functiond/y : R a7mrs = Ry,

I% practice, we would like to make sure that the states-
(&, xzc,zq) and g. = (e, eq,err) remain bounded when the
reference trajectory and the perturbatiorare bounded. This

depend on the minimum time between two jumps. We see N : R — R>o andya,7e € Koo such that for any
that ¢, 6/7 go to infinity asv tends to0. This fact is due solution (gz, e, %, 71, T2, W),

to the stability analysis which requires to decrease foresom (zalt, §), ea(t, 1), es1(t, )] <

time v during flows in order to guarantee stability. On the Na(z4(0,0) 'ed(O 0) or 0,0)) +va(l|wll,, )
other hand, the more transmissions, the smaller the norms of P EET R (t"(]).8’)
eq andeyy, which would typically compensate the increase and

in the gains. That is the case in Section IX where all the
gains are linear. The mean value theorem can then be used  |z.(t,7)| < Ne(2c(0,0)) + v (/[ (€ 2a, €, ea, w4 ;)
to upper bound the norms ef; andes; by a constant that (19)

multiplies the inter-transmission interval (under milduéarity  ¢,, any (¢, ) in the domain of the solution. Then there exist

conditions ony, anduyy) which would then compensate they fnction NV - R, X Re — Rsp and¥ € Ko such that
constantv coming for the gains. We think that a different -

analysis inspired by the small gain arguments used in [18](q.(t, ), ¢.(t,7))| < N(g.(0,0),q.(0,0)) +"y(||w|\(t7j)),
may help to avoid this issue. Nevertheless, our approach is (2
justified by the fact that the proposed Lyapunov-based prdof all (¢, 7) in the domain of the solution. O
allows us to derive easily computable MATI bounds, which are Item (i) of Proposition 1 implies that the assumptions of
typically less conservative than those derived usingdtajg- Theorem 1 hold so that (17) is ensured. Item (i) of Propositi
based proofs, and that any real network has fixed minimutrgives conditions on the boundedness on the referencarsyste
inter-transmission interval. O (3) and the dynamic controller (5). Let us now illustrate
Theorem 1 shows that{,e) tends to a ball centered athow one could verify the conditions under item (ii) using
the origin and of radius 5d(||ed|\(t7j)) + 6ff(||€ff||(t7j)) + reasonable assumptions for NCS. Consider for that purpose
a solution(qy, gc, k, 71, 72, w) to (12) and let(¢, j) be in the

1if the maximal solutions to (12) are complete and if the I8rstiperior of domain of the solution. The inequality (18) may be verified

: . wll ¢4y are bounded j , a tighter upper- . .
Ieallie): llessll.) e ) p a5h) = 00, AUGNETUPPET 54 follows. First, it may be shown that
bound of this radius is given byim sup 5% (|eq(t, §)|) + 677 (ley s (¢, 5)]) +
t+j—o00

8% (Jw(t, )])- [za(t,5)] < Noy(za(0,0)) + v, (lwll ;) (1)
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where N, : R*™ — R>y andv,, € K, which is a satisfied by the RR and the TOD protocol in view of Section
reasonable assumption on the reference system when trdbkin [4].

ing bounded reference trajectories. For g, es;)-System,  Since we are interested in a different stability property
consider the case where zero-order-hold devices are impfier the e-system at jumps than in [4], we can propose an
mented and the protocol is such thag(x, e, eq,e5¢)| < |eq|  alternative Lyapunov function to verify Assumption 1 foeth
and |hy¢(k,e,eq,erf)| < |egs| (which is the case for any RR protocol, based on Proposition 4 in [4], which ensures
relevant protocol). When the norm of the feedforward terstronger properties and may lead to less conservative MATI
usy is bounded by a constant/;; > 0, we then derive bounds.

that [ess(t,7)] < 2Mys + |efr(0,0)]. Using (21) and the  proposition 3: Suppose the protocol (8) is the RR pro-
continuity ofg,, we deduce thayq(t, j)| < Nz, (7a(0,0)) + tocol as defined in (9), then Assumption 1 is satisfied with
Yea(lwll(; ;) where Ny, : R™ — R>o andJq € Ku.
Hence|ed(t7j)| < |yd(taj |+ |ﬂd(t,])| < 2N$d(xd(0’0)) + i=kK

2zy(lwllr.5) + lea(0,0). In that way, (18) is safisfied 12 o+ — (1, (x, e¢), hyy(k,ep0)) at time i starting at time
Wji\lfh (Nd((ffd()o)a O)aledEangief.f(](\)/}o)) |: ](de()flfd(oao)) + & with initial condition e, oy (s) = s, aw(s) = Vs,
2N, (x4(0,0)) 4+ eq(0,0)| + 2 + lerr(0,0)] and g = d o o  Je—1
%diﬁmd. Finally, the bounded-ﬁput—b];funded-state properff/ (s) = Vs and w(s) = 0fors > 0andp = I

d_ (i i —
in (19) for thex.-system may be studied using the Lyapunolloreover.u® = 0 if and only if , = hq. o
function V in Assumption 3 for instance. Proposition 3 ensures the satisfaction of Assumption 1 with

/7 = 0 which reduces the impact of the feedforward error
esr on the tracking erro€. It also provides a necessary and
sufficient condition to obtain? = 0 in Assumption 1 which

In this section, we give examples of protocols which ensuig interesting to reduce the impact @f on the tracking error
the satisfaction of Assumption 1 in Section V. We first show (see Section VI). That condition states tijgtand g, must
that this assumption is verified when the protocol (8) isave the same dynamics at jumps which is the case when
Lyapunov UGAS under mild conditions. We then specializg, and y, are sent over the network via the same nodes
this result for the RR protocol for which stronger propestiefor example. That also allows us to conclude that, even if
are shown to hold. Finally, we propose a new dynamic TOLy; (equivalently y,) is directly available at the controller
like protocol. side, it may be advantageous to introduce the varighle
(equivalentlyy,) to generate the control input instead of using
ya (equivalentlyy,), wherej, jumps asj, does, otherwisg?
will not be equal to0 and it will introduce an additional error
The stability of protocols has first been characterized #}, the convergence df, e). This is discussed in more detail

[4], and the notion of Lyapunov UGAS protocols has bee section VIIl and in the scope of an illustrative example in
introduced in [5]. Section IX.

