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Tracking control for nonlinear networked control
systems

Romain Postoyan, Nathan van de Wouw, Dragan Nešić,Fellow, IEEE,W. P. M. H. (Maurice) Heemels,Senior
Member, IEEE

Abstract—We investigate the tracking control of nonlinear
networked control systems (NCS) affected by disturbances.We
consider a general scenario in which the network is used to
ensure the communication between the controller, the plantand
the reference system generating the desired trajectory to be
tracked. The communication constraints induce non-vanishing
errors (in general) on the feedforward term and the output ofthe
reference system, which affect the convergence of the tracking
error. As a consequence, available results on the stabilization
of equilibrium points for NCS are not applicable. Therefore,
we develop an appropriate hybrid model and we give sufficient
conditions on the closed-loop system, the communication protocol
and an explicit bound on the maximum allowable transmission
interval guaranteeing that the tracking error converges to the
origin up to some errors due to both the external disturbances
and the aforementioned non-vanishing network-induced errors.
The results cover a large class of the so-called uniformly globally
asymptotically stable protocols which include the well-known
round-robin and try-once-discard protocols. We also introduce a
new dynamic protocol suitable for tracking control. Finally, we
show that our approach can be used to derive new results for the
observer design problem for NCS. It has to be emphasized that
the approach is also new for the particular case of sampled-data
systems.

Index Terms—Networked control systems, sampled-data, hy-
brid systems, tracking control, observers.

I. I NTRODUCTION

Networked control systems(NCS) have received consider-
able research interest these last decades. This is justifiedby the
fact that, nowadays, controllers often communicate with the
plant via a network which may be used for other tasks as well.
This implementation offers great advantages over classical
point-to-point connections in terms of cost, flexibility and ease
of maintenance. On the other hand, it requires the development
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of appropriate control strategies to guarantee the desiredsta-
bility properties under the communication constraints caused
by the use of the network. Most available results on NCS
concentrate on the stabilization ofequilibrium points(see for
example [2], [3], [4], [5], [6]), while very few studies address
the tracking control of NCS, see [7], [8], [9], although this
problem is fundamental in control theory. The latter references
have shown that tracking control exhibits specific difficulties
which are due to the use of the communication channel
and which are absent when considering the stabilization of
an equilibrium point. Indeed, tracking controllers are often
composed of a feedback term (to ensure the convergence to
the desired solution) and a feedforward term (which induces
the desired solution in the closed-loop system). The authors
of [7], [8], [9] have shown that the errors induced by the
network on the feedforward term lead toapproximatetracking.
Similarly, the fact that the reference signals are transmitted via
the communication channel may also be a source of errors that
obstruct the convergence of the tracking error to zero.

The main purpose of the present paper is to propose a
method to design controllers which achieve a state tracking
objective for NCS affected by exogenous perturbations. The
reference to be tracked can either be given as a reference tra-
jectory or as the states of a reference system as in themaster-
slavesynchronization problem. We follow an emulation-like
approach as in [2], [3], [4], [5], [6] which consists in first
designing a controller that solves the problem in the absence
of communication constraints. Afterwards, we implement the
controller over a network and study the conditions that pre-
serve the tracking property up to some errors caused by the
network. We consider a general scenario where the channel
is used to ensure the communication between the controller,
the plant and the reference system. This allows us to en-
compass the architectures studied in [7], [8], [9] as particular
cases and to investigate a rich class of new ones. At each
transmission instant, the network is such that only a single
node (i.e. a group of sensors or actuators) is granted access
to the network according to a rule calledscheduling protocol.
The class of protocols we consider includes the round-robin
(RR) protocol, the try-once-discard (TOD) protocol [6] and
more generally the protocols which are Lyapunov uniformly
globally asymptotically stable (UGAS) as defined in [5]. We
also propose a new dynamic protocol for tracking control
which may ensure improved performance compared to the
RR and TOD protocols. In comparison to [7], [8], [9], we
consider nonlinear systems (as opposed to linear systems) and
we study the effect of sampling and scheduling (as opposed
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to sampling and delays or quantization, although we believe
that the framework laid down in this paper allows extensions
in these directions by exploiting the ideas from [3], [10] for
instance).

We present a new hybrid model using the formalism of [11]
to study the tracking control of NCS which is general enough
to describe the setups of [7], [8], [9] and to represent various
new architectures as mentioned above. It relies on the choice
of a specific set of coordinates which facilitates the analysis
afterwards. Next we state sufficient conditions on the closed-
loop system and we provide an explicit and easy-to-use bound
on the maximum allowable transmission interval (MATI) to
ensure that the tracking error converges to the origin up to
some errors due to the external perturbations, as expected,
but also due to the aforementioned network-induced errors.
These additional errors constitute an essential difference with
the scenario where an equilibrium point has to be stabilized
and they induce supplementary technical difficulties. Indeed,
the stability analysis is based on the construction of a hybrid
Lyapunov function inspired by [2], which exhibits the feature
of potentially increasing at jumps (as opposed to [2]). We
then provide guidelines on how to implement the controller
and to design the scheduling protocol to reduce the impact
of the non-vanishing network-induced errors on the tracking
accuracy.

Building upon the analogies which exist between master-
slave synchronization and observer design [12], we also derive
new results for the observer design problem for NCS. Com-
pared to [13], [14], we rely on a Lyapunov-based analysis (as
opposed to trajectory-based arguments) and we provide a new
bound on the MATI. In addition, we envision an emulation
procedure similar to [15] which allows us to relax some of the
assumptions of [13], [14] for the considered class of systems.
It has to be noticed that we focus on a more general class
of observers than that in [15] and that we propose a different
stability analysis as well as a different MATI bound. Overall,
we would like to emphasize that the presented results are
new in the context of sampled-data systems (with non-uniform
sampling), in which case the scheduling protocol grants access
to all nodes at each transmission instant.

The paper is organized as follows. Preliminaries are pre-
sented in Section II. The tracking control problem is formal-
ized in Section III. Next, we propose a suitable NCS model
in Section IV and the assumptions we adopt are given in
Section V. The main stability results are stated in Section VI.
In Section VII, we give examples of protocols suitable in the
scope of tracking. The application of the derived results tothe
observer design problem for NCS is presented in Section VIII.
Examples are provided in Section IX. All the proofs are given
in the Appendix.

II. PRELIMINARIES

Let R := (−∞,∞), R≥0 := [0,∞), R>0 := (0,∞),
Z≥0 := {0, 1, 2, . . .}, and Z>0 := {1, 2, . . .}. A function
γ : R≥0 → R≥0 is of classK if it is continuous, zero at zero
and strictly increasing, and it is of classK∞ if in addition it
is unbounded. A continuous functionγ : R2

≥0 −→ R≥0 is of

classKL if for each t ∈ R≥0, γ(·, t) is of classK, and, for
eachs ∈ R>0, γ(s, ·) is decreasing to zero. Additionally, a
function β : R3

≥0 → R≥0 is of classKLL, if β(·, ·, t) ∈ KL
andβ(·, t, ·) ∈ KL for anyt ∈ R≥0. Forx ∈ R

n andy ∈ R
m,

the notation(x, y) stands for[xT, yT]T. We useIn to denote
the identity matrix of dimensionn and diag(A1, A2) to denote
the block diagonal matrix made of the square matricesA1 and
A2. For (t, j), (s, k) ∈ R × Z≥0, we write (t, j) � (s, k) if
t+ j ≤ s+ k.

We will study hybrid systems of the form below using the
formalism of [16], [17]

ẋ = f(x,w) for x ∈ C, x+ = g(x,w) for x ∈ D,

(1)
wherex ∈ R

n is the state,w ∈ R
m is the input,f is the flow

map,g is the jump map,C is the flow set andD is the jump
set. We assume thatC andD are closed subsets ofRn and that
f andg are respectively continuous onC and onD. A subset
E ⊂ R≥0×Z≥0 is ahybrid time domainif for all (T, J) ∈ E,
E ∩ ([0, T ] × {0, . . . , J}) =

⋃
j∈{0,1,...,J−1}

([tj , tj+1], j) for

some finite sequence of times0 = t0 ≤ t1 ≤ . . . ≤ tJ .
A function w : E → R

m is a hybrid input if E is a
hybrid time domain and ifw(·, j) is Lebesgue measurable
and locally essentially bounded for eachj. A function
x : E → R

n is a hybrid arc if E is a hybrid time
domain and if x(·, j) is locally absolutely continuous for
each j. The hybrid arcx : domx → R

n and the hybrid
input w : domw → R

m is a solution pair to (1) if:
(i) domx = domw and x(0, 0) ∈ C ∪ D; (ii) for any
j ∈ Z≥0, x(t, j) ∈ C and d

dt
x(t, j) = f(x(t, j), w(t, j))

for almost all t ∈ Ij where Ij = {t : (t, j) ∈ domx};
(iii) for every (t, j) ∈ domx such that(t, j + 1) ∈ domx,
x(t, j) ∈ D andx(t, j + 1) = g(x(t, j), w(t, j)). A solution
pair (x, u) to (1) is maximal if it cannot be extended, and it
is completeif domx is unbounded. Letw be a hybrid signal
with (0, 0) as initial hybrid time, we define‖w‖(t,j) :=

max
{

ess.sup
(t′,j′)∈domw\Γ(w), (0,0)�(t′,j′)�(t,j)

|w(t′, j′)|,

sup
(t′,j′)∈Γ(w), (0,0)�(t′,j′)�(t,j)

|w(t′, j′)|
}

where Γ(w) is

the set of all(t′, j′) ∈ domw such that(t′, j′ + 1) ∈ domw.

III. PROBLEM STATEMENT

A. The tracking problem

Consider the nonlinear plant model

ẋp = fp(xp, u, wp), yp = gp(xp), (2)

where xp ∈ R
nx is the state,u ∈ R

nu the control input,
yp ∈ R

ny the measured output andwp ∈ R
nwp is an external

perturbation. The referencexd that system (2) has to track is
given by the solution to

ẋd = fp(xd, uff , wd), yd = gp(xd), (3)

where uff ∈ R
nu is the (feedforward) input,yd ∈ R

ny

denotes the measured output andwd ∈ R
nwd is a vector of

external disturbances. Whenxd is a given reference trajectory,
wd may model the uncertainty on the feedforward termuff
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yp yd

(ŷp, ŷd)ufb

ûfb

Fig. 1. Block diagram of the tracking control of NCS studied in [7], [9].

when its exact expression is not available. System (3) may also
model amastersystem that the plant (2) has to synchronize
with. In this scenario, themastersystem (3) may be affected
by external disturbances which justifies the presence ofwd

in (3). We assume that the reference system (3) has a unique
solution for any initial conditionxd(0) and any inputsuff and
wd of interest. Bothuff andyd are available for the purpose
of control.

We consider the following controller decomposition

u = ufb + uff , (4)

where the feedforward termuff comes from (3) and the
feedback termufb is the output of the dynamic controller
given by

ẋc = fc(xc, yp, yd, wc), ufb = gc(xc), (5)

where xc ∈ R
nxc is the controller state andwc ∈ R

nwc

is a vector of perturbations which may affect the controller
dynamics.

B. Controller implementation over the network

We investigate the scenario where a network is used to
ensure the communication between the plant sensors and the
controller and between the controller and the plant actuators.
We also allow for the case where the communication channel
is used to transmit the output and the input of the reference
system (3),i.e. yd and uff . We consider a general setting
because we can then capture, in a unified manner, specific
scenarios in which the network is only used to realize some
relevant subsets of the aforementioned communications, such
ase.g. the cases in:

• [7], [9] where the reference and plant outputs,yd andyp
respectively, are sent together to the controller anduff
is not transmitted, see Figure 1.

• [8] where the outputyd is directly available to the
controller anduff is generated by the controller (note
that yd = xd in [8]), see Figure 2.

Our approach also allows us to study the scenario depicted in
Figure 3 for instance, where the reference outputyd and the
feedforward termuff are transmitted via the network. In that
case, it is reasonable to set up the network in such a way that
the feedforward termuff is directly transmitted to the plant
actuators.

The sensors and the actuators of the plant (2) and of the
reference system (3) are grouped intoℓ nodes (depending on

Plant

Controller

Network

yp

ŷpufb+uff

ûfb + ûff

yd

Fig. 2. Block diagram of the tracking control of NCS studied in [8].

Plant

Controller

Network

yp

ŷpufb

ûfb

ûfb + ûff yd

ŷd

ûff

uff

Fig. 3. Block diagram of the tracking control of NCS whenuff is sent by
the reference system.

their spatial location) which are connected to the network.
At each transmission instantti, i ∈ Z≥0, only one node is
granted access to the network by the scheduling protocol. The
transmission sequence{ti}i∈Z≥0

is such thatυ ≤ ti − ti−1 ≤
τ∗ for i ∈ Z>0, where τ∗ ∈ R>0 is the MATI and υ is
the lower bound on the minimum achievable transmission
interval given by the hardware constraints (see [4]). Notice
that the transmission intervalsti − ti−1 may be time-varying
and uncertain.

The plant (2) no longer receivesu = ufb + uff but
û = ûfb + ûff which is generated from the most recently
transmitted feedback and feedforward terms. We distinguish
the feedback termufb from the feedforward termuff because
these may be transmitted via distinct nodes (see Figure 3 for
instance). The dynamics of the plant now becomes

ẋp = fp(xp, ûfb + ûff , wp) t ∈ [ti−1, ti]
yp = gp(xp).

(6)

Similarly, the controller (5) no longer receivesyp andyd but
their networked versionŝyp and ŷd

ẋc = fc(xc, ŷp, ŷd, wc) t ∈ [ti−1, ti]
ufb = gc(xc).

(7)

The variableŝufb, ûff , ŷp, ŷd have the following dynamics

˙̂ufb = f̂fb(xp, xc, xd, ŷp, ŷd, ûfb, ûff)
˙̂uff = f̂ff (xp, xc, xd, ŷp, ŷd, ûfb, ûff )
˙̂yp = f̂p(xp, xc, xd, ŷp, ŷd, ûfb, ûff)
˙̂yd = f̂d(xp, xc, xd, ŷp, ŷd, ûfb, ûff )





t ∈ [ti−1, ti],

and

ûfb(t
+
i ) = ufb(ti) + hfb(i, ep(ti), ed(ti), efb(ti), eff(ti))

ûff (t
+
i ) = uff(ti) + hff (i, ep(ti), ed(ti), efb(ti), eff (ti))

ŷp(t
+
i ) = yp(ti) + hp(i, ep(ti), ed(ti), efb(ti), eff (ti))

ŷd(t
+
i ) = yd(ti) + hd(i, ep(ti), ed(ti), efb(ti), eff (ti)),
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whereefb := ûfb − ufb ∈ R
neu , eff := ûff − uff ∈ R

neu ,
ep := ŷp − yp ∈ R

nep , ed := ŷd − yd ∈ R
ned (neu := nu

andnep = ned := ny) denote the network-induced errors on
the feedback and the feedforward terms and the plant and the
reference outputs, respectively. The functionsf̂fb, f̂ff , f̂p, f̂d
represent the holding functions,i.e. the way the variableŝufb,
ûff , ŷp, ŷd are generated between two successive transmission
instants. In practice, it is common to use zero-order-hold
devices,i.e. f̂fb, f̂ff , f̂p, f̂d are equal to0. Other functions may
also be implemented such as model-based algorithms as ex-
plained in [13], [14] for example. We let̂ffb, f̂ff , f̂p, f̂d depend
onxp, xc andxd for the sake of generality to capture the cases
where they depend on a part of these vector variables. The
functionshfb,hff ,hp,hd model the scheduling mechanism
which governs the transmissions at each instantti between
the controller on the one hand and the plant and the reference
system on the other hand. Following the terminology of [4],
we refer to the equation below as theprotocol

e(t+i ) = h(i, e(ti)), (8)

wheree := (ep, ed, efb, eff) ∈ R
ne , ne := nep +ned +2neu ,

andh := (hp,hd,hfb,hff ). Since the network is composed
of ℓ nodes, we partitione ase = (e1, . . . , eℓ) (after reordering,
if necessary). The protocol (8) is such that at each transmission
instantti, if nodej gets access to the network, the correspond-
ing errorej experiences a jump while the other components of
e remain unchanged; usuallyej(t

+
i ) = 0 but this is not needed

in general. It has been shown in [4] that several common
protocols can be modeled by (8). For the RR protocol which
grants access to each node in a periodic fashion, the function
h is given by

h(i, e) = (I−∆(i))e (9)

where∆(i) = diag(∆1(i), . . . ,∆ℓ(i)). For k ∈ {1, . . . , ℓ}
and i ∈ Z≥0, ∆k(i) := δk(i)Ink

where
∑

k∈{1,...,ℓ}

nk = ne

and δk(i) = 1 if i = k + jl for j ∈ Z≥0 and δk(i) = 0
otherwise. The try-once-discard (TOD) protocol (introduced
in [6]) gives access to the node where the norm of the local
network-induced error,|ej | with j ∈ {1, . . . , ℓ}, is the largest.
Therefore, we have

h(i, e) = (I−Ψ(e))e (10)

whereΨ(e) := diag(ψ1(e)In1
, . . . , ψℓ(e)Inℓ

) whereψj(e) =
1 if j = min(argmaxj′∈{1,...,ℓ} |ej′ |) andψj(e) = 0 other-
wise. Model (8) also captures standard sampled-data systems
(in which case there is no scheduling) by settingh to 0.

Remark 1:When the output of the controller (5) is of the
form ufb = gc(xc, yp, yd) (instead ofufb = gc(xc)), the
protocol (8) depends onxp, xd andxc in general,i.e. e(t+i ) =
h(i, e(ti), xp(ti), xd(ti), xc(ti)). The model presented in the
next section has to be modified accordingly in this case and
the stability results of Section VI will apply; only the analysis
of the protocol in Section VII needs to be revisited. It has to
be noticed that there are situations in which the protocol (8)
remains independent ofxp, xd, xc whenufb = gc(xc, yp, yd)
(in which case the results of Section VII holds). This occurs
for instance when the controller is directly connected to the

plant actuators (as there is no errorefb) or when there is no
scheduling (ash = 0). �

Our objective is to provide conditions on system (2)-(5) and
on the network to guarantee theapproximateconvergence of
the plant statexp towards the reference statexd in the presence
of network-induced communication constraints.

IV. A HYBRID MODEL OF NCS

Before presenting the hybrid model, we need to define new
coordinates. As we are interested in the convergence ofxp to-
wardsxd, we introduce the tracking errorξ := xp−xd ∈ R

nξ

(nξ = nx). We also define the errore := (eξ, efb) ∈ R
ne

whereeξ := ep − ed ∈ R
neξ , ne := ny + nu andneξ := ny.

The idea is to show that theξ- and thee-systems satisfy
some robust asymptotic stability properties with respect to
the external perturbation vectorw := (wp, wd, wc) ∈ R

nw

(nw := nwp
+ nwd

+ nwc
) and the network-induced errors

(ed, eff ) which are regarded as external disturbances similarly
to [8]. This choice is motivated by the fact thated and eff
typically depend on the reference system (3) and there is a
priori no reason why they should satisfy some asymptotic
stability properties even for very fast transmissions (recall that
the MATI τ∗ cannot be infinitely small as it needs to be such
thatτ∗ ≥ υ > 0), contrary toe as we will show in Section VI.
For instance, when zero-order-hold devices are implemented,
ėd = −ẏd and ėff = −u̇ff so that the origin is not an
equilibrium point of the systems ined andeff when ẏd 6= 0
andu̇ff 6= 0 (which is generally the case when tracking time-
varying trajectories).

We model the overall NCS as a hybrid system using the
formalism of [16], for which a jump describes a transmission.
We use the coordinates(ξ, xc, xd, e, ed, eff , κ, τ1, τ2). The
variableκ ∈ Z≥0 is a counter variable which keeps track of the
number of transmissions. It is used to describe protocols such
as the RR protocol where it plays the role of the discrete time
i in (9). The variablesτ1, τ2 ∈ R≥0 are clock variables:τ1
represents the time elapsed since the last transmission andτ2
models the ‘continuous’ time. The following model is derived

ξ̇ = fξ(τ2, ξ, xc, xd, e, ed, eff , w)
ẋc = fc(τ2, ξ, xc, xd, e, ed, w)
ẋd = fd(τ2, xd, w)
ė = ge(τ2, ξ, xc, xd, e, ed, eff , w)
ėd = gd(τ2, ξ, xc, xd, e, ed, eff , w)
ėff = gff (τ2, ξ, xc, xd, e, ed, eff , w)
κ̇ = 0
τ̇1 = 1
τ̇2 = 1






τ1 ∈ [0, τ∗]

ξ+ = ξ

x+c = xc
x+d = xd
e+ = he(κ, e, ed, eff)
e+d = hd(κ, e, ed, eff)
e+ff = hff (κ, e, ed, eff)

κ+ = κ+ 1
τ+1 = 0
τ+2 = τ2






τ1 ∈ [υ, τ∗].

(11)
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The functionsfξ, fc, fd, ge, gd, gff , he, hd and hff are
obtained by direct calculations from the developments in
Section III (theτ2-argument captures their dependency onuff
or u̇ff ) and are assumed to be continuous. We similarly write
e+p = hp(κ, e, ed, eff ) and e+fb = hfb(κ, e, ed, eff ) to model
the jumps of theep- and theefb-systems at each transmission
instant.