Definition 1: The protocol (8) is said to béyapunov
uniformly globally asymptotically stable (UGABYhere exist
W Z>oxR" = R>o, aw,@w € Koo andp € [0,1) such B, The TOD-tracking protocol
that for all x € Z>o ande € R™ the following is satisfied

W(k,e) = i |p(i, k,€)|?, where¢(i, k, e) is the solution

VIl. ON THE CHOICE OF THE PROTOCOL

A. Lyapunov UGAS protocols

awlle) < Wlre) < @wlle) (22) We now propose a new TODIike protocol, that we call
w o - W (23) the TOD-trackingprotocol. Consider the scenarios where each
(k+1,h(k,e)) < pWi(k,e), corresponding components gf andy, are assigned to the
recall thate = (ep, eq, efp, €5f). H

_ _ . same nodés In that way, a subvectofe,efy); of (e,ess),
We are now ready to state the main result of this section, € {1,...,0}, can be associated to each of theodes of

Proposition 2 Consider the protocol (8) and suppose th e network. The idea is to grant access to the node where
following conditions hold. |(e;err) | is the biggest (and nde,|, j € {1,...,¢}, as in
(i) Foranyj € {1,...,ne} andr € Z>o, |h;(x,e)| < |e;| the classical TOD protocol, see the end of Section II-B). We
with h = (hy, ..., h,,) whereh is given in (8). define the functiorh in (8) ash(k,e) = (I — ¥(e))e where
(i) The protocol (8) is Lyapunov UGAS with a continuousy (e) = (6 (e)L,, ..., d.(e)l,,) whereny + ...+ ny = ne
function W : Zs¢ x R" — R>o which is locally gnd
Lipschitz in e and satisfies for alk € Z>, and almost

all e € R"e, % < M, whereM > 0. 5i(e) = Lifj= min(argmaxj (e erp)il)
) ) N ) 0 otherwise
Then Assumption 1 is verified withW(k,e) = (24)
W(“aeﬁaovefb’o)’ gW(S) = QW(S)i aW(S) = EW(S)’
ph(s) = 2M (1 + p)s, p//(s) = M(1+ p)s for s > 0.and 2t pas to be noted thak, (respectivelyhy) only depends on: and e,
p=p. [0 (respectivelyx andey) for the RR protocol, see (9).

Note that item (i) in Proposition 2 simply states that thealoc 3The_ TOD-tra_cking protocol can also be used_ when the node$_hNhi
d ti t ht o hich is th transmity, (equivalentlyyy) have access tg, (equivalently y,). That is
errors do not increase at each transmission which IS the Cg3fally the case whem, is a given trajectory which can be implemented

for all relevant protocols. The conditions of Propositio@r2 on smart nodes.
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The lemma below shows that the TOD-tracking protocol
satisfies Assumption 1. It directly follows from Propositio Plant
5 in [4].

Proposition 4:Suppose the protocol (8) is the TOD-tracking Network Y

protocol, then Assumption 1 is satisfied wif(¢.) =

(e,erp)l, aw(s) = aw(s) = s, u(s) = p/f(s) = 0 for

s>0andp = %. O
The TOD-tracking protocol ensures Assumption 1 holds

with x4 = pu// = 0, which is a priori not the case for the TOD

protocol according to Proposition 2. Thus, the TOD-tragkingig. 4. Block diagram of the observer implementation overtwork.

protocol may reduce the error ¢f, e), and hence improve the

tracking performance in view of the discussion in Section VI

We will also see this in simulations for an example in Sectiodere, we do not necessarily make the emulated observer

IX. depend on its own outpygtbut on some; (which corresponds
Remark 3:Various variations of the TOD-tracking protocolto 7, with the notation of Section Ill). In that way, the

can be deduced according to the network setup. For instaresulated observer is

when the control input is sent over the networkwgs + u ¢ . - L

, like in the example in Section IX-B, we can set the protocol = £(z,0) +k(z,9 -9 (29)

to grant access to the node wheftes, es + err);l 1S the \we wil see that it is possible to ensure a stronger stability
largest (and nof(e¢, ey, cfy);| as above). We then take, noy than in [13] by appropriately selecting the dynesni
Wige) = e, eqy + eff)_" Assgmp?fon 1 is verified with ¢ 7. It has to be noticed that the same idea is proposed in
the same functiongyy, aw, u% u’’/ and constan as 15] for the design of a class of high-gain observers. Comgbar
in Proposition 4, except that the lower bound in the f”%& [15], we treat a more general class of nonlinear observers

inequality of (13) depends offie¢, ¢y, +¢s7)| and notonlel. 54 \we propose a different stability analysis which leada to
In this case, (17) holds by replaciagn the left hand-side by diffe;,éntpMAE)Tl boun(; formul4. Y ysis Wi

<

Observer

(ecren+eyy). Noting that e;; = 0 since there is no feedforward
term, we write the overall model using the coordinates
(&, xa, e, eq, Kk, ) With & = Z—2, which we call the estimation
In this section, we show how the results of Section VI ca@rror in this sectiongzy = z, e = e = e, — eq Where
be used to emulate nonlinear observers for NCS. Consider the=§ —y andeq =9 — y
nonlinear system .
5 - .fE 57 Zq, €, w)

(

T = f(z,w), y = g(x), (25) g = fa(za,w)

ge(§,$d,€,W)
(

VIIl. OBSERVER DESIGN

-
Il

wherez € R"* is the statey € R the measured output, i 71 € [0,77]
w € R™ is an external perturbatiof,is continuous ang is ¢ = 9a(§xa,e,0)
continuously differentiable. We assume that we know how to o= 0
design a full-order observer of the following form for syste Tl+ =1 (30)
(25) .
ro=

__— - o o T

T f(Iv O) + k(Iv Y y)v Y g(x), (26) z+ ; Ze 2:7 Za Zd% = [U, 7_*]7
wherez € R"= is the estimate of, y € R™v is the output of Hi _ Hd+ 1’ o
the observer and is continuous. This problem can be seen o= 0

as a tracking problem where we wantto converge towards
. We thus recover the formulation of Section Il by taking with

xTq = T Tp = fﬁ(gaxdaeaw)::f(g—’—xdao) _f(‘rdaw)
Ya = Y Yp = Y +k(€ + z4,8(zd) — g(wa +§) —€)
upp = 0 up, = k(z,y—9) fa(za, w):=1(z, w) = (x4, w)
wg = w w, = 0, 27) ge(&, xa,e,w):=1,(§, xq,e,w) — £4(§, xa, e, w)
Og _ %8
f)(z,u,w) = f(z,w)+u andg, = g. Notice that the innova- 52 (2a)f(za, w) =53 (@4 + ) (f(g +24,0)
tion term of the observek(z,y — 7) in (26) is interpreted as k(€4 x4, g(xq) —glra+ &) — e))
a feed_back input to (26) which is directly sent to the obsgrvegd(f’ T4, €,0) ::fd(i, Ta,e,w) — %(Id)f(xd,w),
We implement the observer (26) over a network, see Figure (31)

4. The outputy is sent over the communication channel ¥ia

nodes. In [13], [14], the observer (26) is implemented as 4lt is hard to say that the bound in Corollary 1 is less or moneseovative
. than the bounds in [15] or [13] in general because they aredbas a different
z = f(z,0)+k(z,9—79). (28) set of assumptions and do not depend on the same constants.
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RR TOD-tracking ~ Sampled-data

Finally, the observer needs to be designed such that As-
sumption 3 is satisfied wite? = 0. This is justified by the

-1 -1 0
]C[ \/f 1[ 1 definition of the vector fields of system in (30) which can be
L IVE i i written independently oé,, see (31) (recall thafl, =f, =0

TABLE | here). In that way, property (17) holds wit = /7 = 0 for
CONSTANTS USED INSECTION VIII. system (30) as stated below.
Corollary 1: Consider system (30) with either the RR or the
TOD-tracking protocol or in the sampled-data case. Suppose

where £, and £, are defined by the holding functions. WeAssumption 5 is satisfied and Assumption 3 holds with=
do not need to introduce the variabte as in (11) because 0. If the MATI 7* is strictly less tharV (p, v, L) in (16) where
there is no feedforward term here. Since the problem can B&omes from Assumption 3 antd andp are given in Table |
modeled as in Section IV, we can directly apply Theorem depending on the adopted protocol, then there ekistCLL,
to conclude about the convergence of the estimation grrof” € Ko such that for any solutiof¢, za, e, 4, 5, 71, w)

under the required conditions. t) et iV < 0.0). e(0.0)| . ¢ ) + 6% (lwll . .
On the other hand, it may be possible to select the dynam!ég( ) el )| <B(](a(0,0), €00, 0))1. 5, ) ( ”(E’gfg-,))

of §, = § so that (17) holds withi? = 0, i.e. the estimation for all (¢, j) in the domain of the solution. 0

error converges to a smaller neighborhood of the o_rigin.e'ED SCompared to [13], we do not require the plant (25) to be stable
this, consider the case where zero-order-hold devicess®® Uyhq \ye ensure the asymptotic convergence of the estimation
(i.e. f, = f4 = 0 in (31)) and the protocol is either the RR g or towards the origin in the absence of perturbations

the TO_D-t.racI_<ing protoc_:élor all data are transmitted at each(as opposed to a practical stability property in [13]) when
transml_SS|0n~|_nstant as in the context of sampled-d_atgm&st the observer (26) is emulated using zero-order-hold device
The variablej is held constant between two transmissions al rthermore, a new MATI bound is given in Corollary 1

jumps asj does,i.e. when g for i € {1,...,¢} is updated
so isg. Denotingy = (41,---,9n, ), ¥ = (91,---,9n,) and

y = (y1,...,Yn,), the dynamics ofj is given by IX. EXAMPLES

. We demonstrate how the results of Section VI can be used
gy = 0 whenr; € [0, 7] for the tracking control of stabilizable linear systems e@cton
= . A.IQ_ _ ) 32 _ . . .
Qf _ Ui if 9 Ui \whenr e [, 7). (32) IX-A. We then cons@er an gxample concerning a nonlinear
y; otherwise single-link robot arm in Section IX-B.

Note that, in that case, the system can be modeled as in

(30) with a jump map for the-system which is continuous.A- Linear systems

In that way, Assumption 1 is valid witl = 0 according Consider the linear plant, = Az, + Bu + Fw, where

to Propositions 3-4 respectively for the RR and the TODA, B, C are real matrices of appropriate dimensions, the pair

tracking protocols. We make the following assumption whicpd, B) is stabilizable and the state is measurggd € z,, in

is satisfied by the observers in [20], [21], [22] for instanc€)). The feedforward termus; verifies iy = Axzq + Buyy,

when using zero-order-hold devices. where x4 is also measuredyf = x4 in (3)). We assume
Assumption 5:There existL > 0, a continuous function thatz4(t) is twice continuously differentiable so that ; ()

H : R" — R>o ando* € K., such that for all¢ € R™¢, is continuously differentiable. The controller is designas

zqg € R"*, e € R, ¢g € R"a andw € R™, it holds that ~ w = uy + uyy with up, = —K(x, — 24) where K is such
. . . that A— BK is Hurwitz. It ensures the asymptotic convergence
|9¢(& za,e;w)| < Lle| + H(E) + 7 (|wl). (33) of x, towards the reference trajectory, up to an error due

to w,. We implement the controller over a network composed
of ¢ nodes, as described in Section Ill, using zero-order-hold