For the sake of convenience, we introduceqx :=
(ξ, xc, xd) ∈ Rx and qe := (e, ed, eff ) ∈ Re to distinguish
the physical variables from the errors induced by the network,
whereRx := R

nξ+nxc+nx andRe := R
ne+ned

+neff . In that
way, we can write

q̇x = f(τ2, qx, qe, w)
q̇e = g(τ2, qx, qe, w)
κ̇ = 0
τ̇1 = 1
τ̇2 = 1






τ1 ∈ [0, τ∗]

q+x = qx
q+e = h(κ, qe)
κ+ = κ+ 1
τ+1 = 0
τ+2 = τ2





τ1 ∈ [υ, τ∗].

(12)

V. A SSUMPTIONS

Inspired by [2], we present the assumptions we adopt
which can be used as guidelines to design and implement
the controller (4)-(5) for the robust stabilisation of the desired
trajectory.

The protocol has to be such that Assumption 1 holds.
Assumption 1:There exist a functionW : Z≥0×Re → R≥0

that is locally Lipschitz inqe, αW , αW ∈ K∞, ρ ∈ [0, 1) and
µd, µff ∈ K∞ such that for any(κ, qe) ∈ Z≥0 ×Re, it holds
that

αW (|e|) ≤ W (κ, qe) ≤ αW (|qe|),
W (κ+ 1, h(κ, qe)) ≤ ρW (κ, qe) + µd(|ed|) + µff (|eff |).

(13)
�

The functionW is used to analyze the stability of the discrete-
time dynamics of theqe-system. We will see in Section
VII that this system is strongly related to the scheduling
protocol. It can be noted thatW is allowed to depend on
the full vector qe but it needs to be lower bounded by a
class-K∞ function of |e| according to (13). It is shown in
Section VII that RR and TOD protocols admit a functionW
which only depends one. However, it is possible to envision
protocols whereW does depend on the full vectorqe (e.g.
see Section VII-B). Contrary to similar conditions in [2], [3],
[4], the second inequality in (13) holds with the additional
perturbation termsµd and µff . This difference is due to
the fact that Assumption 1 does not apply to the protocol
(8) but to theqe-system at jumps which, although related,
are different dynamical systems. Indeed, the jumps ofqe are
governed by the vector fieldh = (hp − hd, hfb, hff) while
the protocol concerns the variablee whose jumps are dictated
by h = (hp, hd, hfb, hff ). It can be noticed that analogous
conditions to (13) are considered in [18] where input-to-state
stable (ISS) protocols have been defined (except that hereed

andeff are parts of the overall stateqe, while in [18] there are
exogenous disturbances). The constantρ in (13) often depends
on the number of nodesℓ of the network in such a way
that largeℓ leads to largeρ, which tends to1 as ℓ goes to
infinity (as we will see in Section VII). This implies a smaller
decrease ofW at each jump and therefore a smaller MATI
bound according to the formula given in the following.

We assume that the following exponential growth condition
on theqe-dynamics between two transmission instants holds,
which thus depends on the continuous-time dynamics of
yp, yd, ufb, uff and on the choice of the holding functions.

Assumption 2:There existL ≥ 0, a continuous function
H : Rx → R≥0 and νd, νff , νw ∈ K∞ such that for all
qx ∈ Rx, κ ∈ Z≥0, τ2 ∈ R≥0, w ∈ R

nw and almost all
qe ∈ Re

〈
∂W (κ,qe)

∂qe
, g(τ2, qx, qe, w)

〉
≤ LW (κ, qe) +H(qx)

+νd(|ed|) + νff (|eff |) + νw(|w|),
whereW comes from Assumption 1. �

The controller (4)-(5) needs to be designed so that the
condition below is valid.

Assumption 3:There exist a locally Lipschitz function
V : Rx → R≥0, αV , αV ∈ K∞, ε ∈ R>0, γ ∈ R≥0 and
σd, σff , σw ∈ K∞ such that for anyqx ∈ Rx

αV (|ξ|) ≤ V (qx) ≤ αV (|qx|), (14)

and for all qe ∈ Re, τ2 ∈ R≥0, w ∈ R
nw and almost all

qx ∈ Rx

〈∇V (qx), f(τ2, qx, qe, w)〉≤−εV (qx)−εW 2(κ, qe)−H2(qx)
+γ2W 2(κ, qe) + σd(|ed|) + σff (|eff |) + σw(|w|),

(15)
whereW andH come from Assumptions 1-2. �

The function V may depend on the full vectorqx but it
needs to be lower bounded by a class-K∞ function of the
norm of ξ. This kind of Lyapunov functions is investigated
in [19] in the context of the stability with respect to two
measures for example. It relaxes standard requirements and
it is sufficient to make statements about the convergence
of the tracking error towards the origin. According to (14)
and (15), the emulated controller does ensure an ISS-like
property for the tracking error dynamics (i.e. the ξ-system)
with W, ed, eff , w as inputs. Assumption 3 also implies
that the ξ-system satisfies anL2-stability property from
(W,

√
σd(|ed|),

√
σff (|eff |),

√
σw(|w|)) to H . The constant

ε in (15) is usually taken sufficiently small. We will show how
Assumptions 2 and 3 can be validated for particular (classes
of) systems in Section IX.

The last condition is on the MATI. As in [2], we need to
have a network which has a sufficiently high bandwidth so
that the assumption stated below is satisfied.

Assumption 4:The MATI τ∗ satisfiesτ∗ < T (ρ, γ, L)
where

T (ρ, γ, L):=






1
Lr

arctan
(

r(1−ρ)
2 ρ

1+ρ
( γ
L
−1)+1+ρ

)
if γ > L

1
L

1−ρ
1+ρ

if γ = L

1
Lr

arctanh
(

r(1−ρ)
2 ρ

1+ρ
( γ
L
−1)+1+ρ

)
if γ < L,

(16)
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with r :=

√∣∣∣
(
γ
L

)2 − 1
∣∣∣, ρ ∈ [0, 1) andγ, L ≥ 0 come from

Assumptions 1-3. �

VI. M AIN RESULTS

We are ready to state the main result. Its proof is based on
the proof of Theorem 1 in [2] and requires some essential
modifications to handle the effect of the network-induced
errorsed, eff and external perturbationsw.

Theorem 1:Consider system (12) and suppose Assumptions
1-4 hold. Then there existβ ∈ KLL, δd, δff , δw ∈ K∞ such
that for any solution(qx, qe, κ, τ1, τ2, w)

|(ξ(t, j), e(t, j))| ≤ β(|(qx(0, 0), qe(0, 0))| , t, j)
+δd(‖ed‖(t,j)) + δff (‖eff‖(t,j)) + δw(‖w‖(t,j)),

(17)
for all (t, j) in the domain of the solution. Moreover,δd(s)
andδff (s) can be written as(1+ϕ(τ∗))ψ(υ−1)δ(s) for s ≥ 0
whereδ, ψ ∈ K∞ andψ : R≥0 → R>0. �

Property (17) is obtained by constructing a hybrid Lyapunov
function U (see the proof of Theorem 1) which satisfies an
ISS-like property on flows but not at jumps. Thus, we use the
fact thatU flows for some time (at leastυ seconds, see Section
III-B) before jumping in order for the decreasing property of U
on flows to compensate, in some sense, the potential increase
of U at jumps.

Remark 2:The norms of the errors‖ed‖(t,j) , ‖eff‖(t,j) and
the functionsδd, δff in (17) depend on the MATIτ∗. We
may find upper bounds for‖ed‖(t,j) and‖eff‖(t,j) on a case-
by-case basis. For instance, when zero-order-hold devicesare
implemented and the RR protocol is selected, we can proceed
like in (31) in [8] (where delays are taken into account but
not scheduling). On the other hand, the functionsδd, δff also
depend on the minimum timeυ between two jumps. We see
that δd, δff go to infinity asυ tends to0. This fact is due
to the stability analysis which requires to decrease for some
time υ during flows in order to guarantee stability. On the
other hand, the more transmissions, the smaller the norms of
ed and eff , which would typically compensate the increase
in the gains. That is the case in Section IX where all the
gains are linear. The mean value theorem can then be used
to upper bound the norms ofed and eff by a constant that
multiplies the inter-transmission interval (under mild regularity
conditions onyd anduff ) which would then compensate the
constantυ coming for the gains. We think that a different
analysis inspired by the small gain arguments used in [18]
may help to avoid this issue. Nevertheless, our approach is
justified by the fact that the proposed Lyapunov-based proof
allows us to derive easily computable MATI bounds, which are
typically less conservative than those derived using trajectory-
based proofs, and that any real network has fixed minimum
inter-transmission intervalυ. �

Theorem 1 shows that(ξ, e) tends to a ball centered at
the origin and of radius1 δd(‖ed‖(t,j)) + δff (‖eff‖(t,j)) +

1If the maximal solutions to (12) are complete and if the limits superior of
‖ed‖(t,j) ,

∥

∥eff
∥

∥

(t,j)
, ‖ew‖(t,j) are bounded ast+j → ∞, a tighter upper-

bound of this radius is given bylim sup
t+j→∞

δd(|ed(t, j)|)+ δff (|eff (t, j)|)+

δw(|w(t, j)|).

δw(‖w‖(t,j)) as (t, j) grows. Thus,ξ indeed converges to the
origin up to some errors due tow, as expected, but also due
to eff and ed which are induced by the network, similar to
[8]. In practice, we want these errors to be sufficiently small
and it might then be convenient to have some estimates of
δd(‖ed‖(t,j)) andδff (‖eff‖(t,j)). While it may be possible to
bound the norms ofed andeff (see Remark 2), we know that
the expressions forδd andδff we can deduce from the proof
of Theorem 1 are subject to some conservatism. Nevertheless,
the result in Theorem 1 provides the following qualitative
insights on how to reduce the impact of the network-induced
errorseff anded on the tracking error:

• For δff (‖eff‖(t,j)): first, when uff can be directly
implemented on the actuators, we haveeff ≡ 0. When
this is not possible, some previews ofuff might be
considered as in [8] to reduce the error due toeff .

• For δd(‖ed‖(t,j)): it can be shown thatδd can be written
as δd(s) = α

(
µd(s) + νd(s) + σd(s)

)
for s ≥ 0, where

α is some class-K∞ function (which depends onV , W ,
τ∗ and υ) and µd, νd, σd come from Assumptions 1-3.
We show in Section VII that it is possible to setµd = 0
by selecting an appropriate protocol or by appropriately
implementing the emulated controller.

In practice, we would like to make sure that the statesqx =
(ξ, xc, xd) and qe = (e, ed, eff) remain bounded when the
reference trajectory and the perturbationw are bounded. This
point is addressed in the proposition below.