- : devices. The scheduling protocol is selected to be the RR
protocol and we choos#’(e) = |e| for the TOD-tracking rotocol; noting that similar results can be derived for the

protocol (note thak;; = 0 here) and for the sampled-dat i : : :
case. Thus, by combining Assumption 5 with the fact thEStOD( tracking) protocols. We write the problem using the

for the considered protocols, for all € Z~, and almost all model in (11). We obtain

O
We take the functioV to be as in Proposition 3 for the RR

e € R™ it holds that fe(&e,epp,w) = (A= BE){+ B(Ae+eyf) + Fuyp
OW (r,e) fo(ra,@a) = Ava+ Buyy
‘77 S Ma (34) ge(€7€7€ff,w) = (_ (A_BK)E_B(A6+eff)
where M > 0 is given in Table I. Assumption 2 is then ga(ra,xq) = _ifj’_o)gu”
satisfied withL = ML, H = MH, v =0, andv®” = Mp". (36)
where A = [-K I] and recall thatm, reflects time-

5When the TOD-tracking protocol is implemented, we need thessr dependenciesin the right-hand side duejtga. We concentrate
nodes to have accessgg (and thuse,), i.e. they need to have sufficient com-

putational capacities to run a copy of the observer; a sinmtglementation on the case Where_ the plant Stajie and th? refer_ence trajec-
is described in more detail in Remark 2 in [13]. tory x4 are transmitted to the controller via distinct nodes. In
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that case, we assume that; is sent from the reference systemRemark 3). In that way, Assumption 1 is valid, see Section VII
to the actuators via the network, as depicted in Figure 3. TR the other hand, we have th@t (¢., ¢.)| < [&| + &1 +
same approach can be applied for the other cases describegbn- Dle| + 2aleq| + blef |, where D := v/3max{1 + a, b}.
Section 11I-B. The considered function$l” are such thatay (s) = s
Since A — BK is Hurwitz, the{-system isC,-gain stable for s > 0 and |%{’;€*qc)| < M for almost all ¢. and
from (e, esp,wp) to (A — BK)S with gainy > 0. The result a1 ,; with A/ = /7 for the RR protocol (see Example 3
below follows from Theorem 1. Its proof is omitted; it cortsis i [4]) and A/ = 1 for the TOD and the TOD-tracking
in verifying that the required conditions of Theorem 1 hold
for this particular linear case.
Proposition 5:Consider system (11) with (36) and supposé/ (DW(/’», e)+1&+6 +€2|+20|6d|+b|€ff|) for almost all
* satisfies Assumption 4 with = /42, L = /|BA| and ¢e @nd allg;, w, 72, x, whereg = (g, ga). Hence, Assumption
~ is defined above. Then property (17) holds. O 2 s verified withL = M D, H(qz) = M(|&| + [& + &),
v(s) = 2Mas andv’/f(s) = Mbs for s > 0. We now show
that Assumption 3 holds with/ (&) = a&? + B&1&y + 663
where «, 8,6 will be chosen such that (14) holds. Writing
We consider a single-link robot arm whose dynamics CQ{( Sin(&+I1,d)—sin(§1+xl,d+81,g+61,d)) =aler¢e+era)
be written as and a(sin(z1,4) — sin(z1,q4 + €1,4)) = de1,q With varying
(37 parameters, a in [—a, a], we have thatVV (§), fe(qu, ge)) <

ﬁrotocol. As a consequencﬁ%jz%),g(m,qz,qe,w)>’ <

B. Single-link robot arm

| | _ o B — (20— )G+ (20— 20— B)Ga&a+ (206 +86) (Te+
wherex; is the angley, is the rotational velocity which are

both measuredy is the input torque ana,b > 0 are fixed (—@+ad)era+ beff) whereY :=[-a —1 — 1b]. Applying
parameters. The system (37) has to track the referencemsysteice the fact thatry < Za? + 21_77y2 for z,y € R>o and
n > O! we obtain <VV(§)af§(Qz7Qe)> < _ﬂé.% - (26 -
B)E + (20 — 20 — B)&1& + (07! +;7_1)(25§2 + B&1)* +
wherez; 4 an_d Toq are mea_surgd anajff(t)_z 10sin(50¢). 1nD?|e|? + %ﬁ((—a +a)erq + beff) wheren, 7 > 0 and
When there is no communication constraint, the asympto . ’ _
convergence ofx1, x2) towards(z 4,2 4) iS ensured using has been defined above. We_use thata +a| < 2a
: ’ o T and (z + y)? < 222 + 22 to obtain (VV (¢), fe(qx, qe)) <
the control inputy = w g, +u sy whereus, = b~ (a(sin(zq)— —BE2— (20— B)E2+ (20— 20— B)rfat L i 1) (2060 +
sin(z1,4)) — (21 — @1,0) — (22 — 22.4)). We consider the L 2 1527310 T 2

2 1 21,12 ot 2 2 2 2 i
case where the controller is implemented using zero-ordeel)” T 217 [el” + ii(4a”leal” + bless[7). Therefore, if we

hold devices and communicates with system (37) via a network- - © that (14) holds and

composed o8 nodes forz;, z; andu, respectively {=3).  __ 2 _ g2, V> _3¢2 _ (25 — B)€2 4+ (200 — 25 —
Thus, we assume tHatr; 4, 2 4,us; are directly available el¢] (qm)_+€§171 (4_5~,1§3()2§§€+4(_ gg )26 RS
to the controller as in Figure 2. The transmission sequence 2\ g 2 ! (40)

{ii}igllzgo is SUC{} tg?ti_ti_ﬁ ZT*(IZ Ugjffor ;E ZEO’Wherlf with ¢ > 0, then Assumption 2 is verified withy =
7* will be specified later. The emulated feedback controller is LD2 1 2, (s) — 4ija?s? ando?? (s) — ft2s? for 5 > 0.

up,=b""(a(sin(21) —sin(&1,4)) — (£1 — &1,4)— (£2 — #2,4)), Note that Assumption 2 holds whem = 8 = § and by
(39) taking «, n and7 sufficiently large and: sufficiently small.

wherez, 4 and iz 4 are held constant between transmissioridonetheless, such a choice may lead to a largehich may
and jump ast; andz, do. In that way, the emulated feedbackhen give us conservative MATI bounds (as the bound in (16)
term (39) does not depend an 4 and z3 4 although these increases as increases). Thus, we have computed, §, n by
variables are coqtinuously known by the co.ntroIIer. We Wilhinimizing v = 1nD? + ¢ under the conditions that (14)
see that this choice may be advantageous in order to redyg® (40) hold using the Matlab optimization toolbox taking
the impact of the errors, andey on the convergence ofthe, _ 91 .05 andb = 2. We have obtainedy — 3.05,
tracking error. _ = 1.05, 6 = 5.05 5 = 10.11 ande = 0.0001. The

In the sequel, we stud)_/ three d|ﬁ§rent protocols:.the RB, thaATI bounds are summarized and compared to the bounds
TOD and the TOD-tracking. We write the system in the formgtimated via simulations in Table II. It has to be emphasize
of (11) with: f¢(gx, ge) = (52, —a(sin(é1421,a)—sin(z1,a)—  that our method strongly relies on the choice of the Lyapunov
sin(§+a1,a+e1e+er,q)+sin(zyatera))—(&1+ere)—(&+  functionsV andiW and that other functions may lead to larger
bounds. We notice that the bounds for the TOD and the TOD-
tracking protocol are the same according to Assumption 4
and in simulations. Interest in the TOD-tracking is justifie
by the fact that it may reduce the impact of the erregs
andes; on the tracking error as discussed below Proposition
4 and illustrated by Figure 5. On the other hand, we see in

6We make this assumption in order to be able to consider the-Tré@dhing Figure 6 that the convergence error is of the same order of
protocol (see Section VII). magnitude when using the TOD-tracking and the RR protocol;

i?l = X2, x.g = —a SiD(CCl) + bu,

ftl.,d =24, x'gyd = —a sin(:clyd) + bUff, (38)

627§)+b€fb+b€ff), fd(TQ, xd) = (Igﬂd, —a Sin(Il_’d)—Fb’UJff),
ge(Qmaqe) = _(ff(Qque)vo)' gd(T%QE) = _.fd(T%xd) and
grf(m2) = —tys. We consider the functiofl” in Proposition
3 for the RR protocol}V (e) = |e| for the TOD protocol and
W (ge) = |(e¢, erp +esy)| for the TOD-tracking protocol (see
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RR TOD TOD-tracking
Assumption 4 0.0050  0.0061 0.0061
Simulations 0.150 0.170 0.170
TABLE 1l

MATI BOUNDS IN SECTION | X-B.

the advantage of the TOD-tracking is that we can consid
larger transmission intervals (see Table II). Finally, waevé
compared the obtained tracking errors for the cases where
emulated feedback controller (39) uses either the vasab
(%1,d, B2,4) OF (z1,4,22,4) In (39), see Figure 7. We see
that, for the RR protocolé; := x; — x1,4 converges to a
smaller neighborhood of the origin when the controller ust
(Z1,4,22,q4) instead of(x; 4, z2,4), While no major difference
is seen forgy = xo — x2 4.

RR

i W\/\/\MW\J\/W\MN\WW\A/\/\/W\W

Fig. 6. Tracking error for MATIT* = 0.005.
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Fig. 7. Tracking error for MATIT* = 0.005 and the RR protocol when the
controller useg; q4,Z2,4) (solid lines) or(zy 4, z2,4) (dashed lines).

X. CONCLUSIONS

We have presented a Lyapunov-based emulation approach
for the tracking control of time-varying trajectories foom
linear NCS. To handle the specific features of tracking adntr
for NCS, we have proposed a new hybrid model. We have
presented sufficient conditions under which an approximate
tracking control objective is achieved. In addition, we éav
explained how the controller can be implemented and how the
protocol can be set up in order to reduce the impact of some
of the network-induced errors on the tracking error. Fipall
it has been shown that these results on tracking control can
be directly employed to obtain new results for the observer
design problem for NCS as well. We believe that the results of
this paper can be extended in various directions. In paaticu
tracking control in NCS subject to small transmission dslay
can be addressed by first appropriately modifying the model
of Section IV and then adapting the Lyapunov-based stgbilit
analysis given in [3].

APPENDIX

Proof of Theorem 1. The proofis organised as follows. First, a
hybrid Lyapunov functiori/ is designed. Second, we study the
derivative ofU along the solutions to (11) on flows (whene
[0, 7*]) and its dynamics at jumps (when € [v, 7*]). Third,
we obtain (17) by applying standard comparison principles
together with the fact there exists a minimum amount of time
between two jumps. Finally, we prove the last part of Theorem
1 about the functiong?, §7/.

We focus on the case where € (0,1); when p 0
similar arguments as in [23] are used. The consfat v, L)
in (16) corresponds to the time it takes for the solution to
¢ = —2Lp—y(¢? +1) to decrease from the initial condition
¥(0) = % to (T (p,7, L)) = p (see Lemma 2 in [2]). We
now define the following differential system

¢=—2Lp—y((L+n)¢>+1) with ¢(0) =

1

P+

(41)
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wheren > 0, p* € (p,1). The timeT(p
for ¢ to decrease fromL to p* is a continuous function i

andp* which decreases with both increasipgndp* as long
asp* < 1 (by invoking the comparison principle). Moreover, U(G(q)) <V + 7=
W T(p,7v,L), as a consequence
T(p*,7v,L,n) < T(p,v,L). Based on these facts, for any
T < T(p,v, L) we can always findp* sufficiently close

we have thatT (p, 7, L,0) =

to p with p* > p andn sufficiently small such that'* <

T(p*,7, L,n). In the following, we take; € (0, (7) -1).