Proposition 1:Consider system (12) and suppose the fol-
lowing holds.

(i) Assumptions 1-4 hold.
(ii) There exist some functionsNd : R

nx+ned
+neff → R≥0,

Nc : Rnxc → R≥0 andγd, γc ∈ K∞ such that for any
solution(qx, qe, κ, τ1, τ2, w),

|(xd(t, j), ed(t, j), eff (t, j))| ≤
Nd(xd(0, 0), ed(0, 0), eff(0, 0)) + γd(‖w‖(t,j)),

(18)
and

|xc(t, j)|≤Nc(xc(0, 0)) + γc(‖(ξ, xd, e, ed, w)‖(t,j)),
(19)

for any (t, j) in the domain of the solution. Then there exist
a functionN̄ : Rx ×Re → R≥0 and γ̄ ∈ K∞ such that

|(qx(t, j), qe(t, j))| ≤ N̄(qx(0, 0), qe(0, 0)) + γ̄(‖w‖(t,j)),
(20)

for all (t, j) in the domain of the solution. �

Item (i) of Proposition 1 implies that the assumptions of
Theorem 1 hold so that (17) is ensured. Item (ii) of Proposition
1 gives conditions on the boundedness on the reference system
(3) and the dynamic controller (5). Let us now illustrate
how one could verify the conditions under item (ii) using
reasonable assumptions for NCS. Consider for that purpose
a solution(qx, qe, κ, τ1, τ2, w) to (12) and let(t, j) be in the
domain of the solution. The inequality (18) may be verified
as follows. First, it may be shown that

|xd(t, j)| ≤ Nxd
(xd(0, 0)) + γxd

(‖w‖(t,j)) (21)
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where Nxd
: R

nx → R≥0 and γxd
∈ K∞, which is a

reasonable assumption on the reference system when track-
ing bounded reference trajectories. For the(ed, eff )-system,
consider the case where zero-order-hold devices are imple-
mented and the protocol is such that|hd(κ, e, ed, eff )| ≤ |ed|
and |hff (κ, e, ed, eff)| ≤ |eff | (which is the case for any
relevant protocol). When the norm of the feedforward term
uff is bounded by a constantMff ≥ 0, we then derive
that |eff (t, j)| ≤ 2Mff + |eff (0, 0)|. Using (21) and the
continuity ofgp, we deduce that|yd(t, j)| ≤ Ñxd

(xd(0, 0))+

γ̃xd
(‖w‖(t,j)) where Ñxd

: R
nx → R≥0 and γ̃d ∈ K∞.

Hence|ed(t, j)| ≤ |yd(t, j)| + |ŷd(t, j)| ≤ 2Ñxd
(xd(0, 0)) +

2γ̃xd
(‖w‖(t,j)) + |ed(0, 0)|. In that way, (18) is satisfied

with Nd(xd(0, 0), ed(0, 0), eff(0, 0)) = Nxd
(xd(0, 0)) +

2Ñxd
(xd(0, 0)) + |ed(0, 0)| + 2Mff + |eff (0, 0)| and γd =

γxd
+2γ̃xd

. Finally, the bounded-input-bounded-state property
in (19) for thexc-system may be studied using the Lyapunov
functionV in Assumption 3 for instance.

VII. O N THE CHOICE OF THE PROTOCOL

In this section, we give examples of protocols which ensure
the satisfaction of Assumption 1 in Section V. We first show
that this assumption is verified when the protocol (8) is
Lyapunov UGAS under mild conditions. We then specialize
this result for the RR protocol for which stronger properties
are shown to hold. Finally, we propose a new dynamic TOD-
like protocol.

A. Lyapunov UGAS protocols

The stability of protocols has first been characterized in
[4], and the notion of Lyapunov UGAS protocols has been
introduced in [5].

Definition 1: The protocol (8) is said to beLyapunov
uniformly globally asymptotically stable (UGAS)if there exist
W : Z≥0×R

ne → R≥0, αW,αW ∈ K∞ andρ ∈ [0, 1) such
that for all κ ∈ Z≥0 ande ∈ R

ne the following is satisfied
αW(|e|) ≤ W(κ, e) ≤ αW(|e|) (22)

W(κ+ 1,h(κ, e)) ≤ ρW(κ, e), (23)
recall thate = (ep, ed, efb, eff). �

We are now ready to state the main result of this section.
Proposition 2: Consider the protocol (8) and suppose the

following conditions hold.

(i) For anyj ∈ {1, . . . , ne} andκ ∈ Z≥0, |hj(κ, e)| ≤ |ej |
with h = (h1, . . . ,hne

) whereh is given in (8).
(ii) The protocol (8) is Lyapunov UGAS with a continuous

function W : Z≥0 × R
ne → R≥0 which is locally

Lipschitz in e and satisfies for allκ ∈ Z≥0 and almost

all e ∈ R
ne ,

∣∣∣∂W(κ,e)
∂e

∣∣∣ ≤M , whereM ≥ 0.

Then Assumption 1 is verified withW (κ, e) =
W(κ, eξ, 0, efb, 0), αW (s) = αW(s), αW (s) = αW(s),
µd(s) = 2M(1 + ρ)s, µff(s) = M(1 + ρ)s for s ≥ 0 and
ρ = ρ. �

Note that item (i) in Proposition 2 simply states that the local
errors do not increase at each transmission which is the case
for all relevant protocols. The conditions of Proposition 2are

satisfied by the RR and the TOD protocol in view of Section
IV in [4].

Since we are interested in a different stability property
for the e-system at jumps than in [4], we can propose an
alternative Lyapunov function to verify Assumption 1 for the
RR protocol, based on Proposition 4 in [4], which ensures
stronger properties and may lead to less conservative MATI
bounds.

Proposition 3: Suppose the protocol (8) is the RR pro-
tocol as defined in (9), then Assumption 1 is satisfied with

W (κ, e) =

√
∞∑
i=κ

|φ(i, κ, e)|2, whereφ(i, κ, e) is the solution

to2 e+ = (hp(κ, eξ), hfb(κ, efb)) at time i starting at time
κ with initial condition e, αW (s) = s, αW (s) =

√
ℓs,

µd(s) =
√
ℓs and µff (s) = 0 for s ≥ 0 and ρ =

√
ℓ−1
ℓ

.

Moreover,µd = 0 if and only if hp = hd. �

Proposition 3 ensures the satisfaction of Assumption 1 with
µff = 0 which reduces the impact of the feedforward error
eff on the tracking errorξ. It also provides a necessary and
sufficient condition to obtainµd = 0 in Assumption 1 which
is interesting to reduce the impact ofed on the tracking error
ξ (see Section VI). That condition states thatŷp and ŷd must
have the same dynamics at jumps which is the case when
yp and yd are sent over the network via the same nodes
for example. That also allows us to conclude that, even if
yd (equivalently yp) is directly available at the controller
side, it may be advantageous to introduce the variableŷd
(equivalentlyŷp) to generate the control input instead of using
yd (equivalentlyyp), whereŷd jumps aŝyp does, otherwiseµd

will not be equal to0 and it will introduce an additional error
on the convergence of(ξ, e). This is discussed in more detail
in Section VIII and in the scope of an illustrative example in
Section IX.

B. The TOD-tracking protocol

We now propose a new TOD-like protocol, that we call
theTOD-trackingprotocol. Consider the scenarios where each
corresponding components ofyp and yd are assigned to the
same nodes3. In that way, a subvector(e, eff)j of (e, eff ),
j ∈ {1, . . . , ℓ}, can be associated to each of theℓ nodes of
the network. The idea is to grant access to the node where
|(e, eff)j | is the biggest (and not|ej |, j ∈ {1, . . . , ℓ}, as in
the classical TOD protocol, see the end of Section III-B). We
define the functionh in (8) ash(κ, e) = (I − Ψ(e))e where
Ψ(e) = (δ1(e)In1

, . . . , δℓ(e)Inℓ
) wheren1 + . . . + nℓ = ne

and

δj(e) =

{
1 if j = min(argmaxj |(e, eff)j |)
0 otherwise.

(24)

2It has to be noted thathp (respectivelyhd) only depends onκ and ep
(respectivelyκ anded) for the RR protocol, see (9).

3The TOD-tracking protocol can also be used when the nodes which
transmit yp (equivalently yd) have access toyd (equivalently yp). That is
typically the case whenyd is a given trajectory which can be implemented
on smart nodes.
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The lemma below shows that the TOD-tracking protocol
satisfies Assumption 1. It directly follows from Proposition
5 in [4].

Proposition 4:Suppose the protocol (8) is the TOD-tracking
protocol, then Assumption 1 is satisfied withW (qe) =
|(e, eff)|, αW (s) = αW (s) = s, µd(s) = µff (s) = 0 for

s ≥ 0 andρ =
√

ℓ−1
ℓ

. �

The TOD-tracking protocol ensures Assumption 1 holds
with µd = µff = 0, which is a priori not the case for the TOD
protocol according to Proposition 2. Thus, the TOD-tracking
protocol may reduce the error of(ξ, e), and hence improve the
tracking performance in view of the discussion in Section VI.
We will also see this in simulations for an example in Section
IX.

Remark 3:Various variations of the TOD-tracking protocol
can be deduced according to the network setup. For instance,
when the control input is sent over the network asufb + uff
, like in the example in Section IX-B, we can set the protocol
to grant access to the node where|(eξ, efb + eff )j | is the
largest (and not|(eξ, efb, eff)j | as above). We then take
W (qe) = |(eξ, efb + eff )|. Assumption 1 is verified with
the same functionsαW , αW , µd, µff and constantρ as
in Proposition 4, except that the lower bound in the first
inequality of (13) depends on|(eξ, efb+ eff )| and not on|e|.
In this case, (17) holds by replacinge in the left hand-side by
(eξ, efb + eff). �

VIII. O BSERVER DESIGN

In this section, we show how the results of Section VI can
be used to emulate nonlinear observers for NCS. Consider the
nonlinear system

ẋ = f(x,w), y = g(x), (25)

wherex ∈ R
nx is the state,y ∈ R

ny the measured output,
w ∈ R

nw is an external perturbation,f is continuous andg is
continuously differentiable. We assume that we know how to
design a full-order observer of the following form for system
(25)

˙̄x = f(x̄, 0) + k(x̄, y − ȳ), ȳ = g(x̄), (26)

wherex̄ ∈ R
nx is the estimate ofx, ȳ ∈ R

ny is the output of
the observer andk is continuous. This problem can be seen
as a tracking problem where we wantx̄ to converge towards
x. We thus recover the formulation of Section III by taking






xd = x

yd = y

uff = 0
wd = w






xp = x̄

yp = ȳ

ufb = k(x̄, y − ȳ)
wp = 0,

(27)
fp(x, u, w) = f(x,w)+u andgp = g. Notice that the innova-
tion term of the observerk(x̄, y − ȳ) in (26) is interpreted as
a feedback input to (26) which is directly sent to the observer.