The following claim follows from Claim 1 in [2] and the Denoteo{: (s) :=

developments above.

Claim 1: For all 7y € [0,77], ¢(71) € [p*, 5. O

For the sake of convenience, we introduge :=
(qm,qe,K,Tl,Tg) € R whereR = Rz X Re X ZZQ X RQZO
and write system (11) as

¢=F(qw)forqge C, ¢t =G(q) forqe D, (42)
whereC :={geR : 7€ [0,7*]} andD:={¢eR : 7 €
[v,7*]}. We define, for ally € C U D U G(D),

12

*,~v,L,n) it takes As a consequence, we obtain the following bounddi(q))

from (46)
(p2W2 +np?W2 + %ud(|ed|)2
+ 21 ey 1)? + 2% (eal)? + 2077 (les1)?)

=V 4L (1 +n)pW?
21+ ) (1 lea)® + 1 (egs1)%))
(49)
Z (14 2)pt(s)? andaff (s) =12 (1 +

St (s)? for s > 0 and notice that (1 +1)p* < p since

n € (0, (p,:) 1). Hence, the following holds according to
Claim 1
UG(@) < V470" W2 +of(led) + ot (less))

<
< Vo)W + ofs(leal) + ot (e 1))
= Ulg) +of(leal) + of (legs))-

(50)
We now study the dynamics &f on flows'. For all k € Z>o,
71 € 10,7*], 2 € R>p, w € R™ and almost all(g,, ¢.) €
R. x R, we have that, in view of Assumptions 2-3 and (41),

Ula) = V(ga)+70(r)W?(k, qe). (43) (VU(q), F(q,w)) < —eV—eW? = H2(qp) + VW2 + 0%(|eq|)
_ _ _ +ol I (legsl) + 0 (Jw))
According to Remark 2.3 in [24] and Assumptions 1 and 3, +7( —2L¢ — 7((1 + 1) + 1))W2
we have that +29¢W (LW + H (q.) + v*(Jeal)
v (legs]) + 1 (|l )
a(Eo) < U@ < aullgea))  (44) — eV W2 — H2(gy) + 0(Jea)

with o : s'—>m1n{av £),p*aw(3)} € Ko anday @ s —
av (s )—i——aw( ) € Keo-

In view of (41) and sincey; = q.,

U(G(a)) V(ga) +96(0)W?(r + 1, h(r, ¢c))
V(ga) + 75 W2(k + 1, h(r, c)).

(45)

Using Assumption 1 (we omit the argumentsiofand W in
the following for the sake of simplicity), we obtain

U(G(q)) <V +7k (oW + p(leal) + i/ (Jegs]))”
= V+7 (0*W2 + 20W (u?(leal) + p7 (legs])

+(uleal) + 1 Jegsl))?)
(46)

+7(—2L¢ — (1 +n)¢*)W
+27¢W(LW + H(qy

)
)
+0ff(|€ff|) +a¥ (le))
)
+vi(leal) + v/ (lessl) +

ve(Jwl)). (51)

We are going to upper bound the term on the last line of the
inequality above. Using thatab < a® + b* for a,b € R,

we obtain2y¢W H(q,) < v*¢*W?2+ H?(q,) and, using that
2ab < Za® + %bQ for a,b € R, yields

276W (v (Jeal) + 17 (legs]) + 1 (jw])
= 299Wo(Jeal) + 2y6Wr ' (less]) + 2ygWr (|u)
< §20*W2 4 Jvi(leal)? + g2 0P W2 + Svl (Jesg)?
+37°6° W2 + 2vv (Jw))?
=m?¢* W2+ 2 (v (leal)” + v (legs])? + v”(le)g.Z)

We are going to upper bound the right-hand side of the abageing back to (51), we derive that

equation using the following inequalities (we utilize tRab <
a’® +b% for a,b € R)

(n(jeal) + 1 (legsD)* = u(lea)? + n (egs))?
+2p(lea) ! (lesy))
20 (|eal)? + 2uff(|€ff|)?

and (using thagab < Za* + 217 for a,b € R)

IN

47)

20W (p (|€d|)+ﬂff(|€fj|)) 2pW (|€d|)+2PWfo(|€ff|)
<3PPW2 4 2 (leal)® + 5P W2+ 2ud (legys])?
—np2W2+2ud(|€d|) + u”(leffl)
(48)

(VU(q), F(q,w)) < —eV — eW? — H?(qy) + 0%(|eal)
+oll(legs]) + o (Jw])
+7(=2L¢ — (1 +n)¢*) W
+2ypLW?2 + 2$*W?2 + H?(q,)
02 * W2 + 5 (v4(|eal)® + w77 (less])
+v(lw))?) ,
=—cV —eW? + 0%(lea]) + o/ (legs])
+o*(|w]) + 2 (v (Jeal)® + v/ (Jess])* + V”(IWI)Q(Z_)é)

"We consider(VU(q), F'(g, w)) with some abuse of notation sinéé is
not (almost everywhere) differentiable a priori with resp®o . However,
this is justified by the fact that = 0, see (11).
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Therefore, there exists > 0 according to Claim 1 (take €
(0, e min{1, ”7})) such that

13

ay; given below (44)) and since we are working with strictly
increasing functions

(VU(q), F(q,w)) < —£U(q) + st (leal) + < (le 1) §s) < apt(——t—s|7201+1 2
+§U(| |)7 U (54) ( ) ——i_lg_g(l ;)(cp( Ev) [’YE( D,,)H ( ) (60)
with 1 (5) = 0"(5) +22/(9)%, 6t (5) i= o1 (5) 33 (5]
(s) =" (s )—|— Sy ( )2 for s > 0. The constanf satisfiest € (0, min{1, ”;}) see above (54).
Let (q, ) be a solution pair to system (42). From (54), bHowever, sincep* > p, we can takez € (0,emin{1, £3).

invoking standard comparison principles for continudoset
systems, we obtain that, f@¢t;,0) € domg

U(q(t1,0)) < exp(—£€t1)U(q(0,0)) + & (st (lleall 4, .0)
+§i§f(|‘eff”(tho)) + §5U(||w||(t1,o)))-

On the other hand, from (50), fdt,, 1) € domg
Ulq(t:, 1)) <U(q(tr, 0) + o (lleall o, o))+ ot (lessl . 0%
6)

By induction, we have that, foft, j) € domg

U(a(t)) < exp(~E0U (400,00 + 75l )
+(aU<||edH ) + 0 (lesdll )

X YJ g exp(—£v)
< exp(—€t)U(q(0,0)) + o5 ([[wll ¢ ;)

+ (8 el ) + aéf(HeffH(t,j))) eI

(57)

where G (s) = ofi(s) + E7'6E(s), alf (s) = off(s) +
g1}’ (s) and UU() = & 14(s) for > 0. On the
other hand, using (44) in (57), we obtdi(t, j),e(t, j))| <
a; (exp(—Ef)aU(KQ:ﬂ(o 0),2(0,0)1) + a(llwlly ;) +

(UU(H@dH(w )+U (HeffH(t n))m) By using sev-
eral times the fact thag(a + b) < x(2a) + x(2b) for any
X € K anda, b > 0, we obtain the desired result (17).

We now prove the last part of Theorem 1. We only conS|dﬁF0m (11) and (23), we obtain
5¢ without loss of generality and let > 0. We have that ’

(17) holds withd?(s) = gUl(ﬁ(w)aU( ).

noted that any upper bound ngUl(ﬁ(fémag(s)) can

It has to be

be taken to bé“ in (17). Thus, we will derive upper bounds
for 6¢ which are of the desired form. Using the definition of

ol given after (57), we obtain
6(s) = o' (T=mimem (08 (9) + 27 18(9)) )

which gives, in view of the definition of¢. and g respec-
tively given after (49) and (54),

(58)

5(s) = 2(14 Lu(s)?

*

QU (1 —exp(—év v

YL pe
o) + Bvi(s)? )}) >

The function 6 depends on the MATI* although that

In that way, (60) becomes independentwf We erten =
6(r*)~1 for some strictly positive functiodl : R>¢ — Ry,
in that way (60) becomes

3%(s) <

d[}l (lfcxp(fs ilin{l,%}v) [’Y%(l + 9(7—*))Md(8)2

+smin1{1,£} (Ud(s) + 39(7-*)”(1(8)2)} ) .
(61)
As a consequence, by applying several times the property
x(a + b) < x(2a) + x(2b) for any x € Ko anda,b > 0,
we obtain thatd(s) < w(v- )( () + ()8 (s )) <

(1 + () (v=1)d(s), whered,d € Koo, ¢ : Rsg — Rsg
andé(s) == max{5(s), (s)}. O

Sketch of proof of Proposition 1. Property (17) holds
according to Theorem 1. We then just have to use (18) in
(17) and (19) and to combine the obtained inequalities to
deduce that (20) holds on the domain of the solution. [

Proof of Proposition 2. We define the functio : Z>( x
R™ — Rsg asW : (k,e) — W(k, e, — eq,0,eyp,0), which
is locally Lipschitz in view of item (ii) of Proposition 2. Bm
(22), we deduce that the first line of (13) is ensured with
aw (8) = aw(s) andaw (s) = aw(s) for s > 0. Moreover,
for system (11) we have thal/(x*,e") = W(x" e} —

7.0,¢5,,0) = W(nt, et) + W(xT,et). Using st = r +1
W(kt,e") < W(k™, €p —ed,O efb,O) Wkt e")
+pW(ff e)
=Wkt ef —ej,0,¢},0) — W(kT,et)
+pW(k,e) — pW(k, e, —eq,0,e5,0)
+pW (K, e, — eq,0,ep,0).
(62)

Since item (ii) of Proposition 2 is satisfied and by recallingt

e = (ep, eq,epp,er7), Wwe have thaW (k, e, —eq,0,e7,0) —
W(k,e) = W(k,ep—eq,0,e5,0) =W (k, ep, €4, €pp,erp) <
M/(eq, eq,eryr)| using the mean value theorem (singé is
locally Lipschitz in e). Similarly, we deriveW (x*, et —
ej{,O,e;{b,O) — W(skT,et) < M|(ej{,e;r,e;rf)| In view of
item (i) of Proposition 2, we know thafe;| < |e4| and
lefsl < lessl; consequentlyW (s, e} — e;{,o,e;ﬁb,_o) -
W(kT,et) < M|(eq,eqa,erf)|. As a consequence, in view
of (62), we obtain

is not obvious from (59) because this dependence is hid-
den in the constant* and n. Thus, we will remove W(kt,et) < M|(eq, eq,efr)| + pM|(ea, eq,err)]
the dependence o6? on p*. We know thatp > P +pW (K, ep — €q,0,ep,0)

Therefore, noting thaty;(s) = min {ay (%), p*aw (3)} > < pW(k,e) +2M(1+ p)leq| + M (1 + p)lessl,
min {ay (%), pay (£)} = ay(s) (in view of the definition of (63)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL

and the second line of (13) is verified with
p(s) = 2M (14 p)s and /¥ (s) =

pi
M(1+ p)s fors>0.0

Proof of Proposition 3. For the RR protocol, we can write
(see (9) or Section Il in [4])

= (I=Yp(x))ep
= (I—Vg4(k))eq
(I = Wr(K))eso,

whereV,,, U, ¥+, are diagonal matrices whose diagonals a
composed of) and 1.

hy (K, ep)
ha(k, eq)
hyy(k,epp) =

(64)

We consideV (k, e) = _§|¢(i,f€,e)|2 where ¢(i, k, e)

14

implies
W (ki + 1, he(e)) = \/Z |6(i, 5 + 1, he(k, €))|2
1=Kk+1
< (W (ke).
(68)
On the other hand, we notice thatl¢(i,x +
1, Ahe(k,e,eq,epp))| < |Ahe(k,e,eq,epp)] In view of