We implement the observer (26) over a network, see Figure
4. The outputy is sent over the communication channel viaℓ
nodes. In [13], [14], the observer (26) is implemented as

˙̄x = f(x̄, 0) + k(x̄, ŷ − ȳ). (28)

Plant

Observer

Network y

ŷ

Fig. 4. Block diagram of the observer implementation over a network.

Here, we do not necessarily make the emulated observer
depend on its own output̄y but on somẽy (which corresponds
to ŷp with the notation of Section III). In that way, the
emulated observer is

˙̄x = f(x̄, 0) + k(x̄, ŷ − ỹ). (29)

We will see that it is possible to ensure a stronger stability
property than in [13] by appropriately selecting the dynamics
of ỹ. It has to be noticed that the same idea is proposed in
[15] for the design of a class of high-gain observers. Compared
to [15], we treat a more general class of nonlinear observers
and we propose a different stability analysis which leads toa
different MATI bound formula4.

Noting that eff = 0 since there is no feedforward
term, we write the overall model using the coordinates
(ξ, xd, e, ed, κ, τ1) with ξ = x̄−x, which we call the estimation
error in this section,xd = x, e = eξ = ep − ed where
ep = ỹ − ȳ anded = ŷ − y

ξ̇ = fξ(ξ, xd, e, w)
ẋd = fd(xd, w)
ė = ge(ξ, xd, e, w)
ėd = gd(ξ, xd, e, w)
κ̇ = 0
τ̇1 = 1





τ1 ∈ [0, τ∗]

ξ+ = ξ

x+d = xd
e+ = he(κ, e, ed)
e+d = hd(κ, e, ed)
κ+ = κ+ 1
τ+1 = 0





τ1 ∈ [υ, τ∗],

(30)

with

fξ(ξ, xd, e, w):=f(ξ + xd, 0)− f(xd, w)
+k(ξ + xd,g(xd)− g(xd + ξ)− e)

fd(xd, w) :=f(x,w) = f(xd, w)

ge(ξ, xd, e, w):= f̂p(ξ, xd, e, w)− f̂d(ξ, xd, e, w)

+∂g
∂x

(xd)f(xd, w)− ∂g
∂x̄

(xd + ξ)
(
f(ξ + xd, 0)

+k(ξ + xd,g(xd)− g(xd + ξ)− e
))

gd(ξ, xd, e, w):= f̂d(ξ, xd, e, w)− ∂g
∂x

(xd)f(xd, w),
(31)

4It is hard to say that the bound in Corollary 1 is less or more conservative
than the bounds in [15] or [13] in general because they are based on a different
set of assumptions and do not depend on the same constants.
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RR TOD-tracking Sampled-data

ρ

√

ℓ−1
ℓ

√

ℓ−1
ℓ

0

M
√
l 1 1

L L̃
√
ℓ L̃ L̃

TABLE I
CONSTANTS USED INSECTION VIII.

where f̂p and f̂d are defined by the holding functions. We
do not need to introduce the variableτ2 as in (11) because
there is no feedforward term here. Since the problem can be
modeled as in Section IV, we can directly apply Theorem 1
to conclude about the convergence of the estimation errorξ

under the required conditions.
On the other hand, it may be possible to select the dynamics

of ŷp = ỹ so that (17) holds withδd = 0, i.e. the estimation
error converges to a smaller neighborhood of the origin. To see
this, consider the case where zero-order-hold devices are used
(i.e. f̂p = f̂d = 0 in (31)) and the protocol is either the RR,
the TOD-tracking protocol5 or all data are transmitted at each
transmission instant as in the context of sampled-data systems.
The variablẽy is held constant between two transmissions and
jumps asŷ does,i.e. when ŷi for i ∈ {1, . . . , ℓ} is updated
so is ỹ. Denoting ỹ = (ỹ1, . . . , ỹny

), ŷ = (ŷ1, . . . , ŷny
) and

y = (y1, . . . , yny
), the dynamics of̃y is given by

˙̃y = 0 whenτ1 ∈ [0, τ∗]

ỹ+j =

{
ȳj if ŷ+j = yj
ỹj otherwise

whenτ1 ∈ [υ, τ∗].
(32)

Note that, in that case, the system can be modeled as in
(30) with a jump map for thee-system which is continuous.
In that way, Assumption 1 is valid withµd = 0 according
to Propositions 3-4 respectively for the RR and the TOD-
tracking protocols. We make the following assumption which
is satisfied by the observers in [20], [21], [22] for instance
when using zero-order-hold devices.

Assumption 5:There existL̃ ≥ 0, a continuous function
H̃ : Rnξ → R≥0 and ν̃w ∈ K∞ such that for allξ ∈ R

nξ ,
xd ∈ R

nx , e ∈ R
ne , ed ∈ R

ned andw ∈ R
nw , it holds that

|ge(ξ, xd, e, w)| ≤ L̃|e|+ H̃(ξ) + ν̃w(|w|). (33)

�

We take the functionW to be as in Proposition 3 for the RR
protocol and we chooseW (e) = |e| for the TOD-tracking
protocol (note thateff = 0 here) and for the sampled-data
case. Thus, by combining Assumption 5 with the fact that
for the considered protocols, for allκ ∈ Z≥0 and almost all
e ∈ R

ne it holds that
∣∣∣∂W (κ,e)

∂e

∣∣∣ ≤ M, (34)

whereM ≥ 0 is given in Table I. Assumption 2 is then
satisfied withL =ML̃, H =MH̃, νd = 0, andνw =Mν̃w.

5When the TOD-tracking protocol is implemented, we need the sensor
nodes to have access toyp (and thusep), i.e. they need to have sufficient com-
putational capacities to run a copy of the observer; a similar implementation
is described in more detail in Remark 2 in [13].

Finally, the observer needs to be designed such that As-
sumption 3 is satisfied withσd = 0. This is justified by the
definition of the vector fields of system in (30) which can be
written independently ofed, see (31) (recall that̂fp = f̂p = 0
here). In that way, property (17) holds withδd = δff = 0 for
system (30) as stated below.

Corollary 1: Consider system (30) with either the RR or the
TOD-tracking protocol or in the sampled-data case. Suppose
Assumption 5 is satisfied and Assumption 3 holds withσd =
0. If the MATI τ∗ is strictly less thanT (ρ, γ, L) in (16) where
γ comes from Assumption 3 andL andρ are given in Table I
depending on the adopted protocol, then there existβ ∈ KLL,
δw ∈ K∞ such that for any solution(ξ, xd, e, ed, κ, τ1, w)

|(ξ(t, j), e(t, j))|≤β(|(qx(0, 0), e(0, 0))| , t, j) + δw(‖w‖(t,j))
(35)

for all (t, j) in the domain of the solution. �

Compared to [13], we do not require the plant (25) to be stable
and we ensure the asymptotic convergence of the estimation
error towards the origin in the absence of perturbationsw

(as opposed to a practical stability property in [13]) when
the observer (26) is emulated using zero-order-hold devices.
Furthermore, a new MATI bound is given in Corollary 1.

IX. EXAMPLES

We demonstrate how the results of Section VI can be used
for the tracking control of stabilizable linear systems in Section
IX-A. We then consider an example concerning a nonlinear
single-link robot arm in Section IX-B.

A. Linear systems

Consider the linear planṫxp = Axp + Bu + Fwp where
A,B,C are real matrices of appropriate dimensions, the pair
(A,B) is stabilizable and the state is measured (yp = xp in
(2)). The feedforward termuff verifies ẋd = Axd + Buff ,
where xd is also measured (yd = xd in (3)). We assume
that xd(t) is twice continuously differentiable so thatuff(t)
is continuously differentiable. The controller is designed as
u = ufb + uff with ufb = −K(xp − xd) whereK is such
thatA−BK is Hurwitz. It ensures the asymptotic convergence
of xp towards the reference trajectoryxd up to an error due
to wp. We implement the controller over a network composed
of ℓ nodes, as described in Section III, using zero-order-hold
devices. The scheduling protocol is selected to be the RR
protocol; noting that similar results can be derived for the
TOD(-tracking) protocols. We write the problem using the
model in (11). We obtain

fξ(ξ, e, eff , w) = (A−BK)ξ +B(Λe + eff) + Fwp

fd(τ2, xd) = Axd +Buff
ge(ξ, e, eff , w) =

(
− (A−BK)ξ−B(Λe+ eff )

−Fwp, 0
)

gd(τ2, xd) = −Axd −Buff
(36)

where Λ = [−K I] and recall that τ2 reflects time-
dependencies in the right-hand side due touff . We concentrate
on the case where the plant statexp and the reference trajec-
tory xd are transmitted to the controller via distinct nodes. In
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that case, we assume thatuff is sent from the reference system
to the actuators via the network, as depicted in Figure 3. The
same approach can be applied for the other cases described in
Section III-B.

SinceA − BK is Hurwitz, theξ-system isL2-gain stable
from (e, eff , wp) to (A−BK)ξ with gain γ ≥ 0. The result
below follows from Theorem 1. Its proof is omitted; it consists
in verifying that the required conditions of Theorem 1 holds
for this particular linear case.

Proposition 5:Consider system (11) with (36) and suppose

τ∗ satisfies Assumption 4 withρ =
√

ℓ−1
ℓ

, L =
√
ℓ|BΛ| and

γ is defined above. Then property (17) holds. �

B. Single-link robot arm

We consider a single-link robot arm whose dynamics can
be written as

ẋ1 = x2, ẋ2 = −a sin(x1) + bu, (37)

wherex1 is the angle,x2 is the rotational velocity which are
both measured,u is the input torque anda, b > 0 are fixed
parameters. The system (37) has to track the reference system

ẋ1,d = x2,d, ẋ2,d = −a sin(x1,d) + buff , (38)

wherex1,d andx2,d are measured anduff (t) = 10 sin(50t).
When there is no communication constraint, the asymptotic
convergence of(x1, x2) towards(x1,d, x2,d) is ensured using
the control inputu = ufb+uff whereufb = b−1

(
a(sin(x1)−

sin(x1,d)) − (x1 − x1,d) − (x2 − x2,d)
)
. We consider the

case where the controller is implemented using zero-order-
hold devices and communicates with system (37) via a network
composed of3 nodes forx1, x2 andu, respectively (ℓ = 3).
Thus, we assume that6 x1,d, x2,d, uff are directly available
to the controller as in Figure 2. The transmission sequence
{ti}i∈Z>0

is such thatti−ti−1 = τ∗(= υ) for i ∈ Z>0, where
τ∗ will be specified later. The emulated feedback controller is

ufb=b
−1

(
a(sin(x̂1)−sin(x̂1,d))−(x̂1 − x̂1,d)−(x̂2 − x̂2,d)

)
,

(39)
wherex̂1,d and x̂2,d are held constant between transmissions

and jump aŝx1 andx̂2 do. In that way, the emulated feedback
term (39) does not depend onx1,d and x2,d although these
variables are continuously known by the controller. We will
see that this choice may be advantageous in order to reduce
the impact of the errorsed andeff on the convergence of the
tracking error.