(64) and the fact tha¥,, and ', are diagonal matrices whose
ldéagonals are composed ofand 1. As a consequence, we
ave that

([=Wy(x))ep — (I = Wa(r))eq

he(k,e,eq,er7)= (I—Psp(k))ess

is the solution to the following system at timestarting at _ (0= \ij(ﬁ)%ef E(qjd(ﬁ) R \ij(ﬁ))ed> .
time « with initial condition e (=W sp(r)esn
(s ) (1= W,() renee
_ - ' K’aef _ - *p K 85
o= ( hyo(k,epn) > a ( (I—Wyp(k))ess ) Ahe(k,e,eq,e55) = (- ‘ij(ﬁ)})lef E(qjd(ﬁ) h q}p(ﬁ))ed)
= hu(k,e). (L= Wyp(k))esn
(65) B ( (T—Wy(k))e >

By following the same lines as in the proof of Proposition (I—Wyp(k))er
4 in [4] since system (65) is dead-beat stable 4n _<(‘I’d(“) - ‘I’p(“)) )
steps and|¢(i, k,e)] < le| for all ¢ > x > 0 and 0 (69)
e R", we deduce that the first line of (13) holds .
Witﬁ aw(s) = s, aw(s) = Vs for s > 0 in (vie\)/v of Therefore |61,k + LAh@(“vevedveff)” < |(Wa(k) —

Proposition 4 in [4]. We now show that the second lin
of (13) is guaranteed:W(x + 1,he(k,e,eq,err))

Z |9(i, 5 + 1, he(k, €, ea,e55))[? =
1=Kk+1
Z |6(i, K + 1, he(k, ) + Ahe(k, €, eq, e55))[?
1=Kk+1
where h. is introduced in  Section IV and
Ahe(k,e,eq,epr) = he(k,e,eq,erf) — he(k,e). Due to

the linearity of ¢ in its third argument in view of (65),
we have that¢(i,x + 1,he(k,e) + Ahe(k, e eqerr))
= @i,k + 1, he(k,e)) + @i,k + 1, Ahe(k,e,eq,e7)). In
that way, we derive, using thal/a +b < a + Vb for
CL,b S Rzo,

W(:“E‘f’ 1,he("$ € edaeff)) =
z |p(i, & + 1, he(k, €))[?

1=Kk+1
Z |p(i, 5 + 1, Ahe(r, e, eq,er7))]2
i=k+1
(66)
Denote R(k,e) = > [6(i,x,e)l* using the fact that
(i,ise) =, -
R(k+ 1, he(r,e))= > |o(i, k5 + 1, he(k,€))]?

1=Kk+1

=[0G, K, €)|* — le]* = R(r, €) — ef*.
o 67)
Now, we observe thaR(x,e) = W?(k,e) < {|e|* and thus
R(k+1,he(k,€)) < R(k,e) — $R(k, e) = “2 R(k, €) which

éI/p )eal < |Vq(k) — ¥p(k)|leq|. Since ¥, (k) and ¥ 4(k)
are diagonal matrices Whose diagonal components)ane
1, we deduce that¥,(k) — ¥q(k)] < 1. In that way, we
obtain that|Ah.(k,e,eq,err)] < |eq|. AS a consequence,
|p(i, 5 + 1, Ahe(k,e,eq,e57))| < |eq|. Combining this point
with the fact that system (65) is dead-beat stablé steps,
we obtain

Z |p(i, ks + 1, Ahe(r,e,ear e )2 < Ve eal.
1=Kk+1
(70)
Therefore, in view of (66), (68) and (70))V(k +

1, hE(K’ €, €d, eff)) <

second line of (13) holds withh =
and /7 (s) = 0 for s > 0.

We now show that the second line of (13) holds with= 0
if and only if h, = hg.
(<): By setting¥, = ¥y, we see from (69) that\h, =
0 in (68) and we obtain the desired result by following the
reasoning above.
(=): We proceed by contradiction and suppdse# ¥, and
Assumption 1 holds witlu® = 0. Then, according to (13) and
since W (x,e) < v/|e|, we know that there exist§ € KL
such that for any(e(0),eq(0),esr(0)) € R etmeatnen
k(0) € Zso, the solutions teet = h.(k, e, eq,e5y) satisfy
for any j € Zso: le(j)] < B(le(0)],7), from which we
deduce that for(0) = 0 and any(e4(0), ef£(0)) € R™ea™t"eu
and x(0) € Z>o, le(1)] = 0. On the other hand¥, # ¥,
means that there exists at least one componeny; afenoted
e, that is not assigned to the same node egs Without
loss of generality, we suppose thats the only such node.
Take ec(0) = 0, €k(0) = 0 if k& # 4, €5(0) # 0 which

V52 Wise) + Vieq|. Hence the
Z—li Nd(S) _ \/ZS

l
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0if k # i andel(0) = ¢4(0). Consider
and k(0) = 0. In view of (64),
([ = Wy(k))ee + (Yalk) — Up(r))ea

implies thate}; (0)

erp(0) = 0, eff(
we have thate

)=

and e.b = (I — Uysp(k))esp. Consequentlyes(l) = (I —
\I’p(O)ges(O) +(Va(0)=Up(0))eq(0) = (Wa(0)—Pp(0))ea(0)
andeyp(1) = (I — U sp(0))es,(0) = 0. Since all the network-

induced errors components are initializedOaexcepte;,(0)
ande)(0), we can equivalently assume that eitlagror ¢, is

reset to0 at the first transmission instant. We assume that it [@1]

e In that way, the'" diagonal component of; is equal tol
while thei'" diagonal component of,, is equal to0, sincee,,

ande’, are not associated to the same node. As a Conseque

since ¥,,
definition of e4(0), (Pq(0) — ¥,(0))eq(0) # 0. Hence,
e(1) # 0 which contradictye(1)| = 0. Hence, Assumption 1
only holds withu? = 0 when¥,, = ¥, i.e.whenh, = hy. O
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