In the sequel, we study three different protocols: the RR, the
TOD and the TOD-tracking. We write the system in the form
of (11) with:fξ(qx, qe) =

(
ξ2,−a

(
sin(ξ1+x1,d)−sin(x1,d)−

sin(ξ1+x1,d+e1,ξ+e1,d)+sin(x1,d+e1,d)
)
−(ξ1+e1,ξ)−(ξ2+

e2,ξ)+befb+beff

)
, fd(τ2, xd) = (x2,d,−a sin(x1,d)+buff),

ge(qx, qe) = −(fξ(qx, qe), 0), gd(τ2, qx) = −fd(τ2, xd) and
gff (τ2) = −u̇ff . We consider the functionW in Proposition
3 for the RR protocol,W (e) = |e| for the TOD protocol and
W (qe) = |(eξ, efb+ eff )| for the TOD-tracking protocol (see

6We make this assumption in order to be able to consider the TOD-tracking
protocol (see Section VII).

Remark 3). In that way, Assumption 1 is valid, see Section VII.
On the other hand, we have that|ge(qx, qe)| ≤ |ξ2| + |ξ1 +
ξ2|+D|e|+ 2a|ed|+ b|eff |, whereD :=

√
3max{1 + a, b}.

The considered functionsW are such that:αW (s) = s

for s ≥ 0 and |∂W (κ,qe)
∂qe

| ≤ M for almost all qe and

all κ with M =
√
ℓ for the RR protocol (see Example 3

in [4]) and M = 1 for the TOD and the TOD-tracking
protocol. As a consequence,

∣∣∣
〈

∂W (κ,qe)
∂qe

, g(τ2, qx, qe, w)
〉∣∣∣ ≤

M
(
DW (κ, e)+|ξ2|+|ξ1+ξ2|+2a|ed|+b|eff |

)
for almost all

qe and allqx, w, τ2, κ, whereg = (ge, gd). Hence, Assumption
2 is verified withL = MD, H(qx) = M(|ξ2| + |ξ1 + ξ2|),
νd(s) = 2Mas andνff (s) = Mbs for s ≥ 0. We now show
that Assumption 3 holds withV (ξ) = αξ21 + βξ1ξ2 + δξ22
whereα, β, δ will be chosen such that (14) holds. Writing
a
(
sin(ξ1+x1,d)−sin(ξ1+x1,d+e1,ξ+e1,d)

)
= ā(e1,ξ+e1,d)

and a
(
sin(x1,d) − sin(x1,d + e1,d)

)
= ãe1,d with varying

parameters̄a, ã in [−a, a], we have that〈∇V (ξ), fξ(qx, qe)〉 ≤
−βξ21 − (2δ−β)ξ22 +(2α−2δ−β)ξ1ξ2+(2δξ2+βξ1)

(
Υe+

(−ā+ ã)e1,d + beff

)
whereΥ := [−ā− 1 − 1 b]. Applying

twice the fact thatxy ≤ η
2x

2 + 1
2ηy

2 for x, y ∈ R≥0 and
η > 0, we obtain 〈∇V (ξ), fξ(qx, qe)〉 ≤ −βξ21 − (2δ −
β)ξ22 + (2α − 2δ − β)ξ1ξ2 +

1
2 (η

−1 + η̃−1)(2δξ2 + βξ1)
2 +

1
2ηD

2|e|2 + 1
2 η̃

(
(−ā + ã)e1,d + beff

)2

whereη, η̃ > 0 and

D has been defined above. We use that| − ā + ã| ≤ 2a
and (x + y)2 ≤ 2x2 + 2y2 to obtain 〈∇V (ξ), fξ(qx, qe)〉 ≤
−βξ21−(2δ−β)ξ22+(2α−2δ−β)ξ1ξ2+ 1

2 (η
−1+ η̃−1)(2δξ2+

βξ1)
2 + 1

2ηD
2|e|2 + η̃(4a2|ed|2 + b2|eff |2). Therefore, if we

ensure that (14) holds and

−ε|ξ|2 −H2(qx)≥−βξ21 − (2δ − β)ξ22 + (2α− 2δ − β)ξ1ξ2
+ 1

2 (η
−1 + η̃−1)(2δξ2 + βξ1)

2

(40)
with ε > 0, then Assumption 2 is verified withγ =√

1
2ηD

2 + ε, σd(s) = 4η̃a2s2 andσff (s) = η̃b2s2 for s ≥ 0.
Note that Assumption 2 holds whenα = β = δ and by
taking α, η and η̃ sufficiently large andε sufficiently small.
Nonetheless, such a choice may lead to a largeγ which may
then give us conservative MATI bounds (as the bound in (16)
increases asγ increases). Thus, we have computedα, β, δ, η by

minimizing γ =
√

1
2ηD

2 + ε under the conditions that (14)
and (40) hold using the Matlab optimization toolbox taking
a = 9.81 · 0.5 and b = 2. We have obtainedα = 3.05,
β = 1.05, δ = 5.05, η = 10.11 and ε = 0.0001. The
MATI bounds are summarized and compared to the bounds
estimated via simulations in Table II. It has to be emphasized
that our method strongly relies on the choice of the Lyapunov
functionsV andW and that other functions may lead to larger
bounds. We notice that the bounds for the TOD and the TOD-
tracking protocol are the same according to Assumption 4
and in simulations. Interest in the TOD-tracking is justified
by the fact that it may reduce the impact of the errorsed
andeff on the tracking error as discussed below Proposition
4 and illustrated by Figure 5. On the other hand, we see in
Figure 6 that the convergence error is of the same order of
magnitude when using the TOD-tracking and the RR protocol;
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RR TOD TOD-tracking

Assumption 4 0.0050 0.0061 0.0061
Simulations 0.150 0.170 0.170

TABLE II
MATI BOUNDS IN SECTION IX-B.

the advantage of the TOD-tracking is that we can consider
larger transmission intervals (see Table II). Finally, we have
compared the obtained tracking errors for the cases where the
emulated feedback controller (39) uses either the variables
(x̂1,d, x̂2,d) or (x1,d, x2,d) in (39), see Figure 7. We see
that, for the RR protocol,ξ1 := x1 − x1,d converges to a
smaller neighborhood of the origin when the controller uses
(x̂1,d, x̂2,d) instead of(x1,d, x2,d), while no major difference
is seen forξ2 := x2 − x2,d.
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Fig. 5. Tracking error for MATIτ∗ = 0.005.
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X. CONCLUSIONS

We have presented a Lyapunov-based emulation approach
for the tracking control of time-varying trajectories for non-
linear NCS. To handle the specific features of tracking control
for NCS, we have proposed a new hybrid model. We have
presented sufficient conditions under which an approximate
tracking control objective is achieved. In addition, we have
explained how the controller can be implemented and how the
protocol can be set up in order to reduce the impact of some
of the network-induced errors on the tracking error. Finally,
it has been shown that these results on tracking control can
be directly employed to obtain new results for the observer
design problem for NCS as well. We believe that the results of
this paper can be extended in various directions. In particular,
tracking control in NCS subject to small transmission delays
can be addressed by first appropriately modifying the model
of Section IV and then adapting the Lyapunov-based stability
analysis given in [3].

APPENDIX

Proof of Theorem 1. The proof is organised as follows. First, a
hybrid Lyapunov functionU is designed. Second, we study the
derivative ofU along the solutions to (11) on flows (whenτ1 ∈
[0, τ∗]) and its dynamics at jumps (whenτ1 ∈ [υ, τ∗]). Third,
we obtain (17) by applying standard comparison principles
together with the fact there exists a minimum amount of timeυ

between two jumps. Finally, we prove the last part of Theorem
1 about the functionsδd, δff .

We focus on the case whereρ ∈ (0, 1); when ρ = 0
similar arguments as in [23] are used. The constantT (ρ, γ, L)
in (16) corresponds to the time it takes for the solution to
ψ̇ = −2Lψ−γ

(
ψ2+1

)
to decrease from the initial condition

ψ(0) = 1
ρ

to ψ(T (ρ, γ, L)) = ρ (see Lemma 2 in [2]). We
now define the following differential system

φ̇ = −2Lφ− γ
(
(1 + η)φ2 + 1

)
with φ(0) = 1

ρ∗ (41)
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where η > 0, ρ∗ ∈ (ρ, 1). The time T̃ (ρ∗, γ, L, η) it takes
for φ to decrease from1

ρ∗ to ρ∗ is a continuous function inη
andρ∗ which decreases with both increasingη andρ∗ as long
asρ∗ ≤ 1 (by invoking the comparison principle). Moreover,
we have thatT̃ (ρ, γ, L, 0) = T (ρ, γ, L), as a consequence
T̃ (ρ∗, γ, L, η) ≤ T (ρ, γ, L). Based on these facts, for any
τ∗ < T (ρ, γ, L) we can always findρ∗ sufficiently close
to ρ with ρ∗ > ρ and η sufficiently small such thatτ∗ <

T̃ (ρ∗, γ, L, η). In the following, we takeη ∈
(
0,
(
ρ∗

ρ

)2 − 1
)
.

The following claim follows from Claim 1 in [2] and the
developments above.

Claim 1: For all τ1 ∈ [0, τ∗], φ(τ1) ∈ [ρ∗, 1
ρ∗ ]. �

For the sake of convenience, we introduceq :=
(qx, qe, κ, τ1, τ2) ∈ R whereR := Rx × Re × Z≥0 × R

2
≥0

and write system (11) as

q̇ = F (q, w) for q ∈ C, q+ = G(q) for q ∈ D, (42)

whereC := {q ∈ R : τ ∈ [0, τ∗]} andD := {q ∈ R : τ ∈
[υ, τ∗]}. We define, for allq ∈ C ∪D ∪G(D),

U(q) := V (qx) + γφ(τ1)W
2(κ, qe). (43)

According to Remark 2.3 in [24] and Assumptions 1 and 3,
we have that

αU (|(ξ, e)|) ≤ U(q) ≤ αU (|(qx, qe)|), (44)

with αU : s 7→ min
{
αV (

s
2 ), ρ

∗αW ( s2 )
}
∈ K∞ andαU : s 7→

αV (s) +
1
ρ∗αW (s) ∈ K∞.

In view of (41) and sinceq+x = qx,

U(G(q)) = V (qx) + γφ(0)W 2(κ+ 1, h(κ, qe))
= V (qx) + γ 1

ρ∗W
2(κ+ 1, h(κ, qe)).

(45)

Using Assumption 1 (we omit the arguments ofV andW in
the following for the sake of simplicity), we obtain

U(G(q)) ≤ V + γ 1
ρ∗

(
ρW + µd(|ed|) + µff (|eff |)

)2

= V + γ 1
ρ∗

(
ρ2W 2 + 2ρW

(
µd(|ed|) + µff (|eff |)

)

+
(
µd(|ed|) + µff (|eff |)

)2)
.

(46)
We are going to upper bound the right-hand side of the above
equation using the following inequalities (we utilize that2ab ≤
a2 + b2 for a, b ∈ R)

(
µd(|ed|) + µff (|eff |)

)2
= µd(|ed|)2 + µff (|eff |)2

+2µd(|ed|)µff (|eff |)
≤ 2µd(|ed|)2 + 2µff(|eff |)2

(47)
and (using that2ab ≤ η

2a
2 + 2

η
b2 for a, b ∈ R)

2ρW
(
µd(|ed|)+µff(|eff |)

)
=2ρWµd(|ed|)+2ρWµff(|eff |)

≤ η
2ρ

2W 2 + 2
η
µd(|ed|)2 + η

2ρ
2W 2 + 2

η
µff (|eff |)2

=ηρ2W 2 + 2
η
µd(|ed|)2 + 2

η
µff (|eff |)2.

(48)

As a consequence, we obtain the following bound onU(G(q))
from (46)

U(G(q)) ≤ V + γ 1
ρ∗

(
ρ2W 2 + ηρ2W 2 + 2

η
µd(|ed|)2

+ 2
η
µff (|eff |)2 + 2µd(|ed|)2 + 2µff (|eff |)2

)

= V + γ 1
ρ∗

(
(1 + η)ρ2W 2

+2(1 + 1
η
)
(
µd(|ed|)2 + µff (|eff |)2

))
.

(49)
Denoteσd

U (s) := γ 2
ρ∗ (1 +

1
η
)µd(s)2 andσff

U (s) := γ 2
ρ∗ (1 +

1
η
)µff (s)2 for s ≥ 0 and notice that1

ρ∗ (1 + η)ρ2 < ρ∗ since

η ∈
(
0,
(
ρ∗

ρ

)2 − 1
)
. Hence, the following holds according to

Claim 1

U(G(q)) ≤ V + γρ∗W 2 + σd
U (|ed|) + σ

ff
U (|eff |)

≤ V + γφ(τ1)W
2 + σd

U (|ed|) + σ
ff
U (|eff |)

= U(q) + σd
U (|ed|) + σ

ff
U (|eff |).

(50)
We now study the dynamics ofU on flows7. For allκ ∈ Z≥0,
τ1 ∈ [0, τ∗], τ2 ∈ R≥0, w ∈ R

nw and almost all(qx, qe) ∈
Rx×Re, we have that, in view of Assumptions 2-3 and (41),

〈∇U(q), F (q, w)〉≤−εV −εW 2 −H2(qx) + γ2W 2 + σd(|ed|)
+σff (|eff |) + σw(|w|)
+γ

(
− 2Lφ− γ

(
(1 + η)φ2 + 1

))
W 2

+2γφW
(
LW +H(qx) + νd(|ed|)

+νff (|eff |) + νw(|w|)
)

=−εV − εW 2 −H2(qx) + σd(|ed|)
+σff (|eff |) + σw(|w|)
+γ

(
− 2Lφ− γ(1 + η)φ2

)
W 2

+2γφW
(
LW +H(qx)

+νd(|ed|) + νff (|eff |) + νw(|w|)
)
.

(51)
We are going to upper bound the term on the last line of the
inequality above. Using that2ab ≤ a2 + b2 for a, b ∈ R,
we obtain2γφWH(qx) ≤ γ2φ2W 2 +H2(qx) and, using that
2ab ≤ η

3a
2 + 3

η
b2 for a, b ∈ R, yields

2γφW
(
νd(|ed|) + νff (|eff |) + νw(|w|)

)

= 2γφWνd(|ed|) + 2γφWνff (|eff |) + 2γφWνw(|w|)
≤ η

3γ
2φ2W 2 + 3

η
νd(|ed|)2 + η

3γ
2φ2W 2 + 3

η
νff (|eff |)2

+ η
3γ

2φ2W 2 + 3
η
νw(|w|)2

= ηγ2φ2W 2 + 3
η

(
νd(|ed|)2 + νff (|eff |)2 + νw(|w|)2

)
.

(52)
Going back to (51), we derive that

〈∇U(q), F (q, w)〉≤−εV − εW 2 −H2(qx) + σd(|ed|)
+σff (|eff |) + σw(|w|)
+γ

(
− 2Lφ− γ(1 + η)φ2

)
W 2

+2γφLW 2 + γ2φ2W 2 +H2(qx)
+ηγ2φ2W 2 + 3

η

(
νd(|ed|)2 + νff (|eff |)2

+νw(|w|)2
)

=−εV − εW 2 + σd(|ed|) + σff (|eff |)
+σw(|w|) + 3

η

(
νd(|ed|)2 + νff (|eff |)2 + νw(|w|)2

)
.

(53)

7We consider〈∇U(q), F (q,w)〉 with some abuse of notation sinceU is
not (almost everywhere) differentiable a priori with respect to κ. However,
this is justified by the fact thaṫκ = 0, see (11).
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Therefore, there exists̃ε > 0 according to Claim 1 (takẽε ∈
(0, εmin{1, ρ∗

γ
})) such that

〈∇U(q), F (q, w)〉 ≤ −ε̃U(q) + ςdU (|ed|) + ς
ff
U (|eff |)

+ςwU (|w|), (54)

with ςdU (s) := σd(s)+ 3
η
νd(s)2, ςffU (s) := σff (s)+ 3

η
νff (s)2,

ςwU (s) := σw(s) + 3
η
νw(s)2 for s ≥ 0.

Let (q, w) be a solution pair to system (42). From (54), by
invoking standard comparison principles for continuous-time
systems, we obtain that, for(t1, 0) ∈ domq

U(q(t1, 0)) ≤ exp(−ε̃t1)U(q(0, 0)) + ε̃−1
(
ςdU (‖ed‖(t1,0))

+ςffU (‖eff‖(t1,0)) + ςwU (‖w‖(t1,0))
)
.

(55)
On the other hand, from (50), for(t1, 1) ∈ domq

U(q(t1, 1))≤U(q(t1, 0))+σ
d
U (‖ed‖(t1,0))+σ

ff
U (‖eff‖(t1,0)).

(56)
By induction, we have that, for(t, j) ∈ domq

U(q(t, j)) ≤ exp(−ε̃t)U(q(0, 0)) + σ̄w
U (‖w‖(t,j))

+
(
σ̄d
U (‖ed‖(t,j)) + σ̄

ff
U (‖eff‖(t,j))

)

×∑j−1
k=0 exp(−ε̃υ)k

≤ exp(−ε̃t)U(q(0, 0)) + σ̄w
U (‖w‖(t,j))

+
(
σ̄d
U (‖ed‖(t,j)) + σ̄

ff
U (‖eff‖(t,j))

)
1

1−exp(−ε̃υ) ,

(57)
where σ̄d

U (s) = σd
U (s) + ε̃−1ςdU (s), σ̄

ff
U (s) = σ

ff
U (s) +

ε̃−1ς
ff
U (s) and σ̄w

U (s) = ε̃−1ςwU (s) for s ≥ 0. On the
other hand, using (44) in (57), we obtain|(ξ(t, j), e(t, j))| ≤
α−1
U

(
exp(−ε̃t)αU (|(qx(0, 0), qe(0, 0))|) + σ̄w

U (‖w‖(t,j)) +
(
σ̄d
U (‖ed‖(t,j))+ σ̄

ff
U (‖eff‖(t,j))

)
1

1−exp(−ε̃υ)

)
. By using sev-

eral times the fact thatχ(a + b) ≤ χ(2a) + χ(2b) for any
χ ∈ K∞ anda, b ≥ 0, we obtain the desired result (17).

We now prove the last part of Theorem 1. We only consider
δd without loss of generality and lets ≥ 0. We have that
(17) holds withδd(s) = α−1

U

(
4

1−exp(−ε̃υ) σ̄
d
U (s)

)
. It has to be

noted that any upper bound ofα−1
U

(
4

1−exp(−ε̃υ) σ̄
d
U (s)

)
can

be taken to beδd in (17). Thus, we will derive upper bounds
for δd which are of the desired form. Using the definition of
σ̄d
U given after (57), we obtain

δd(s) = α−1
U

(
4

1−exp(−ε̃υ)

(
σd
U (s) + ε̃−1ςdU (s)

))
, (58)

which gives, in view of the definition ofσd
U and ςdU respec-

tively given after (49) and (54),

δd(s) = α−1
U

(
4

1−exp(−ε̃υ)

[
γ 2
ρ∗ (1 +

1
η
)µd(s)2

+ε̃−1
(
σd(s) + 3

η
νd(s)2

)])
.

(59)

The function δd depends on the MATIτ∗ although that
is not obvious from (59) because this dependence is hid-
den in the constantsρ∗ and η. Thus, we will remove
the dependence ofδd on ρ∗. We know that ρ∗ > ρ.
Therefore, noting thatαU (s) = min

{
αV (

s
2 ), ρ

∗αW ( s2 )
}

≥
min

{
αV (

s
2 ), ραW ( s2 )

}
=: α̃U (s) (in view of the definition of

αU given below (44)) and since we are working with strictly
increasing functions

δd(s) ≤ α̃−1
U

(
4

1−exp(−ε̃υ)

[
γ 2
ρ
(1 + 1

η
)µd(s)2

+ε̃−1
(
σd(s) + 3

η
νd(s)2

)])
.

(60)

The constant̃ε satisfiesε̃ ∈ (0, εmin{1, ρ∗

γ
}), see above (54).

However, sinceρ∗ > ρ, we can takeε̃ ∈ (0, εmin{1, ρ
γ
}).

In that way, (60) becomes independent ofρ∗. We write η =
θ(τ∗)−1 for some strictly positive functionθ : R≥0 → R>0,
in that way (60) becomes

δd(s) ≤ α̃−1
U

(
4

1−exp(−εmin{1, ρ
γ
}υ)

[
γ 2
ρ
(1 + θ(τ∗))µd(s)2

+ 1
εmin{1, ρ

γ
}

(
σd(s) + 3θ(τ∗)νd(s)2

)])
.

(61)
As a consequence, by applying several times the property
χ(a + b) ≤ χ(2a) + χ(2b) for any χ ∈ K∞ and a, b ≥ 0,

we obtain that δd(s) ≤ ψ(υ−1)
(
δ̃(s) + ϕ(τ∗)δ̄(s)

)
≤

(1 + ϕ(τ∗))ψ(υ−1)δ(s), where δ̃, δ̄ ∈ K∞, ϕ : R≥0 → R>0

andδ(s) := max{δ̃(s), δ̄(s)}. �

Sketch of proof of Proposition 1. Property (17) holds
according to Theorem 1. We then just have to use (18) in
(17) and (19) and to combine the obtained inequalities to
deduce that (20) holds on the domain of the solution. �

Proof of Proposition 2. We define the functionW : Z≥0 ×
R

ne → R≥0 asW : (κ, e) 7→ W(κ, ep − ed, 0, efb, 0), which
is locally Lipschitz in view of item (ii) of Proposition 2. From
(22), we deduce that the first line of (13) is ensured with
αW (s) = αW(s) andαW (s) = αW(s) for s ≥ 0. Moreover,
for system (11) we have thatW (κ+, e+) = W(κ+, e+p −
e+d , 0, e

+
fb, 0)−W(κ+, e+)+W(κ+, e+). Usingκ+ = κ+1

from (11) and (23), we obtain

W (κ+, e+) ≤ W(κ+, e+p − e+d , 0, e
+
fb, 0)−W(κ+, e+)

+ρW(κ, e)
= W(κ+, e+p − e+d , 0, e

+
fb, 0)−W(κ+, e+)

+ρW(κ, e)− ρW(κ, ep − ed, 0, efb, 0)
+ρW(κ, ep − ed, 0, efb, 0).

(62)
Since item (ii) of Proposition 2 is satisfied and by recallingthat
e = (ep, ed, efb, eff), we have thatW(κ, ep− ed, 0, efb, 0)−
W(κ, e) = W(κ, ep−ed, 0, efb, 0)−W(κ, ep, ed, efb, eff) ≤
M |(ed, ed, eff )| using the mean value theorem (sinceW is
locally Lipschitz in e). Similarly, we deriveW(κ+, e+p −
e+d , 0, e

+
fb, 0) − W(κ+, e+) ≤ M |(e+d , e+d , e+ff )|. In view of

item (i) of Proposition 2, we know that|e+d | ≤ |ed| and
|e+ff | ≤ |eff |; consequentlyW(κ+, e+p − e+d , 0, e

+
fb, 0) −

W(κ+, e+) ≤ M |(ed, ed, eff)|. As a consequence, in view
of (62), we obtain

W (κ+, e+) ≤ M |(ed, ed, eff )|+ ρM |(ed, ed, eff)|
+ρW(κ, ep − ed, 0, efb, 0)

≤ ρW (κ, e) + 2M(1 + ρ)|ed|+M(1 + ρ)|eff |,
(63)
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and the second line of (13) is verified withρ = ρ,
µd(s) = 2M(1 + ρ)s andµff (s) =M(1 + ρ)s for s ≥ 0. �

Proof of Proposition 3. For the RR protocol, we can write
(see (9) or Section III in [4])

hp(κ, ep) = (I−Ψp(κ))ep
hd(κ, ed) = (I−Ψd(κ))ed
hfb(κ, efb) = (I−Ψfb(κ))efb,

(64)

whereΨp,Ψd,Ψfb are diagonal matrices whose diagonals are
composed of0 and1.

We considerW (κ, e) =

√
∞∑
i=κ

|φ(i, κ, e)|2 whereφ(i, κ, e)

is the solution to the following system at timei starting at
time κ with initial condition e

ē+ =

(
hp(κ, eξ)
hfb(κ, efb)

)
=

(
(I−Ψp(κ))eξ
(I−Ψfb(κ))efb

)

=: h̄e(κ, e).
(65)

By following the same lines as in the proof of Proposition
4 in [4] since system (65) is dead-beat stable inℓ
steps and|φ(i, κ, e)| ≤ |e| for all i ≥ κ ≥ 0 and
e ∈ R

ne , we deduce that the first line of (13) holds
with αW (s) = s, αW (s) =

√
ℓs for s ≥ 0 in view of

Proposition 4 in [4]. We now show that the second line
of (13) is guaranteed:W (κ + 1, he(κ, e, ed, eff )) =√

∞∑
i=κ+1

|φ(i, κ+ 1, he(κ, e, ed, eff))|2 =

√
∞∑

i=κ+1

|φ(i, κ+ 1, h̄e(κ, e) + ∆he(κ, e, ed, eff))|2

where he is introduced in Section IV and
∆he(κ, e, ed, eff) = he(κ, e, ed, eff) − h̄e(κ, e). Due to
the linearity of φ in its third argument in view of (65),
we have that φ(i, κ + 1, h̄e(κ, e) + ∆he(κ, e, ed, eff ))
= φ(i, κ + 1, h̄e(κ, e)) + φ(i, κ + 1,∆he(κ, e, ed, eff )). In
that way, we derive, using that

√
a+ b ≤ √

a +
√
b for

a, b ∈ R≥0,

W (κ+ 1, he(κ, e, ed, eff)) =√
∞∑

i=κ+1

|φ(i, κ+ 1, h̄e(κ, e))|2

+

√
∞∑

i=κ+1

|φ(i, κ+ 1,∆he(κ, e, ed, eff ))|2.

(66)

Denote R(κ, e) =
∞∑
i=κ

|φ(i, κ, e)|2; using the fact that

φ(i, i, e) = e,

R(κ+ 1, h̄e(κ, e))=
∞∑

i=κ+1

|φ(i, κ+ 1, h̄e(κ, e))|2

=
∞∑
i=κ

|φ(i, κ, e)|2 − |e|2 = R(κ, e)− |e|2.
(67)

Now, we observe thatR(κ, e) = W 2(κ, e) ≤ ℓ|e|2 and thus
R(κ+1, h̄e(κ, e)) ≤ R(κ, e)− 1

ℓ
R(κ, e) = ℓ−1

ℓ
R(κ, e) which

implies

W (κ+ 1, h̄e(κ, e)) =

√
∞∑

i=κ+1

|φ(i, κ+ 1, h̄e(κ, e))|2

≤
√

ℓ−1
ℓ
W (κ, e).

(68)
On the other hand, we notice that|φ(i, κ +
1,∆he(κ, e, ed, eff))| ≤ |∆he(κ, e, ed, eff)| in view of
(64) and the fact thatΨp andΨd are diagonal matrices whose
diagonals are composed of0 and 1. As a consequence, we
have that

he(κ, e, ed, eff)=

(
(I−Ψp(κ))ep − (I−Ψd(κ))ed

(I−Ψfb(κ))efb

)

=

(
(I−Ψp(κ))eξ + (Ψd(κ)−Ψp(κ))ed

(I−Ψfb(κ))efb

)
.

Hence,

∆he(κ, e, ed, eff)=

(
(I−Ψp(κ))eξ + (Ψd(κ)−Ψp(κ))ed

(I−Ψfb(κ))efb

)

−
(

(I−Ψp(κ))eξ
(I−Ψfb(κ))efb

)

=

(
(Ψd(κ)−Ψp(κ))ed

0

)
.

(69)
Therefore |φ(i, κ + 1,∆he(κ, e, ed, eff ))| ≤ |(Ψd(κ) −
Ψp(κ))ed| ≤ |Ψd(κ) − Ψp(κ)||ed|. SinceΨp(κ) andΨd(κ)
are diagonal matrices whose diagonal components are0 or
1, we deduce that|Ψp(κ) − Ψd(κ)| ≤ 1. In that way, we
obtain that |∆he(κ, e, ed, eff)| ≤ |ed|. As a consequence,
|φ(i, κ + 1,∆he(κ, e, ed, eff ))| ≤ |ed|. Combining this point
with the fact that system (65) is dead-beat stable inℓ steps,
we obtain

√
∞∑

i=κ+1

|φ(i, κ+ 1,∆he(κ, e, ed, eff))|2 ≤
√
ℓ|ed|.

(70)
Therefore, in view of (66), (68) and (70),W (κ +

1, he(κ, e, ed, eff)) ≤
√

ℓ−1
ℓ
W (i, e) +

√
ℓ|ed|. Hence the

second line of (13) holds withρ =
√

ℓ−1
ℓ

, µd(s) =
√
ℓs

andµff (s) = 0 for s ≥ 0.
We now show that the second line of (13) holds withµd = 0

if and only if hp = hd.
(⇐): By setting Ψp = Ψd, we see from (69) that∆he =
0 in (68) and we obtain the desired result by following the
reasoning above.
(⇒): We proceed by contradiction and supposeΨp 6= Ψd and
Assumption 1 holds withµd = 0. Then, according to (13) and
sinceW (κ, e) ≤

√
ℓ|e|, we know that there existsβ ∈ KL

such that for any(e(0), ed(0), eff(0)) ∈ R
ne+ned

+neu ,
κ(0) ∈ Z≥0, the solutions toe+ = he(κ, e, ed, eff) satisfy
for any j ∈ Z≥0: |e(j)| ≤ β(|e(0)|, j), from which we
deduce that fore(0) = 0 and any(ed(0), eff(0)) ∈ R

ned
+neu

and κ(0) ∈ Z≥0, |e(1)| = 0. On the other hand,Ψp 6= Ψd

means that there exists at least one component ofed denoted
eid that is not assigned to the same node aseip. Without
loss of generality, we suppose thati is the only such node.
Take eξ(0) = 0, ekd(0) = 0 if k 6= i, eid(0) 6= 0 which
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implies thatekp(0) = 0 if k 6= i and eip(0) = eid(0). Consider
efb(0) = 0, eff (0) = 0 and κ(0) = 0. In view of (64),
we have thate+ξ = (I − Ψp(κ))eξ + (Ψd(κ) − Ψp(κ))ed
and e+fb = (I − Ψfb(κ))efb. Consequentlyeξ(1) = (I −
Ψp(0))eξ(0)+(Ψd(0)−Ψp(0))ed(0) = (Ψd(0)−Ψp(0))ed(0)
andefb(1) = (I−Ψfb(0))efb(0) = 0. Since all the network-
induced errors components are initialized at0 excepteip(0)
andeid(0), we can equivalently assume that eithereip or eid is
reset to0 at the first transmission instant. We assume that it is
eid. In that way, theith diagonal component ofΨd is equal to1
while theith diagonal component ofΨp is equal to0, sinceeip
andeid are not associated to the same node. As a consequence,
sinceΨp and Ψd are diagonal matrices and in view of the
definition of ed(0), (Ψd(0) − Ψp(0))ed(0) 6= 0. Hence,
e(1) 6= 0 which contradicts|e(1)| = 0. Hence, Assumption 1
only holds withµd = 0 whenΨp = Ψd, i.e. whenhp = hd. �
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